<<

LeibnizInstitutfürMeereswissenschaften

Theintegration ofmicroalgaephotobioreactors inarecirculationsystem forlowwaterdischargemariculture Dissertation zurErlangungdesDoktorgrades derMathematischNaturwissenschaftlichenFakultät anderChristianAlbrechtsUniversitätzuKiel vorgelegtvon Nicole Kube

Kiel,2006 Referentin:Prof.Dr.KarinLochte Koreferent:Prof.Dr.Dr.h.c.HaraldRosenthal TagdermündlichenPrüfung: ZumDruckgenehmigt: Kiel,den DerDekan

Foreword

Themanuscriptsincludedinthisthesisarepreparedforsubmissiontopeer reviewedjournalsaslistedbelow: WeckerB.,KubeN.,BischoffA.A.,WallerU.(2006). MARE–MarineArtificialRecirculated:feasibilityandmodellingof anovelintegratedrecirculationsystem. (manuscript)

KubeN.,BischoffA.A.,WeckerB.,WallerU. Cultivationofmicroalgaeusingacontinuousphotobioreactorsystembased ondissolvednutrientsofarecirculationsystemforlowwaterdischarge mariculture (manuscript)

KubeN.AndRosenthalH. Ozonationandfoamfractionationusedfortheremovalofandparti clesinamarinerecirculationsystemformicroalgaecultivation (manuscript) KubeN.,BischoffA.A.,BlümelM.,WeckerB.,WallerU. MARE–MarineArtificialRecirulatedEcosystemII:Influenceonthe cycleinamarinerecirculationsystemwithlowwaterdischargebycultivat ingdetritivorousandphototrophicmicroalgae. (manuscript)

This thesis has been realised with the help of several collegues. The contributions in particular are listed below: Chapter2:MAREI MAREwasdesigned,constructedanddailymaintainedbyAdrianA. Bischoff,BertWeckerandNicoleKube.Samplingandanalyzingwas donebyNicoleKube(dailymaintenanceoftherecirculationsystem, fish,dissolvednutrients,foamfractionationandsupporting helpforwormbiomass),AdrianBischoff(dailymaintenanceofthere circulationsystem,detritivoroustanksampling,fishbiomass,dis solvednutrients,supportinghelpforfoamfractionation)andBert Wecker(macroalgaebiomass,supportingmaintenanceoftherecircula tionsystem).BertWeckerdevelopedthemodelandmadethefigures. NicoleKubewrotethemanuscript,supportedbyAdrianBischoff.Dr. MartinaBlümelandDr.UweWallerreviewedthemanuscript. Chapter3:Photobioreactorsystem NicoleKubedesignedthephotobioreactorsystem,didthesampling andanalyzing,supportedbyAdrianA.BischoffandBertWecker.The manuscriptwaswrittenbyNicoleKube,reviewedbyDr.UweWaller. Chapter4:Foamfractionation NicoleKubedidthesamplingandanalyzingofthedata.NicoleKube wrotethemanuscript,supportedbyProf.Dr.HaraldRosenthal. Chapter5:MAREII NicoleKubeandAdrianA.Bischoffdidthesampling,analyzingand dailymaintenanceofthesystem.Themanuscriptwaswrittenby NicoleKube,supportedbyAdrianA.BischoffandDr.MartinaBlümel. BertWeckersupportedthemodellingofthedata.UweWallerreviewed themanuscript. Table of Contents

Chapter 1 ...... 5

1.1 Environmentalimpactsofopenmariculturesystems...... 7

1.2 Requirementsofrecirculationsystems ...... 11 1.2.1 Feeduptake ...... 12 1.2.2 Biogeochemicalcycles...... 12 1.2.3 Applicationsofbiogeochemicalcyclesinsystems .... 16 1.2.4 Suspendedandsettablesolids(Particles)...... 19 1.2.5 pHandalkalinity...... 20 1.2.6 andCO 2 ...... 21 1.3 TechnicalrecirculationsystematIFMGEOMAR ...... 21

1.4 Recirculationsystemswithdifferenttrophiclevels...... 23

1.5 Organisms ...... 26

1.6 Thesisoutline ...... 29

1.7 References ...... 31

Chapter 2 ...... 39

2.1 Introduction...... 41

2.2 MaterialandMethods ...... 42 2.2.1 MARESystem ...... 42 2.2.2 MeasurementsandMethods...... 44 2.2.3 Modelling...... 46 2.3 Results ...... 61 2.3.1 FeasibilityoftheMAREsystem...... 61 2.3.2 Modellingthenutrientbudget...... 63 2.4 Discussion ...... 74 2.4.1 FeasibilityoftheMAREsystem...... 75 2.4.2 Nutrientrecyclingbyintegrationofsecondaryorganisms (Solieria, Nereis ) ...... 76 2.4.3 Modelling...... 81 2.5 Conclusions ...... 83

2.6 Acknowledgements...... 84

2.7 References ...... 84 Chapter 3 ...... 89

3.1 Introduction...... 91

3.2 MaterialandMethods ...... 93 3.2.1 Designofthecontinuousphotobioreactorsystem ...... 93 3.2.2 Functionalprincipleofthephotobioreactors ...... 96 3.2.3 Algae ...... 100 3.2.4 Cultureconditions...... 100 3.2.5 Samplingandanalyticalmethods ...... 100 3.3 Results ...... 102 3.3.1 Feasibilityofthephotobioreactorsystemforalgaecultivation ... 102 3.3.2 Specificgrowthratesandnutrientuptakeratesof Nannochloropsis atdifferentintensities ...... 107 3.4 Discussion ...... 112 3.4.1 Applicabilityofthephotobioreactordesign...... 112 3.4.2 Nutritionalvalueofmicroalgae ...... 113 3.4.3 GrowthperformanceofNannochloropsisspec.incontinuous cultures...... 115 3.4.4 Filterefficiencyofmicroalgaephotobioreactors ...... 118 3.5 Conclusion...... 118

3.6 Acknowledgements...... 118

3.7 References ...... 119

Chapter 4 ...... 123

4.1 Introduction...... 125

4.2 MaterialandMethods ...... 127 4.2.1 Systemconfiguration...... 127 4.2.2 Samplingmethods...... 128 4.3 Results ...... 132 4.3.1 Viablecounts ...... 132 4.3.2 Quantitativeandqualitativeanalysis ...... 134 4.3.3 Influenceofozoneonefficiencyoffoamfractionation ...... 138 4.4 Discussion ...... 139

4.5 Conclusion...... 142

4.6 Acknowledgements...... 142

4.7 References ...... 143 Chapter 5 ...... 147

5.1 Introduction...... 149

5.2 MaterialandMethods ...... 150 5.2.1 Modificationsoftherecirculationsystem ...... 150 5.2.2 Measurements...... 152 5.3 Results ...... 154 5.3.1 Modulefish ...... 154 5.3.2 Moduledetritivoroustank...... 155 5.3.3 Modulemicroalgaebioreactors...... 159 5.4 Discussion ...... 161 5.4.1 Modulefishtank ...... 161 5.4.2 Moduledetritivoroustank...... 162 5.4.3 Modulemicroalgaebioreactors...... 162 5.4.4 Nitrogencycle...... 163 5.4.5 Generalrecommendations ...... 167 5.5 Acknowledgements...... 167

5.6 References ...... 168

Summary Summary Thedevelopmentofmariculturerecirculationsystems increasingly compre hendsnotonlyreprocessingofthewaterbodybutalsoanenhancednutrient recycling by integration of secondary modules like macro and microalgae anddetritivorousorganisms.Thesemodulesareappliedtoutilizedissolved and particulate waste derived from fish cultivation in an environmental friendlymanner. Inthisthesisapotentialconceptualdesignofsucharecirculationsystemis presented,developedbythemariculturegroupatIFMGEOMAR.Theunder lyingprincipleoftherecirculationsystemwasbasedonthatofanartificial ecosystemandcombinedseveraltrophiclevels(fish,macroalgae,microalgae, worms) (MARE = Marine Artificial Recirculated Ecosystem). Corresponding investigationsshowedthatthistypeofrecirculation system becomes feasi ble,ifthedimensionsofthesecondarymodulesareadaptedtothebioticand abioticculturerequirementsofthetarget.Theresultsoftheexperi ments provided substantiated knowledge regarding nutrient cycles within therecirculationsystem,whichcouldbedescribedbyanumericmodel. Themaingoalofthisthesiswasthedevelopmentofacontinuousphotobio reactor system for cultivation of Nannochloropsis spec. based on dissolved nutrientsderivedfromamarinerecirculationsystem.Fromtheresultsitbe cameevident,thatitispossibletogainadditionalbiomassandtoreturnal most100percentofthederivedwaterbacktothemainwatercycle.Thedata also revealed that the biofilter capacity of photobioreactor system remains strictlylimitedtoalowlevel. Furthermore,theefficacyofozoneandfoamfractionation was investigated regardingremovalofbacteriaandparticlesfromeffluentsofamarinerecir culationsystem.Interestingly,itcouldbeprovedbyusingaspecificstaining methodthatmostofthelivingbacteriaareattachedtoparticleswiththesize ofupto50mwhichprotectstheseorganismsefficientlyfrombeingkilled

1 Summary by treatmentwithozone.Thus,reductionoftotalbacterianumberscouldbe achievedbytheremovaloftheparticlesbyfoamfractionation. A second trial of the MAREsystem with fish, worms and microalgae re vealed,thatrecirculationsystemswithseveraltrophiclevelsrequireaproper management.Ifwormsarenotremovedfromtherecirculationsystembefore natural spawning, nitrogen cycle of the recirculation system can be nega tivelyinfluenced.Thisleadstoanimpairedgrowthofmicroalgaeandunsta blecultureconditionsforfish. Takentogether,thisworkdemonstratedforthefirsttime,thatamarineeco systemcouldbeartificiallymimickedbyinstallationofacycleofnutrients over several trophic levels. Hence, these results may contribute to reduce environmentalimpactsofmariculturesinthefuture.

