Nicole Kube Phd
Total Page:16
File Type:pdf, Size:1020Kb
Leibniz-Institut für Meereswissenschaften The integration of microalgae photobioreactors in a recirculation system for low water discharge mariculture Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät an der Christian-Albrechts-Universität zu Kiel vorgelegt von Nicole Kube Kiel, 2006 Referentin: Prof. Dr. Karin Lochte Koreferent: Prof. Dr. Dr. h.c. Harald Rosenthal Tag der mündlichen Prüfung: Zum Druck genehmigt: Kiel, den Der Dekan Foreword The manuscripts included in this thesis are prepared for submission to peer- reviewed journals as listed below: Wecker B., Kube N., Bischoff A.A., Waller U. (2006). MARE – Marine Artificial Recirculated Ecosystem: feasibility and modelling of a novel integrated recirculation system. (manuscript) Kube N., Bischoff A.A., Wecker B., Waller U. Cultivation of microalgae using a continuous photobioreactor system based on dissolved nutrients of a recirculation system for low water discharge mariculture (manuscript) Kube N. And Rosenthal H. Ozonation and foam fractionation used for the removal of bacteria and parti- cles in a marine recirculation system for microalgae cultivation (manuscript) Kube N., Bischoff A.A., Blümel M., Wecker B., Waller U. MARE – Marine Artificial Recirulated Ecosystem II: Influence on the nitrogen cycle in a marine recirculation system with low water discharge by cultivat- ing detritivorous organisms and phototrophic microalgae. (manuscript) This thesis has been realised with the help of several collegues. The contributions in particular are listed below: Chapter 2: MARE I MARE was designed, constructed and daily maintained by Adrian A. Bischoff, Bert Wecker and Nicole Kube. Sampling and analyzing was done by Nicole Kube (daily maintenance of the recirculation system, fish biomass, dissolved nutrients, foam fractionation and supporting help for worm biomass), Adrian Bischoff (daily maintenance of the re- circulation system, detritivorous tank sampling, fish biomass, dis- solved nutrients, supporting help for foam fractionation) and Bert Wecker (macroalgae biomass, supporting maintenance of the recircula- tion system). Bert Wecker developed the model and made the figures. Nicole Kube wrote the manuscript, supported by Adrian Bischoff. Dr. Martina Blümel and Dr. Uwe Waller reviewed the manuscript. Chapter 3: Photobioreactorsystem Nicole Kube designed the photobioreactor system, did the sampling and analyzing, supported by Adrian A. Bischoff and Bert Wecker. The manuscript was written by Nicole Kube, reviewed by Dr. Uwe Waller. Chapter 4: Foam fractionation Nicole Kube did the sampling and analyzing of the data. Nicole Kube wrote the manuscript, supported by Prof. Dr. Harald Rosenthal. Chapter 5: MARE II Nicole Kube and Adrian A. Bischoff did the sampling, analyzing and daily maintenance of the system. The manuscript was written by Nicole Kube, supported by Adrian A. Bischoff and Dr. Martina Blümel. Bert Wecker supported the modelling of the data. Uwe Waller reviewed the manuscript. Table of Contents Chapter 1 ................................................................................................... 5 1.1 Environmental impacts of open mariculture systems.......................... 7 1.2 Requirements of recirculation systems ............................................. 11 1.2.1 Feed uptake ............................................................................... 12 1.2.2 Biogeochemical cycles................................................................. 12 1.2.3 Applications of biogeochemical cycles in aquaculture systems .... 16 1.2.4 Suspended and settable solids (Particles).................................... 19 1.2.5 pH and alkalinity........................................................................ 20 1.2.6 Oxygen and CO 2 ......................................................................... 21 1.3 Technical recirculation system at IFM-GEOMAR .............................. 21 1.4 Recirculation systems with different trophic levels............................ 23 1.5 Organisms ....................................................................................... 26 1.6 Thesis outline .................................................................................. 29 1.7 References ....................................................................................... 31 Chapter 2 .................................................................................................39 2.1 Introduction..................................................................................... 41 2.2 Material and Methods ...................................................................... 42 2.2.1 MARE-System ............................................................................ 42 2.2.2 Measurements and Methods....................................................... 44 2.2.3 Modelling.................................................................................... 46 2.3 Results ............................................................................................ 61 2.3.1 Feasibility of the MARE-system................................................... 61 2.3.2 Modelling the nutrient budget..................................................... 63 2.4 Discussion ....................................................................................... 74 2.4.1 Feasibility of the MARE system................................................... 75 2.4.2 Nutrient recycling by integration of secondary organisms (Solieria, Nereis ) .......................................................................... 76 2.4.3 Modelling.................................................................................... 81 2.5 Conclusions ..................................................................................... 83 2.6 Acknowledgements........................................................................... 84 2.7 References ....................................................................................... 84 Chapter 3 .................................................................................................89 3.1 Introduction..................................................................................... 91 3.2 Material and Methods ...................................................................... 93 3.2.1 Design of the continuous photobioreactor system ....................... 93 3.2.2 Functional principle of the photobioreactors ............................... 96 3.2.3 Algae ........................................................................................ 100 3.2.4 Culture conditions.................................................................... 100 3.2.5 Sampling and analytical methods ............................................. 100 3.3 Results .......................................................................................... 102 3.3.1 Feasibility of the photobioreactor system for algae cultivation ... 102 3.3.2 Specific growth rates and nutrient uptake rates of Nannochloropsis at different light intensities ............................. 107 3.4 Discussion ..................................................................................... 112 3.4.1 Applicability of the photobioreactor design................................ 112 3.4.2 Nutritional value of microalgae ................................................. 113 3.4.3 Growth performance of Nannochloropsis spec. in continuous cultures.................................................................................... 115 3.4.4 Filter efficiency of microalgae photobioreactors ......................... 118 3.5 Conclusion..................................................................................... 118 3.6 Acknowledgements......................................................................... 118 3.7 References ..................................................................................... 119 Chapter 4 ............................................................................................... 123 4.1 Introduction................................................................................... 125 4.2 Material and Methods .................................................................... 127 4.2.1 System configuration................................................................ 127 4.2.2 Sampling methods.................................................................... 128 4.3 Results .......................................................................................... 132 4.3.1 Viable counts ........................................................................... 132 4.3.2 Quantitative and qualitative analysis ........................................ 134 4.3.3 Influence of ozone on efficiency of foam fractionation ................ 138 4.4 Discussion ..................................................................................... 139 4.5 Conclusion..................................................................................... 142 4.6 Acknowledgements......................................................................... 142 4.7 References ..................................................................................... 143 Chapter 5 ............................................................................................... 147 5.1 Introduction................................................................................... 149 5.2 Material and Methods .................................................................... 150 5.2.1 Modifications of