2 Summary Zusammenfassung Die Entwicklung von Marikultur Kreislaufsystemen beinhaltet zunehmend nichtnurdievollständigeWiederaufbereitungvonWasser,sondernauchein erweitertesNährstoffrecyclingdurchdieIntegration von sekundären Modu lenwieMakroundMikroalgenunddetritivorenOrganismen.DieseModule werden benutzt, um die anfallenden gelösten und partikulären Abfallstoffe derFischproduktionumweltgerechtweiterzuverwerten.

IndieserDissertationwirdeinmöglichesKonzepteinersolchenAnlagevor gestellt,dievonderMarikulturgruppeamIFMGEOMAR entwickelt wurde. DasPrinzipderAnlageberuhteaufeinemkünstlichenÖkosystemundkom binierte verschiedene trophische Stufen (Fische, Makroalgen, Mikroalgen, Würmer) (MARE = Marine Artificial Recirculated Ecosystem). Die Untersu chungenhabengezeigt,dassdieMachbarkeiteinersolchenAnlagegegeben ist,wenndieDimensionierungendersekundärenModuleandiebiotischen undabiotischenBedingungenderZielartangepasstsind.DieErgebnisseder ExperimenteliefertenfundierteKenntnisseinBezugaufdieNährstoffkreis läufeinnerhalbdesKreislaufsystems,diedurcheinnumerischesModellbe schriebenwerdenkonnten. ZentralesThemadieserDissertationistdieEntwicklung eines kontinuierli chen Photobioreaktorsystems zur Kultivierung von Nannochloropsis sp. auf derBasisgelösterNährstoffeauseinemmarinenKreislaufsystem. Die Ver suche haben gezeigt, dass die Gewinnung von zusätzlicher Mikroalgenbio masse grundsätzlich möglich ist und das gereinigte Wasser zu fast 100% wiederandenHauptkreislaufzurückgegebenwerdenkann. DieErgebnisse wiesen aber auch darauf hin, dass das entwickelte Photobioreactorsystem nureinebeschränkteBiofilterleistungerbringenkann. DesweiterenwurdedieEffizienzvonOzonundAbschäumung im Hinblick auf die Entfernung von Bakterien und Partikeln aus dem Abwasser einer marinen Kreislaufanlage untersucht. Interessanterweise konnte durch die AnwendungeinerspezifischenFärbemethodenachgewiesenwerden,dassdie

3 Summary meisten lebenden Bakterien an Partikeln der Größe bis 50m haften, wo durchsiedenBehandlungsprozessmitOzonüberstehen können. Dennoch waresmöglich,dieGesamtbakterienzahldurchdieEntfernungderPartikel mittelsAbschäumungzureduzieren. IneinemzweitenVersuchslaufderMAREAnlagemitFischen,Würmernund Mikroalgen wurde deutlich, dass eine Kreislaufanlage mit verschiedenen trophischenEbeneneineskorrektenManagementsbedarf.WerdenWürmer vorihrernatürlichenReproduktionnichtausdemSystementfernt,kommt eszueinerAnreicherungvonorganischemMaterialimKreislaufsystem,das den Stickstoffkreislauf des Kreislaufsystem nachhaltig negativ beeinflussen kann.DasführtezueinerLimitierungdesMikroalgenwachstumsundinsta bilenKulturbedingungenfürdieFische. ZusammenfassendwurdemitdieserArbeiterstmaligdargelegt, dass durch denAufbaueineserweitertenNährstoffkreislaufsüber verschiedene trophi sche Stufen ein marines Ökosystem artifiziell nachgebildet werden kann. DaherkönnendieErgebnisseeinenBeitragleisten,inZukunftdieUmwelt einflüssevonMarikulturenzureduzieren.

4

Chapter 1 Generalintroductionandthesisoutline

5

6 Chapter1 1.1 Environmental impacts of open mariculture sys- tems Thegradualdeclineinsuppliesoffromtheoceanisoneofthegreat est challenges of the seafood industry nowadays. For the past decade the worldwidecaptureindustryhasbeenstagnantdueto.No shorttermrecoveryfromthecurrentsituationcanbeexpectedinthefuture. However,demandforhighqualityseafoodatreasonablepricesis increasing. Often a yearround availability of fresh seafood is expected. Hencethesefactorsdirectlyleadtoarapidexpansion of aquaculture: this sectorisshowinganaboveaverageeconomicgrowth.Estimationsofatotal aquacultureoutputof62millionstonsperyearin2025arepublished(FAO 2002), representing a duplication of today´s production (Fig. 1). The Food andAgricultureOrganizationoftheUnitedNations (FAO) defines aquacul tureasthefarmingofaquaticorganismsincluding fish, crustaceans, mol luscs and aquatic . Aquaculture can thus be very diverse. To date, commercial aquaculture is dominated by cultivation of kelp, carp, oysters and tiger prawns (FAO, 2005). The majority of organisms are cultivated withinfreshwateraquaculturesystems(57%,Davenport, 2003). Until now, marine aquaculture (mariculture) accounts for a smaller proportion (43%) butisofgrowingimportancebecauseofthestagnatingfisheryindustry.The application of a marine recirculation system for cultivation of Gilthead seabream(Sparus aurata )willthereforebethefocusofthiswork.

200 Capture 180 Aquaculture 160

140

120

100

80

60 Fish Supply [Mio. MT] Supply [Mio. Fish

40

20

0 1976 1980 1990 1997 2000 2010 2020 2030 Year Fig. 1 Globalfish supply,data presentedfrom 1976till 2000 as recorded data, 2010 to 2030asprojection(FAO,2002). 7 Chapter1

In Europe, mariculture is dominated by the cultivation of Atlantic salmon (Salmo salar ),Giltheadseabream( Sparus aurata )andSeabass( Dicentrachus labrax ) (Cross, 2003). In total, 80.000 tons of seabream were cultivated in 2002mainlyintheMediterraneanregion.Greecewasthemajorcontributor toseabreammariculture(49%),followedbyTurkey(15%),Spain(14%)and Italy (6%) (FAO, 2005) (Fig. 2b). The intensive culture of carnivorous fish species like salmon causes greater environmental impacts than extensive cultivationmethodsforherbivorousspecieslikecarp,oystersandmussels. a) b)

Fig. 2a )NetcagesinGreece(PhotobyH.Thetmeyer) b) AnnualproductionofseabreamintheEU regionbymariculture(FAO,2005).Theproductionwasstagnantinrecentyearsbecauseenlargement of the cultivation units was not possibledue to regulations of environmental impacts and conflicts withtourism(Cross,2003) InEurope,maricultureismainlyorganizedusingcagesalongthecoastline (Fig.2a).Breedinginthesesystemsissimpleandeconomical,butthecages aredirectlyconnectedwiththeenvironment.Inmostcasesthecagesarein stalledinwindprotectedareas,e.g.baysorfjords.Thehighloadoforganic (faecesandfeedremains)andinorganicwaste(fishexcretoryproducts)are directlyleadingtoeutrophicationinthesurrounding environment (primary effects,Fig.3)(AckeforsandEnell,1994; Beveridge et al ., 1991). Addition ally,traceelementsandmicronutrients(e.g.vitamins from the feed) or re sidual pharmaceuticals can be found in the environment surrounding the cages. Furthermore these open systems are easily affected by economical damages generated by the transfer of diseases, parasites and toxic sub stances(Braaten et al. ,1983;1992; Weston1991).

8 Chapter1

Fig. 3 Inputsandoutputsfromafishcageculturesystem(fromDavenportetal.,2003):Feedintake causesanincreaseddemandofoxygenandreleasesalipidfilmatthewatersurface.Duetothefish CO 2andnitrogenareexcreted.Particulatewaste,consistingoffaecesmaterial anduneatenfishfeed,depositatthesedimentaroundthenetcages.Theorganicloadcausesanoxy gendrainduetobacteriaactivity.Whenthedemandofoxygenexceedstheoxygendiffusionratefrom overlyingwaters,sedimentbecomesanaerobic.Thishasononehandastronginfluenceoftheben thosecosystemduetodecreasingoxygentension.Alsoarangeofmicrobialprocessescanfollowup: nitrification(oxidationtoandnitriteoxidationto)isnottakingplace,deni trification(producingdinitrogenfromnitrate)iscompetingwithnitratereduction(producingagain toxicammoniafromnitrate).Alsotoxiccanbeproducedbyreductionand undermostreducingconditionsalso(viamethanogenesis). Asecondproblemistheinteractionwithwildfish populations: unplanned releasesoffarmedfish(e.g.bydestroyednets)and/orgametesorfertileeggs caninterferewiththegeneticpoolofwildstocks,resultingininterbreeding andreducedwildstockfitnessandfertility.Furthermore,artificialstructures usedinmaricultureaffectlocal:nets,anchors,mooringlinesetc. can cause entanglement of the marine wildlife and provide substrates fa vouringfouling.Otherspeciesoffish,birds,marinemammalsandalsorep tilesareattractedbythemassofcultivatedfish(Nash et al. ,2005). Veryoftenmaricultureactivitiesareinconflictwithotherhumaninterests. forlandandwaterareoftenthemaintargets. Especially con flictswithtourismlimitsgrowthofmariculture(Cross, 2003). Using coast lines for mariculture additionally destroys original biotopes and ruins fish breedingandnurseryareas.Besides,localecosystems(e.g.coralreefs)are affected by increased erosion, which secondarily effects the local fisheries. Modificationsofthenaturalfoodwebduetotheofwildjuvenilefish

9 Chapter1 forbreeding/mast,theconsumptionof planktonicorganismsduetolarge scale bivalve farming and increased fishing pressure on small pelagic fish populationsforaquaculturefeed(Nash et al. ,2005)havetobeconsideredas longtermeffectsresultingfromthisformofaquaculture. Therefore,asustainabledevelopmentoftheaquaculture sector is required “to ensure the attainment and continued satisfaction of human needs for presentandfuturegenerations.Suchsustainabledevelopment(intheagri culture,forestryandfisheriessector)conservesland,water,andani malgeneticresources,isenvironmentallynondegrading,technicallyappro priate,economicallyviableandsociallyacceptable”(FAO,1988).Inparticu lar,asustainablemanagementintheaquaculturesectorcomprisesefficient useofland,water,energyandanimalnutritionwith simultaneous consid erationofbearingcapacityoftheaquaticenvironmentandadjacentecosys tems. In recent years great efforts have been made to reduce the environmental impactsofnetcages:improvementsinsiting,design,technology,andman agement at farm level including improved feeding with a lower waste dis charge,betterfishhealthmanagementincludingdiseaseandstockcontrol atindividualfarmandsectorlevelandtheinvestigation of social and eco nomicalaspectsareonlyafewissues(GESAMP,2001). Nevertheless,netcagesarestillopensystemswithnegativeimpactsonthe naturalsurroundingenvironment.Thedevelopmentofrecirculatingsystems with partly or complete reuse of water (Losordo, 1999; Waller, 2000) has beenpromotedwithinthepastdecades,especiallyduetoimprovementsin system technology (Rosenthal and Grimaldi, 1990; Losordo et al. , 1999; Summerfelt,2002;Waller et al. ,2003). Theseclosedcultivationsystemscanensuretheconstantmarketavailability oftheculturedmarineorganismsbyprovidingcontrolledsystemconditions. Theycanbeapotentialalternativetoconventionalproductionsystemswhen failurefree operation and profitability are assured. To date, intensive re

10 Chapter1 searchiscarriedoutdealingwithclosedrecirculationsystems.Furtherap plicationsforrecirculationsystemsareornamental/tropicalfishculture,ma tureandbroodstockculture,fryandfingerlingproductionandnichemar ketsforhighpricefoodfish. 1.2 Requirements of recirculation systems Withinarecirculationsystemasuitableenvironmentandgoodwaterquality hastobemaintained.Therecirculatingwater(processwater)issubjectto severaltreatmentprocessesleadingtoaneliminationofharmfulsubstances or enriched nutrients (anoxic conditions are favoured by nutrient enrich ment).Primaryconditionstoensuresurvivalofthefishare:sufficientcon centrationofdissolvedoxygen(>5mg/Lor50%DOT),lowconcentrationsof undissociated ammonianitrogen (<1mg/L), nitritenitrogen (< 1mg/L) and carbondioxide(<0.2ppm)(Losordo et al. ,1998).Additionally,pHvaluesare requiredtobeinarangefrom6to9(optimumforseawater:7to8,Losordo, 1999). Iflessthan10%d 1ofthetotalsystemvolumeareexchanged,arecircula tion system is called closed recirculation system (EIFAC, 1986), although modernsystemscanreach<<1%d 1.waterexchangerate.Asystemmeet ingtheserequirementshasbeendevelopedatIFMGEOMAR (Waller et al. , 2003). Recirculatingsystemsarebiologicallycomplexsystemsandneedasophisti catedplanning.Thecriticalparametersvaryaccordingtobiological,chemi calandphysicalinteractionsbetweenthedifferentsystemcomponents,es peciallywithintensivefishrearing(0.04kgL 1,Losordo et al. 1998).Accord ingtothisstudy,an80Lcommercialhomeaquariumcanbestockedwith5 kilogramsoffish. Thekeytoanefficientmaricultureinaclosedrecirculatingsystemistheuse ofhigheffectivewatertreatmentcomponentsandagooddailymaintenance. In poorly managed systems the main problem is insufficient water quality

11 Chapter1 becauseofinappropriatecomponentsandfailures.Thisleadstostress,dis easesandhighmortalitiesamongthefishes.Uniformflowratesofwaterand air/oxygen,fixedwaterlevelsandcontinuousoperation are of primary im portance. Especially the amount of exchanged water is decisive: the lower theamountofdischargedwater,themoreimportantaredetailedknowledge ofandexperiencewithrecirculatingsystems.Anintroduction dealing with thecriticalparametersformaintenanceofarecirculatingsystemisgivenin thefollowingchapter. 1.2.1 Feed uptake Itisnecessarytoraiseafishfrom5gbodyweighttomarketsizeofapproxi mately 350400g in about one year to generate a profit. To ensure such growth,fisharefedusinghighproteinpelletsatratesfrom0.8to10percent ofbodyweightdependingonsizeandspecies.Thefeeduptakehasanenor mousinfluenceontheenvironmentalconditionsoftherecirculationsystem. Thefirsteffectappearsdirectlyafterthefeeding:duetofishdigestion,the respirationrateincreasesdramaticallyassociatedbyadecreaseofdissolved oxygenconcentrationstocriticallevels.Especiallyafterintensivefeeding(2 or3portionsofthetotaldailyfeed)(Masser et al., 1999)thiseffectcanbe observed.Alongerfeedingperiodupto15hourse.g.byinstallationofauto maticfeedersisthereforepreferred.Therearealso secondary effects of in tensivefeeding.Thefishdonotusethewholecontentofnitrogenandphos phorusofthefeedforbiomassproduction:forexamplemax.30%ofthetotal nitrogenofthefeedremainsinthefishbody(Krometal.,1985;Kromand Neori,1989;Halletal.,1992;LupatschandKissil,1998;Hargreaves,1998). Thus,70%ofthefeednitrogencontentisexcretedasorganicwaste:itcan beclassifiedintosettlingandsuspendedsolidsandexcreteddissolvednutri ents.Themainchallengeofasuccessfulmaintenanceofarecirculationsys temisthecontrolofthehighorganicwaste.Aconstantfeedingistherefore consideredasdecisiveforthesystemmanagement. 1.2.2 Biogeochemical cycles Twobiogeochemicalcyclesareofmajorimportanceforrecirculationsystems: thenitrogencycleandthephosphoruscycle.Thenutritionofthefishisen

12 Chapter1 richedinnitrogenaswellasinphosphorus.Feedremainsaresubjecttobio geochemicalrecyclingwithinarecirculationsystemaswellastheexcretion productsofthecultivatedorganisms.Soitisimportant to understand the impactofthebiogeochemicalnutrientcyclinginnaturalaswellasinartifi cialsystems.Inthefollowingchapters,thenitrogenaswellasthephospho ruscyclearefirstlypresentedinnaturalsystems;thenimplicationsandap plicationsforaquaculturesystemsaredescribed.

Nitrogen cycle Thenitrogencycleisacomplexbiogeochemicalcycleinnaturalsystems(Fig. 4).Thenitrogencycleisalsoofspecialinterestinaquaculturalsystemsin ordertoobserveandcontrolthebacterialnitrogenmetabolismbecausetoxic intermediate products (e.g. ammonia, nitrite) can form and be enriched in thecirculationwater.Therearetwomajorprocessesofnitrogenconversion: nitrificationand.

organic matter

+ NH 4 Nitrification N2-fixation

NH 2OH AN AM M OX Ammonification

NO - 2 NO N2O N2 Assimilatory nitrate reduction

Denitrification

- NO 3 Fig. 4 :Nitrogencycle.Aerobicprocessesaremarkedinbluearrows,anaerobicprocessesaremarked inblackarrows.Theprocessismarkedwithredboxes.

13 Chapter1

Nitrification Theoxidationoforganicorinorganicnitrogencompoundsiscallednitrifica tion.Itisanaerobicprocessresultingintheformationofnitrate(NO3 2).Ni trificationisperformedbynitrifyingbacteria(nitrifiers)beingwidelydistrib utedintheterrestricandmarinerealm.Nitrifierscanbedividedintoammo niaoxidising bacteria (AOB, e.g. , Nitrosococcus, Nitrosospira, Nitrosolobus, Nitrosovibrio ) converting ammonia to nitrite and nitrite oxidising bacteria (NOB, e.g. , Nitrospina, Nitrococcus, ) convertingnitritetonitrate(Bock et al., 1986;Bothe,2000).Nitrificationcan be performed both by autotrophic and heterotrophic bacteria. Autotrophic nitrifiersareabletocombinenitrificationwithdenitrificationconvertingthe

NO 2producedbyammoniaoxidationtoN 2 (nitrifierdenitrification,Wrage et al. , 2001). Heterotrophic nitrifiers gain no energy performing nitrification (Schmidt et al. , 1999) and therefore may have selective advantages under suboxicconditions. Inaquaculturesystemsthenitrificationprocessisofmajorimportancebe causeoftheremovaloftoxiccompounds.Whenorganicmaterialisdegraded bybacteria,ammoniaisformed.Ammoniaisalsoexcretedbythefish.Two compoundsofammoniaarepresent:dissociatedandundissociated ammo nia.Theundissociatedammoniacanrapidlyreachtoxic concentrations for fishandthereforeneedstoberemoved.Therefore,nitrificationisanimpor tantprocess.Thisalsoaccountsfornitritebeingtoxicforfishincomparably lowconcentrations.Incontrast,nitrate,thefinalproductofthenitrification processisnotknowntobeatoxicnitrogencompoundforfish,eveninele vatedconcentrations.However,nitrificationcanalsobeperformedinthere versedirection,producingammoniabynitratereduction.Reductionequiva lents from processes are oxidised during nitrite reduction re sultingintheformationofammonia(nitrateammonification). Additionally, nitrate reduction can be used for an assimilatory process (assimilatory ni tratereduction,Schlegel,1992).Nitrateammonificationisperformedbyfac ultativeanaerobicbacteriaandoccursduringanoxicconditions.Incontrast, themajorityofbacteriacarriestheenzymesforassimilatory nitrate reduc tion. This process is performed during oxic as well as anoxic conditions

14 Chapter1 when nitrate is the only available nitrogen source. Assimilatory nitrate re ductionisinhibitedbyelevatedammoniaconcentrations(Schlegel,1992). Another recently discovered process, the anaerobic ammonia oxidation (ANAMMOX; Strous, 1999), removes ammonia via the formation of nitrite forming N 2. However, the ANAMMOX process is an anaerobic process. An aerobic conditions are not desired to develop in aquaculture systems and thereforetheANAMMOXprocessisnotlikelytoplayamajorrole.Duetothe highparticleloadinarecirculationsystem(fishexcretions),suboxic/anoxic conditions are likely to occur at the particle surfaces and the ANAMMOX processthereforemaycontributetotheremovalofammonia.

Denitrification

Thestepwisereductionofnitratevianitrite(NO 2),nitricoxide(NO)andni trousoxide(N 2O)iscalleddenitrification.Thefinalproductofthedenitrifica tion process is atmospheric nitrogen (N 2). Pseudomonas sp., Bacillus sp., Thiobacillus sp.and Propionibacterium sp.areknowntobedenitrifyingbac terial genera (Zumft, 1997; Wrage et al. , 2001). Also among the , genera possessing the enzymes for denitrification have been detected (e.g. Haloarcula marismortui, Zumft 1997). The majority of denitrifying bacteria are aerobic heterotrophic organisms using nitrate (nitrite, nitric oxide, ni trousoxide)asterminalacceptormoleculesintherespiratorychain. Denitrification occurs when suboxic/anoxic conditions are prevailing, be causetheenzymesresponsibleforthisprocess(e.g.nitratereductase,nitrite reductase) are sensitive to elevated oxygen concentrations. Like nitrifiers, denitrifyingbacteriaarewidelydistributedintheterrestricaswellasinthe marine realm. Factors affecting denitrification rates are: nitrate concentra tion,concentrationofelectrondonators(e.g.organiccompounds,re ducedsulphurcompounds,hydrogen)andthepresence/absenceofoxygen being considered as the decisive criterion (Tiedje 1988). Recently, aerobic denitrification was also observed for several bacterial species. The oxygen concentration tolerated by these bacteria is varying (Zumft 1997, Wrage 2001). In aquaculture systems, denitrification is restricted to special units wheresuboxic/anoxicconditionscanbemaintained(Chapter3,5).

15 Chapter1

Phosphorus cycle Comparedtothenitrogencycle,thebiogeochemicalcyclingofphosphorusis rathersimple.Inorganicismainlybroughtintothemarinerealm byweatheringofrocks.Inorganicphosphateoftenisalimitingfactorforpri maryproductionintheoceansandiseasilyintegrated into phytoplankton biomassbyprimaryproduction.Thephosphorusisthentransferredbiologi callyviatheclassicalfoodchaintohighertrophiclevels.Particulateanddis solved phosphate is excreted by larger organisms of all trophic levels and particulatephosphateisproducedduringdecayoforganicmatter.Thedetri tussinkstotheseafloorandingeologicaltimescales,isfixedinrockmate rial. 1.2.3 Applications of biogeochemical cycles in aquaculture systems

Nitrogen cycle Totalammonianitrogen(TAN)isabyproductofthe proteinmetabolism of fish(BoneandMarshall,1995).TANisexcretedbythefishviathegillsas digestionproductandisalsoproducedbybacteriaconvertingorganicwaste intodissolvednutrients.TANconsistsofundissociatedammonia(NH 3)and dissociated ammonia (NH 4+). The undissociated form is extremely toxic to mostfishspecies.Therelativeproportionsofundissociatedanddissociated ammoniaarestronglydependingonpHandtemperatureandalso,toami norextent,onthesalinityofthesystemwater(Trussel1972,Bower1978). At pH7.0 the majority of ammonia occurs in the dissociated form, but at pH8.5morethan30percentoftheTANisdetected as NH 3.Thus,itisof majorimportancetokeepTANconcentrationsaslowaspossiblecoinciding withthemaintenanceofpHvalues<8.5.Ingeneral,theconcentrationofdis sociatedammonianitrogenshouldnotreachmorethan0.05mg/L(Losordo, 1998),althoughlethalconcentrationscanvaryfromspeciestospecies.Only fewstudieshavebeenconductedexaminingtheinfluenceofsublethalTAN concentrations on fish, but effects on growth and immune defence, skin damages and a reduced fertility was observed (Colt and Armstrong, 1979; RussoandThruston,1991; Hargreaves,1998).

16 Chapter1

Thus,itisoneoftheprimaryobjectivesduringmaintenanceofarecircula tion system to avoid TAN accumulation and to eliminate this component fromthesystemassoonaspossible.ToachieveTANreduction/elimination, biologicalfiltrationisthepreferredtreatmentstepinaquaculture.Thereare severalformsofbiofilters,e.g.fluidizedbedfilters,mixedbedfiltersortrick ling filters (Losordo et al. ,1999,Fig.5a).Withinabiofilterasuitablesub strate(e.g.plasticpellets,Fig.5c)providinganenlargedsurfaceforattach mentespeciallyfornitrifyingbacteria(e.g. Nitrosomonas sp.) issupplied.

Thefirstproductofthenitrificationprocessisnitrite(NO 2)beingalsoatoxic componentforthefish.Nitriteionsaretakenupintothefishbythechloride cells of the gills, oxidising the Fe 2+ ion in the haemoglobin molecule (Boyd andTucker,1998).Methaemoglobinastheresultingproduct,isnotableto reversibly bind oxygen (Colt and Armstrong, 1979; Russo and Thurston, 1991;Hargreaves,1998;Kioussis et al. ,2000)beingcrucialforrespiration. Therefore,withincreasingnitriteconcentrationsinthewaterandhencein the blood circulation system the oxygen binding capacity of the blood de creases.Fishareforcedtoelevatetheventilationrateofthegills.Although theoxygenconcentrationofthewaterissufficientforfishsurvival,suffoca tionispossibleduetoelevatednitriteconcentrations. Toxicityofnitritedoes notonlydependonthefishspecies,butalsoonthepHandconcentrationof Cl and Ca 2+ ions in the water (Colt and Armstrong, 1979; Kioussis et al. , 2000).TherecommendedconcentrationsofNitriteN for intensive aquacul ture is <0,1mgL 1 NO 2N in freshwater and <1mg L 1 NO 2N in seawater (Wickins,1980). Assumingstableconditionsinarecirculationsystem,nitriteisrapidlycon vertedtothenontoxicnitrate(NO 32).Inbiofiltersusedinaquaculturesys tems also bacterial species (e.g. Nitrobacter sp.) converting either nitrite or bothammoniaandnitritetonitratearepresent,resultinginacompletere movalofthetoxicnitrogencompoundsbytheprocessofnitrification(Rhein heimer et al. , 1988; HagopianandRiley,1998).Highconcentrationsofni tratearenotsupposedtobeofmajorimportancefor fish survival, aquatic species can tolerate extremely high levels (>200mg/L). Therefore, only few

17 Chapter1 studies are published discussing toxic levels and effects of nitrate (Russo andThurston,1991). However,thereareindicationsofeffectsontheosmo regulationandoxygentransportinthebloodasreactiontoveryhighnitrate concentrations(ColtandArmstrong,1979;Kioussiset al. ,2000). Withinacompletelyclosedrecirculationsystem,asitisoperatedattheIFM GEOMAR (see Subsection 1.3), nitrate is accumulating in the system. The installationofadenitrificationreactorcanhelptocontrolthenitrateconcen tration(Fig.5b).Inthedenitrificationreactor, anoxic conditions are main tainedduetolowflowrates.Additionally,methanolisaddedasaCsource forthebacterialmetabolismaccordingtothepotentialinthereactor (Wecker,2002). a) b) c)

Fig. 5.a) Contiwashbiofilterwithinternalcounterflowprinciple.Thearrowsshowtheflowdirec tionofthepellets(Sander). b) Denitrificationreactor,workinganalogous c) Plasticpelletsprovidedassubstrateforbacteria.Theyareusedbothinthebiofilterandthe denitrificationreactor.

Phosphorus cycle Thenutritionofthefishisenrichedinphosphate.Around70to90%ofthe phosphateprovidedwiththefeedisreleasedtothesystemenvironmentas

PO 43. A proportion of approximately 20% thereof is released as dissolved phosphate, whereas the major proportion (80%) is excreted as particulate matter (Bodvin et al. , 1996). Phosphate is a nontoxic compound and high concentrationscanbetoleratedbythefish.Inarecirculationsystem,accu mulationofphosphatecaneasilybeavoidedbyproperwatertreatment,be causemostofthephosphatecanbedischargedwiththeorganicsolidsoris 18 Chapter1 used in bacterial metabolism during denitrification. (Barak and van Rijn, 2000).Iftheaccumulationexceedsconcentrationsofmorethan100mgL 1a water exchange can be considered, but the integration of phototrophic or ganismscanhelptocontrolthephosphatelevels. 1.2.4 Suspended and settable solids (Particles) Especially the suspended (particles <50m) and settable solids (particles >50m,fishfaeces)needtoberemovedrapidlyfromthesystem(Crippsand Bergheim,2000).Thefishfaecesalloythewaterquality:duetobacterialac tivity and chemicophysical conditions leaching (= extraction of nutrients) canbeobserved.ofremainingsolidsresultsespeciallyinan increase of ammonianitrogen concentrations and a decrease in dissolved oxygentension(DOT)inthesystem(Welchand Lindell,1992).Justlikedur ingfishcultivationinanopensystemusingnetcagestoxiccompounds(e.g. hydrogensulfide)canaccumulate.Theremovalofparticlesisveryimportant tocontrolbacterialabundancesintherecirculationwater,becausethema jorityoflivingbacteriacanbefoundattachedtoparticles(Kube&Rosenthal 2006,Chapter4;Braaten,1986;LitveldandCripps,1992). Assumingundisturbedwaterconditions(noflow),largerparticles(settable solids)willsettledownsoonafterrelease.Theseparticlescanberemoved using a sedimentation tank, a mechanical filtration or a swirl separator. However,thesuspendedsolids(smallerparticlesizes)willnotsettledown andcancauseturbidity.Whentheseparticlesarenotefficientlyremoved, theresultingturbiditycancausestressandirritationsofthefishgillsand consequentlyinfluencefishhealth(Rosenthal et al. ,1982).Theuseoffoam fractionatorsisaproperandeconomicalwayforremovingsuspendedsol ids.Anair/ozonemixtureisdischargedintoaclosedcylinderatthebottom ofthecylinder.Thewaterisletinfollowingthecounterflowprinciple(Fig. 6).Thebubblesrisethroughthewatercolumn,theiractivesurfacebinds proteinsandparticles,formingfoamatthetopofthecylinder.Thefoamis thencollectedinawastetank.Theproportionofozonesupportsthefoam ing process: ozonation – through electrostatic loading and polarization of the hydrophobichydrophilic ends foster settling characteristics of sus

19 Chapter1 pendedsolidswhilealsoassistinginformingaggregatesthatattachtowa terair interfaces, producing a stable foam which can be removed by countercurrentstripping.Ozoneisabletobreakup organic compounds, longchainmoleculesandespeciallylipidsformingathinfilmonthewater surfaceafterfeeding. Fig. 6 A Fresh Skim 200 (Sander) foam fractionator: water is pumped in following the counterflow principle. Through the airstone an air/ozone mixture is let in. A surface active layer is gener ated around the discharged bubbles.Proteinsareaccumu lating with their hydrophobic end to thebubble. Thehydro philicendiscatchingparticles esp. of organic origin. Due to the buoyancy of the bubbles and the following foam forma tion all particles are removed and collected in the upper foamcollector. 1.2.5 pH and alkalinity ThepH(concentrationofH +ions)ofwaterdoeseffectnumerousotherwater parameters (e.g. ammonianitrogen). It also influences conversion rates of otherbiologicalandchemicalprocesses.Thus,pHmustbemonitoredtoen sure optimal conditions for fish growth in recirculation systems (Losordo, 1998).TheoptimalpHrangeforfishhealthis59withanoptimumfrompH 7to8.InadequatepHconcentrationsalsoinfluencemetabolicratesofother importantorganismsinthesystem,e.g.belowpH7theactivityofnitrifying bacteriaisreduced(BischoffandKube,unpubl.data) Alkalinityisdefinedasthecapacityofwaterforacidityneutralization.Bicar bonate (HCO 3) and carbonate (CO 32) are the predominant compounds de terminingalkalinityinseawater.Thehigherthealkalinity,thehigheristhe bufferingcapacityofthewateragainstpHchange.pHvaluescanfluctuate

20 Chapter1 or cycle daily due to respiration, whereas alkalinity is relatively stable but alsoalkalinitycanchangeoverlongertimeperiods(Wurts et al. ,1992). Nitrificationisanacidproducingprocess;thetransferofammonianitrogen to nitratenitrogen produces H + ions. Due to the reactions with hydroxide ions(OH ),carbonateandbicarbonate,alkalinityandpHvaluesdecrease.In order to maintain alkalinity and pHvalues, lime and sodium bicarbonate

(NaHCO 3)canbeaddedtothewater.

1.2.6 Oxygen and CO 2 Theconcentrationofdissolvedoxygen(DO)isthemainlimitingfactorforthe fish carrying capacity of a recirculation system. The overall rate of oxygen consumptioninarecirculationsystemisdeterminedbytherespirationrate ofthefish,theoxygendemandofbacteriaconsumingorganicwasteandfood remainsandtheoxygendemandinthenitrifyingbiofilters(BOD–Biological oxygendemand)(Losordo,1998).DOvaluesshouldbeabove60%ofsatura tion(DOT). During intensified cultivation and increasing feeding rates additional aera tionofthesystemisnecessary.Requiredconcentrationsofdissolvedoxygen canbemaintainedthroughcontinuousaerationeitherwithatmosphericair or pure gaseous oxygen (Losordo, 1998). As mentioned before (subsession 1.2.3), the proper removal of solids can drastically reduce the oxygen de mandofthesystem. 1.3 Technical recirculation system at IFM-GEOMAR Modern recirculation systems allow the intensive culture of marine organ ismsatalmostoptimallivingconditionsundminimizedwaterexchange(Liao andMay1974;OtteandRosenthal1979,Bovendeur et al. ,1987,Blanche ton2000,Waller et al. ,2001). One of these systems is a technical recirculation system installed at the Fishery Biology Department of IFMGEOMAR. Considering the special re

21 Chapter1 quirementsofsuchasystemdiscussedintheprecedingchaptersthefollow ing components were installed (Fig. 6): in two circular fishtanks Gilthead Seabream( Sparus aurata )wascultivated(1).Solidwastewasremovedbya twostepseparationprocess:largerparticlessedimentedintheswirlsepara tor(2,Fig.7b,c)andparticles<50mwereremovedwithafoamfractionator Helgoland700withozoneaddition(4,Fig.7a).Ammonianitrogenandnitrite wasconvertedtonitrateinaContiwashbiofilter,thenitratewasremovedby a denitrification bioreactor (5). Online measurements and automatically regulationsofoxidationreductionpotential(ORP),pHandoxygenlevelswere monitoredwithacontrolmodule(KM2000).TomaintainpHaCaOdosage unitwasinstalledattheswirlseparator(Fig.7c).

4

1 1 6 3 5

7 2

Fig. 6 SchematicdrawingofthetechnicalrecirculationsystematIFMGEOMAR.Arrowsshowthe flowdirectionofwater.(1)fishtankswithaeration,(2)Swirlseparator,(3)ContiwashBiofilter,(4) Foamfractionator,(5)denitrification,(6)Airlift,doubletriangle=tap

22 Chapter1 a) b) c)

Fig. 7a ) Foam frac tionator (left) with vesselforrinsingwater (right) b)ontopviewof a swirl separator with the central black up per outflow. Water rises with an eddy current from bottom inlet meanwhile larger particles can settle down c) Biofilter (left) and swirl separator (right) with CaO dos agedevice(middle) Waterisaeratedinthetanksusingcompressedair,butthefoamfractiona torandthebiofilterwaterareenrichedwithoxygenaswell.Duetoeffective treatment steps water discharge rates <<1% per day could be achieved (Waller et al., 2003b).Basedonthisknowledgeandresearchacommercial scalerecirculationsystemwith120m³watervolumeand10tonsoffishbio massproductionwassetupnearHanover(PISA–PolyIntegrated Seawater Aquaculture)(Waller et al. ,2005). 1.4 Recirculation systems with different trophic levels Todate,inclosedrecirculationsystemswasteproducedbyfishwaseither removedornontoxicnutrients,e.g.nitrate(resultingfrombiofiltration)and phosphate(leachingofsolids)wereaccumulating.Thedailyamountofwaste isveryhigh:resultsfromdifferentaquaculturalcultivationsystemsshowed thatonly2030%ofthenitrogenfromthefeedareusedbythefishforbio masssynthesis(Krom et al. ,1985;KromandNeori,1989;Halletal.,1992; Lupatsch and Kissil, 1998; Hargreaves, 1998). Utilization of phosphate is evenlower:published valuesrangefrom10to30%offeeduptake (Kromet al., 1985; Krom and Neori, 1989; Barak and van Rij, 2000; Lupatsch and

23 Chapter1

Kissil,1998)inturnmeaning,that7090%areexcretedeitherindissolved orinparticulateform. Untilrecently,recirculationsystemsweredesignedtorecyclethewateronly. Important nutrients like nitrogen, phosphorus or carbon compounds are thereforeeliminatedeitherbybiologicalconversionorduetowaterexchange (Losordo et al. ,1999;Waller et al. ,2005).Thus,thesevaluableorganiccom poundsarelostforthesystem.Inmodernaquaculture systems a compre hensivenutrientrecyclingshouldbemaintainedinordertoreducethewaste produced by the system. Future production systems without any nutrient and energy recycling are not supposed to be economically and ecologically successful(Troell et al. 2003). Integrationintermsofaquacultureisdefinedasthecontrolledcultivationof aquaticorganismsofdifferenttrophiclevelsandoneofthekeyprerequisites forfulfillingthedemandsfor. Wastefromfishcultivationcanberegardedas„new resources“ (Chamber lainandRosenthal,1995).Thistopicincreasinglyattractsinternationalat tention.Duetothebetterutilizationoftheseresourcesbyjoiningdifferent trophic levels the profitability of recirculation systems can be enhanced. Waste from the production of fish is used to create high quality biomass. Thus,theenvironmentalimpactsofarecirculation system can be reduced andresourcescanbeusedmoreefficiently(Asgardet al. ,1999;Schneider et al. , 2005). The additional biomass supports the economical diversification andthebenefitpercultivationunit(Chopin et al. ,2001). However,theideaofintegrationisnotnew.Intheaquaculturesectordealing withfreshwaterandbrackishsystemsAsiancountrieshavebeenpractising integrated aquaculture for centuries (Chopin et al. , 2001). Marine seaweed cultivation is the favoured integration step in open (Petrell et al., 1993; Newkirk,1996;Chopin et al. 1999a;b)aswellaslandbasedsystems(Neori et al. , 1991; 2000; Krom et al., 1995; Vandermeulen and Gordin, 1990; Buschmann,1996)andiswidelyused.Anoverviewaboutthebenefitsofthe

24 Chapter1 application of integrated systems in aquaculture is given in Chopin et al. , 2001. Severalstudieshavebeenperformedtoinvestigatetheusageofmacroand microalgae, hydroponics (growing plants without soil), artificial wetlands, filteringordetritivorousorganismsassecondarystepsinaquaculturalsys tems(Schneider et al., 2005).However,thesystemsdiscussedinSchneider etal.(2005)areopensystems.Thus,theresearchenhancingintegrationin aquaculturesystemsneedstobeintensified(CostaPierce,2002).Todate,no successfulattemptshavebeenmadetosetupacompletelyclosedintegrated seawater system, probably because of the lack of experience in running completelyclosedmarinesystems.

Basedontheestablishedknowledgeandexperienceinmarinerecirculation systems at IFMGEOMAR the first attempt of running a completely closed integratedseawatersystemoveralongertimeperiod(MARE=MarineArtifi cialRecirculationSystem)wasmade(seeChapter2and 5) (Bischoff et al. , 2005). Accordingtotherequirementsforrecirculationsystemsallnecessarytreat mentstepsneededtobeincluded.Thefunctionofthe swirl separator was transferred to a sedimentation tank filled with sediment. The sedimented particlescouldbedirectlyusedbythecommonragworm Nereis diversicolor livinginthesediment . Insteadofaconventionalbiofilteramacroalgaetank was included in the first experimentalphase (Wecker et al. , 2005) and re placedbyaphotobioreactorsystemformicroalgaecultivationinthesecond experimentalphase(Kube et al. ,2005;seeChapter3and4)(Fig.8).There mainingtechnicalcomponentsinMAREwere:apumpand two foam frac tionatorsfortheremovalofthesuspendedsolids<50m.Adrawingofthe systemisincludedinChapter2.

25 Chapter1

Settable Solids Dissolved Nutrients

Suspended Solids

Dissolved Nutrients

MARE System (Trail I and II) Outlook MARE System Fig. 8 Concept of the MAREsystem (Marine Artificial Recirculating Ecosystem): The target species Sparus aurata providesthewaste(dissolvedandparticulatematter)beingusedbytheotherbiological systemcomponents.Thecommonragworm( Nereis diversicolor) isusedforutilizationoftheparticu latewaste,dissolvednutrientsarerecycledbymacroalgae(e.g. Solieria chordalis )(PhaseI)andmicro algae ( Nannochloropsis spec.)(PhaseII).InthepresentMAREsystemsuspended solids are still re movedbyfoamfractionators.Butfutureperspectives alsoincludeforexamplebivalves(e.g. Mytilus edulis )forremovalofparticles>50m. 1.5 Organisms Gilthead Seabream (Sparus aurata) TheGiltheadseabreamtaxonomicallycanbeassignedtothefamily Sparidae (Percoidei, Perciformes, Acanthopterygii, Teleostei, Neopterygii, Actinoptery gei,Osteichthyes).Thenaturalof Sparus aurata areseagrassbeds or sandy bottoms of the coastal waters of the Mediterranean Sea and the Eastern Atlantic Ocean. Sparus aurata is a bottom dwelling species and usuallylivessolitaryorinsmallshoals.Thisfishspeciesreachesanaverage sizeofapprox.35cm.Innature, Sparus aurata prefersinvertebratesasfood (shellfish,bivalves),buttheyarealsoconsideredtocasuallyfeedonplants orphytoplankton.Thisfishspeciesreachesmaturityafterapprox.oneyear and is a protandric hermaphrodite (changes sex from ♂♂to ♀). In nature, spawningisrestrictedtothewinterseasonbutin , perennial breeding can be observed providing controlled conditions (changes on the

26 Chapter1 specific gravity of the water, temperature and photoperiod). Sparus aurata hasplanktoniclarvaeandthelarvalphasetakesapprox.50days(tempera ture1718°C).

TheGiltheadseabreamisahighlyappreciatedfoodfish,whichiswidelycul tivatedallovertheMediterraneanSeainwellorganisedaquacultures.

Fig. 9 Giltheadseabream( Sparus aurata Linnaeus,1758,left);naturallydistributedintheMediterra nean and the Eastern Atlantic Ocean and common ragworm ( Nereis diversicolor Linnaeus, 1758, right).

Common ragworm (Nereis diversicolor) ThecommonragwormcanbeclassifiedasamemberofthefamilyNereididae (Phyllodocida,Aciculata,Palpata,Polychaeta,Annelida).

Nereis diversicolor reachesamaximumsizeofapprox.10cmandiscoloured reddishbrown to greenish (when reaching maturity). It is characterized by the possession of numerous paddling feet and a characteristic red line on thedorsalside. Nereis diversicolor livesalongthecoastsoftheNorthAtlantic Ocean and is adjacent seas. Adaptation to brackish water and freshwater ( estuaries) has also been observed for this polychaete species. Nereis diversicolor exhibitsanendobenthicwayoflivingandmainlycanbefoundin livingtubesreachingupto10cmsedimentdepth.Foodcanbeacquiredus ing different methods. For capture of sinking particles/planktonic organ isms,awebcomposedofmucusisexcretedintothelivingtubeandwateris pumpedthroughthisweb.Thus,themucuswebactsas a sieve enriching particles/planktonic organisms. Nereis diversicolor also is able to graze on benthic algae and small benthic animals using his mandibles. Concerning

27 Chapter1 reproductionstrategy, Nereis showsamonotelicreproduction(adultworms dieafterreproduction).

Due to its nutrition, Nereis is especially suitable for the integration into a closed recirculation system. Particulate matter (fish faeces, food remains) canthusberemovedusingthenaturalnutritionofthiswormspecies.

Solieria chordalis Distributionof Solieria chordalis (Solieriaceae , Rhodophyta)rangesfromthe MediterraneantoareasintheNorthAtlantic,influencedbytheGulfstream. Solieria is well adapted to temperatures demanded by the target species Giltheadseabream( Sparus aurata ).Resultsaboutgrowth,reproductionand commercialcultivationwerederivedfromanalgaefarminSylt,.In contrast to other macroalgae, Solieria chordalis is well growing during the summerandresistantagainstbiofouling.

Fig. 10 Solieriachordalis(left)(Source:www.ifremer.fr)andNannochloropsissp.(right) (source:www.sbroscoff.fr).

Nannochloropsis sp. Nannochloropsis(Eustigmatophyceae)isgenerallydescribedasacomponent ofthepicoeukaryoticplanktonbecauseofitssize rangeof25m(Huand Gao,2003).Theystandatthebeginningofthefoodchaininaquaticecosys tems. Picoeukaryotic plankton are found throughout the world´s ocean at concentrations between 10² to 10 4 cells per cm³ in the upper photic zone (Caron et al. , 1999), playing significantroles in global carbon and

28 Chapter1 cycles(Fogg,1995).Furthermorethismicroalgaecontainshighlynutritional compounds(e.g.sterols,polyunsaturatedfattyacids;Verón et al. ,1998;Ro chaetal.,2003)andisthereforeusedforfeedingfishlarvaeinmariculture. Itcontainsonlya(Hibbet,1988)butalsovaluablepigmentssuch aszeaxanthin,canthaxanthinandastaxanthinathighlevels(Lubián et al. , 2000). 1.6 Thesis outline Basedontheestablishedknowledgeandexperienceinmarinerecirculation systemsatIFMGEOMARthefirstattemptofrunninganseawaterrecircula tionsystemwithdifferenttrophiclevelsoveralongertimeperiod(MARE= Marine Artificial Recirculation System) was made (see Chapter 2 and 5) (Bischoff et al. ,2005). Thesystemwassetupandmaintainedbythemembersofthemariculture workinggroup.Theaimoftheprojectwastotestthefeasibilityandtheop eration ranges of such a novel recirculation system. The performance and applicabilityofthesystemshouldbeinvestigatedaswellasthedynamicsof thesinglemodules.Thisworkwassplitintothreedifferenttopics(PhDthe ses).Thecombinationofthesedata(systemandmodules)areusedtoobtain comprehensive information about the nutrient cycling based on the daily feedinginordertoevaluateanutrientbudgetforthesystem.Herebythefol lowingtopicswereinfocusoftheexperiments:the available nutrient con centrationsineachmoduleandtheextentofnutrientsbeingusedforincor porationintobiomass.Furtherinvestigationsdealtwiththesystem´slimita tionsandthepotentialdangersforthe safeoperation of the system. Main topicofthisthesiswasthedevelopmentofacontinuousphotobioreactorsys tembasedondissolvednutrientsofamarinerecirculationsystem. Thethesisisdividedintofivechapters(includingtheintroduction),eachfo cusedonadifferentscientificobjective.

29 Chapter1

Majorscientificobjectivesofthisthesiswere: • toinvestigatetheapplicabilityofaseawaterrecirculationsystemwith several trophic levels (water exchange < 1% total water volume/day) forcultivationof Sparus aurata overalongertimeperiod(chapters2 and5) • todeterminebioticandabioticfactorslimitingtheperformanceofthis system(chapters3and5) • toevaluatetheperformanceandpracticalapplicabilityofthephotobio reactorsfor Nannochloropsis sp.cultivationintegratedintothesystem (chapter5) • to evaluate the applicability of the foam fractionation technique for removal of bacteria and particles in a marine recirculation system suitableformicroalgaecultivation(chapter4)

30 Chapter1 1.7 References AckeforsH.andEnellM.(1994).Thereleaseofnutrientsandorganicmatter fromaquaculturesystemsinNordiccountries.JournalofAppliedIchthyol ogy10:225241. BarakY.andvanRijnJ.(2000).Biologicalphosphateremovalinaprototype recirculation aquaculture treatment system. Aquacultural Engineering 22: 121136. Benemann J.R. (1992). Microalgae aquaculture feeds. Journal of Applied Phycology4:233245. BeveridgeM.C.M.,PhilippsM.J.,andClarkeR.M.(1991).Aquantitativeand qualitativeassessmentofwastesfromaquaticanimalproduction. In: Aqua cultureandWaterQuality,AdvancesinWorldAquaculture,vol.3. Edited by D.E.BruneandJ.R.Tomasso.TheWorldAquacultureSociety,BatonRouge, LA:506533. BischoffA.A.(2003).Growthandmortalityofthepolychaete Nereis diversi- color underexperimentalrearingconditions.M.Sc.thesis,InstituteofMarine Research&DepartmentofAnimalSciences,ChairgroupofFishCultureand Fisheries,ChristianAlbrechtsUniversityKiel,Germany/WageningenUniver sity,TheNetherlands;103pp. BischoffA.A.,KubeN.,WeckerB.,andWallerU.(2005).MAREMarineAr tificial Recirculating Ecosystem: Steps towards closed systems for the pro ductionofmarineorganisms.EuropeanAquacultureSociety Special Publi cation35:135136. BlanchetonJ.P.(2000).Developmentsinrecirculation systems for Mediter reanfishspecies.AquaculturalEngineering22:1731. BockB.R.(1986).Increasingcerealyieldswithhihgerammoniumnitrate rations–reviewofpotentialsandlimitations.JournalofEnvironmentalSci enceAndHealthPartAEnvironmentalScienceandEngineering&Toxic andHazardousSubstanceControl21(7):723758.

BodvinT.,IntergaardM.,NorgaardE.,JensenA.,andSkaarA.(1996).Clean technology in aquaculture: a production without waste products. Hydrobi ologica327:8386. BoneQ.,MarshallN.B.,andBlaxterJ.H.S.(1995).Biologyoffishes.2 nd edi tion.BlackieLondon,NewYork,332pp. BotheH,JostGandSchloterM.(2000).Molecularanalysisofammoniaoxi dationanddenitrificationinnaturalenvironments.FEMSRe views24(5):673690.

31 Chapter1

BovendeurJ.,EdingE.H.,andHenkenA.M.(1987).Designandperformance ofawaterrecirculationsystemforhighdensityculture of the African Cat fish, Claria gariepinus (Burchell1822).Aquaculture63:329–353. BowerC.E.(1978).Ionizationofammoniainseawater:Effectoftemperature, pH,andsalinity.J.Fish.Res.BoardCan.35:10121016. Boyd C.E. (2003). Guidelines for aquaculture effluent management at the farmlevel.Aquaculture226:101112. Braaten B., Aure J., Ervik A., and Boge E. (1983). Pollution problems in Norwegianfishfarming.ICESCM1983/F26:111. BraatenB.,PoppeT.,JacobsenP.,andMaroniK.(1986). Risks from self pollution in aquaculture: evaluation and concequences. In: Efficiency in AquacultureProduction:DiseaseandControl. Edited by E.GrimaldiandH. Rosenthal. Proceedings of the 3 rd International Conference on Aquafarming ‘Aquacoltura´86’,Verona,Italy,Oct.910,1986:139165. BraatenB.(1992).ImpactofpollutionfromaquacultureinsixNordiccoun tries.Releaseofnutrients,effectsandwastewater treatment. In: Aquacul tureandtheEnvironment. Edited by N.DePauwandJ.Joyce.EASSpecial Publications1992,No.16,Gent,Belgium:79101. Brown M.R., Jeffrey S.W., and Garland C.D. (1989). Nutritional Aspects of MicroalgaeusedinMariculture;aLiteratureReview.CSIROMarineLabora toriesReport205,44pp. BuschmannA.H.,TroellM.,KautskyN.,andKautskyL. (1996). Integrated tankcultivationofsalmonidsand Gracilaria chilensis (Rhodophyta).Hydro biologica326/327:7582. CaronD.A.,PeeleE.R.,LimE.L.,andDennetM.R.(1999).Picoplanktonand nanoplankton and their trophic coupling in the surface waters of the Sar gassoSeasouthofBermuda.Limnol.Oceanogr.44(2):259272. ChamberlainG.andRosenthalH.(1995).Aquacultureinthenextcentury: Opportunitiesforgrowthchallengesofsustainability.WorldAquaculture26: 2125. Chopin T., Buschman A.H., Halling C., Troell M., Kautsky N., Neori A., KraemerG.P.,ZertucheGonzalesJ.A.,YarishC.,andNeefusC.(2001).Inte grating seaweeds into marine aquaculture systems: A key toward sustain ability.JournalofPhycology37:975986. ChopinT.,SharpG.,BelyeaE.,SempleR.,andJonesD.(1999a).Openwa teraquacultureoftheredalgae Chondrus crispus inPrinceEdwardIsland, Canada.Hydrobiologica398/399:417425.

32 Chapter1

ChopinT.,YarishC.,WilkesR.,BelyeaE.,LuS.,andMathiesonA.(1999b). Developing Porphyra /salmonintegratedaquacultureforbioremediationand diversification of the aquaculture industry. Journal Applied Phycology 11: 463472. ColtJ.andArmstrongD.(1979).Nitrogentoxicitytofish,crustaceansand molluscs. Department of Civil Engineering, University of California, Davis, California. CrippsS.J.andBergheimA.(2000).Solidsmanagementandremovalforin tensivelandbasedaquacultureproductionsystems. Aquacultural Enginee ring22:3356. Cross D. (2003). Statistik kurz gefasst – Landwirtschaft und Fischerei 34/2003. Statistisches Bundesamt. EDS – Europäischer Datenservice www.edsdestatis.de DavenportJ.,BlackK.,BurnellG.,CrossT.,Culloty S., Ekaratne S., Fur nessB.,MulcahyM.,andThetmeyerH.(eds)(2003).Aquaculture–theeco logical issues. The British Ecological Society – Ecological Issues Series. BlackwellPublishing89pp. EIFAC(1986).FlowthroughandRecirculationSystems.Reportofthework inggrouponterminology,formatandunitsofmeasurement.EIFACTechni calPaper49. FAO(2002,2005)www.fao.org. FAO, 1988. Aspects of FAO´s policies, programmes, budget and activities aimedatcontributingtosustainabledevelopment.Documenttotheninety fourth Session of the FAO Council, Rome, 1525 November 1988. Rome, FAO.CL94/6. FoggG.E.(1995).Somecommentsonpicoplanktonanditsimportanceinthe pelagicecosystem.Aquat.Microb.Ecol.9(1):3339. GESAMP (IMO/FAO/UNESCOIOC/WMO/WHO/IAEA/UN/UNEP Joint GroupofExpertsontheScientificAspectsofMarineEnvironmentalProtec tion),2001.Planningandmanagementforsustainable coastal aquaculture development.Rep.Stud.GESAMP,68:90pp. GladueR.M.andMaxeyJ.E.(1994).Microalgalfeedsforaquaculture.Jour nalofAppliedPhycology6:131141. HagopianD.S.andRileyJ.G.(1998).Acloserlookatthebacteriologyofni trification.AquaculturalEngineering18:223244. HallP.O.J.,KollbergS.,andSamuelssonM.O.(1992).Chemicalfluxesand massbalanceinamarinefishcagefarm.IV.Nitrogen. Marine Pro gressSeries89:8191.

33 Chapter1

Hargreaves J.A. (1998). Nitrogen biogeochemistry of aquaculture ponds. Aquaculture166:181212. HibberdD.J.(1988).Eustigmatophyceae. In: Handbookof Protoctista.Mar gulisL.,CorlissJ.,MelkonianM.andChapmanD.(eds). Jones & Bartlett Publ.,Boston,3050. Hussenot J., Lefebvre S., and Brossard N. (1998). Openair treatment of wastewater from landbased marine fish farms in extensive and intensive systems: current technology and future perspectives. Aquatic Living Re sources 11(4):297304. HuH.andGao,K.(2003).Optimizationofgrowthandfattyacidcomposition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbonsources.Biotechn.Lett.,25(5):421425. KioussisD.R.,WheatonF.W.,andKofinasP.(2000).Reactivenitrogenand phosphorus removal from aquaculture wastewater effluents using polymer hydrogels.AquaculturalEngineering23:315332. KromM.D.,PorterC.,andGordinH.(1985).Nutrientbudgetofamarinefish pondinEilat,Israel.Aquaculture51:6580. KromM.D.andNeoriA.(1989).Atotalnutrientbudgetforanexperimental intensive fishpond with circularly moving seawater. Aquaculture 83: 345 358. KubeN.,BischoffA.A.,WeckerB.,andWallerU.(2005).Thefeasibilityofa photobioreactor (microalgae) for removal of dissolved nutrients in a closed recirculatingsystem.EuropeanAquacultureSocietySpecialPublication35: 289290. LiaoP.B.andMayoR.D.(1974).Intensifiedfishculturecombiningwaterre conditioningwithpollutionabatement.Aquaculture3:6185. LiltvedH.andCrippsS.J.(1999).Removalofparticleassociatedbacteriaby prefiltrationandultravioletirradiation.Aquacult.Res.30:445450. LosordoT.M.,MasserM.P.,andRakocyJ.(1998).RecirculationAquaculture Tank Production systems: an overview about critical considerations. SRAC Publication451. LosordoT.M.,MasserM.P.,andRakocyJ.E.(1999).Recirculatingaquacul ture tank production systems: A review of component options. SRAC Publication453. Lubián L.M., Montero O., MorenoGarrido I., Huertas E., Sobrino C., GonzalésDelvalle M., and Parés G. (2000). Nannochloropsis (Eustigmato phyceae)asasourceofcommerciallyvaluablepigments.J.AppliedPhycol., 12(3)(5):249255.

34 Chapter1

LupatschI.andKissilG.W.(1998).PredictingaquaculturewastefromGilt headSeabream( Sparus aurata )cultureusinganutritionalapproach.Aquat. LivingRessour.11:265268. MasserM.P.,RakocyJ.,andLosordoT.M.(1999).RecirculationAquaculture TankProductionSystems:Managementofrecirculationsystems.SRACPub lication452. MourenteG.,LubiánL.M.,andOdriozolaJ.M.(1990).Totalfattyacidcom position as a taxonomic index of some marine microalgae used as food in marineaquaculture.Hydrobiologica203:147154. Nash C.E., Burbridge P.R., and Volkman J.K. (eds) (2005). Guidelines for Ecological Risk Assessment of Marine Fish Aquaculture. NOAA Technical Memorandum NMFSNWFSC71. Prepared at the NOAA Fisheries Service ManchesterResearchStationInternationalWorkshopApril1114,90pp. NeoriA.,CohenI.,andGordinH.(1991). Ulva lactuca biofilters for marine fishpondeffluents.II.Growthrate,yieldandC:Nratio.BotanicaMarina34: 483489. NeoriA.,ShpigelM.,andBenEzra,D.(2000).Asustainableintegratedsys temforcultureoffish,seaweedandabalone.Aquaculture186:279291. NewkirkG.(1996).Sustainablecoastalproductionsystems:amodelforin tegrating aquaculture and fisheries under management. Ocean Coast.Manag.32:6983. Otte G. and Rosenthal H. (1979). Management of a closed brackish water systemforhighdensityfishculturebybiologicalandchemicalwatertreat ment.Aquaculture18:169181. Petrell R.J. and Alie S.Y. (1996). Integrated aquaculture of salmonids and seaweedsinopensystems.Hydrobiologica326/327:6773. PfeifferT.J.andRuschK.A.(2000).Anintegratedsystemformicroalgaland nurseryseedclamculture.AquaculturalEngineering24:1531. PiedrahitaR.H.(2003).Reducingthepotentialenvironmentalimpactoftank aquacultureeffluentsthroughintensificationandrecirculation.Aquaculture 226:3544. PintoC.S.C.,SouzaSantosL.,and SantosP.J.P.(2001). Development and population dynamics of Tisbe biminiensis (Copepoda: Harpacticoida) reared ondifferentdiets.Aquaculture198:253267. RenaudS.M.,LuongVanThinh,ParryD.L.(1999).Thegrosschemicalcom positionandfattyacidcompositionof18speciesof tropical Australian mi croalgaeforpossibleuseinmariculture.Aquaculture170:147159.

35 Chapter1

RenaudS.M.,ParryD.L.,andLuongVanThinh(1994).Microalgaeforusein tropicalaquacultureI:Grosschemicalandfattyacidcompositionoftwelve speciesofmicroalgaefromtheNorthernTerritory,Australia.JournalofAp pliedPhycology6:337345. Rheinheimer G., Hegemann W., Raff J., and Sekoulov I. (1988). Stickstoff kreislauf im Wasser: Stickstoffumsetzungen in natürlichen Gewässern, in derAbwasserreinigungundWasserversorgung.R.OldenburgVerlagGmbH, München. RochaJ.M.S.,GarciaJ.E.C.,andHenriquesM.H.F.(2003).Growthaspects ofthemarinemicroalgae Nannochloropsis gaditana .BiomolecularEngineer ing20:237242. RosenthalH.(1997).Aquacultureandsustainabledevelopment. In: Summit ofthesea,Understandingandmanagingtheoceans.CORE:9296. RosenthalH.andGrimaldiE.(1990).EfficiencyinAquacultureproduction: Technologyimprovementsinfarmingsystems.Proc.4thIntern.Conf.Aqua farming"AQUACULTURA88".Verona:EnteFierediVerona. RosenthalH.,HoffmannR.,JörgensenL.,KrünerG.,PetersG.,Schlotfeldt H.J., and Schomann H. (1982). Watermanagement in circular tanks of a commercialintensivecultureunitanditseffectson waterquality and fish condition.ICESStatutorymeeting,C.M.1982/F:22,13pp. RussoR.C.andThurstonR.V.(1991).Toxicityofammonia, nitrite and ni tratetofishes. In: AquacultureandWaterQuality. Edited by E.D.Bruneand J.R.Tomasso.TheWorldAquacultureSociety,LA:5889. SchlegelH.G.(1992).AllgemeineMikrobiologie.7.Auflage.Thieme Stuttgart NewYork. SchmidtI.,GriesT.,andWilluweitT.(1999).NitrificationFundamentalsof themetabolismandproblemsattheuseofammoniaoxidizers.ActaHydro chimicaetHydrobiologica27(3):121135. Schneider O., Sereti V., Eding E.H., and Verreth J.A.J. (2005). Analysis of nutrient flows in integrated intensive aquaculture systems. Aquacultural Engineering32:379401. StøttrupJ.G.andMcEvoyL.A.(eds.)(2002).Livefeeds in marine aquacul ture.Blackwellpublishing,336pp. StøttrupJ.G.andNorskerN.H.(1997).Productionanduseofcopepodsin marinefishlarviculture.Aquaculture155:231247. Strous M., Fuerst J.A., Kramer E.H.M., Logemann S., Muyzer G., Van de PasSchoonenK.T.,WebbR.,KuenenJ.G.,andJettenM.S.M.(1999)."Miss inglithotrophidentifiedasnewplantomycete."Nature400:446449.

36 Chapter1

SummerfeltS.T.(2002).Anintegratedapproachtoaquaculturewasteman agementinflowingwatersystems.Proceedingsofthe2ndInternationalCon ferenceonRecirculatingAquaculture:8797. TiedjeJ.M.(1988).Ecologyofdenitrificationanddissimilatorynitratereduc tiontoammonium.Wageningen,NL. TroellM.,HallingC.,NeoriA.,ChopinT.,BuschmanA.H.,KautskyN.,and YarishC.(2003).Integratedmariculture:askingthe right questions. Aqua culture226:6990. Trussel,R.P.(1972).Thepercentunionizedammoniainaqueousammonia solutions at different pH levels and temperatures. J.Fish. Res. Board Can. 29: 15051507. Vandermeulen H., and Gordin H. (1990). Ammonium uptake using Ulva (Chlorophyta)inintensivefishpondsystems:masscultureandtreatmentof effluent.JournalAppliedPhycology2:363374. WallerU.(2000).Tankculture–includingracewaysandrecirculatingsys tems. In:Environmentalimpactsofaquaculture. Edited by K.D.Black.Shef fieldAcademicPress. WallerU.,SanderM.,andPikerL.(2001).Lowenergy and low water con sumptionrecirculationsystemformarinefish:firstresultsfromatestrun with Dicentrarchus labrax inanimprovedrecirculatingsystemandsugges tionsonanintegrationintosecondaryproductionlines.EuropeanAquacul tureSocietySpecialPublications29:265266. WallerU.,BischoffA.A.,OrellanaJ.,SanderM.,andWeckerB.(2003).An advancedtechnologyforclearwateraquaculturerecirculationsystems:Re sults from a pilot production of Sea bass and hints towards "Zero Dis charge".EuropeanAquacultureSocietySpecialPublications33:356357. Waller U., Sander M., and Orellana J. (2005). A “low energy” commercial scalerecirculationsystemformarinefinfish.EuropeanAquacultureSociety SpecialPublications35:459460. Wecker B. (2002). Anorganische Stoffflüsse in einer experimentellen Kreis laufanlage mit definiertem Fischbesatz. Diplomarbeit, Institut für Meeres kundeKiel,Germany. WeckerB.,BischoffA.A.,HeJ.,KubeN.,LüningK.,andWallerU.(2005). Modellingthenutrientuptakeandbenefitsofseaweedfilterintegratedina closedrecircualtingsystem.EuropeanAquacultureSocietySpecialPublica tion35:465466. WelchE.B.andLindellT.(1992).EcologicalEffectsofWastewater.Applied LimnologyandPollutantEffects.ChapmanandHall,London:7681.

37 Chapter1

Weston D.P. (1991). The effects of aquaculture on indigenous biota. In: Aquaculture and Water Quality. Edited by E.D. Burne. World Aquaculture Society,BatanRouge,LA:534567. WickensJ.F.(1980).Waterqualityrequirementsforintensiveaquaculture:a review.EIFAC80:117. WrageN.andVelthofG.L.(2001)."Roleofnitrifierdenitrificationinthepro ductionofnitrousoxide."SoilBiology&Biochemistry33:17231732. ZumftW.G.(1997)."biologyandmolecularbasisofdenitrification."Mi crobiologyandMolecularBiologyReviews61(4):533616.

38

Chapter 2 MARE–MarineArtificialRecirculatedEcosystem: feasibilityandmodellingofanovelintegratedre circulationsystem WeckerB.,KubeN.,BischoffA.A.,andWallerU.(2006)

39 Chapter2 MARE–MarineArtificialRecirculatedEcosys tem:feasibilityandmodellingofanovelinte gratedrecirculationsystem Wecker,B.,KubeN.,BischoffA.A.,WallerU. Abstract Inconventionalrecirculatingsystemsmostofthenutrientssuppliedwiththe food are discharged because such installations do not include treatment stepsfornutrientrecycling.Anadvancedfarmingdesignforlowwaterdis charge (<< 1 % d 1 system volume) was investigated. The MAREsystem is based on the concept of a closed biological integrated recirculating system notonlywithlowwaterdischargebutalsowithnutrientrecycling.Thetarget was Gilthead seabream ( Sparus aurata ). In secondary production compartmentsoftheMAREsystemparticulatematterwasusedbydetritivo rous worms ( Nereis diversicolor ) and dissolved nutrients were used by macroalgae ( Solieria chordalis ). There was no additional technical biofilter system. ThispaperdescribesthefeasibilityoftheMAREsysteminordertomaintain thewaterqualitywithinsafelimitsandsupportadequatefishgrowth.Sec ondly,amathematicalmodelwasdevelopedtounderstandthenutrientflows andbiomassdevelopmentswithintheMARESystem.Itwaspossibletoes tablishanutrientbudgetforMARE.Theresultsshowthatnitrogenismostly converted microbiologically by nitrification and denitrification. Phosphorus was mainly taken up by macroalgae. The scientific concept for the MARE systemwasshowntobefeasible:asimplifiedrecirculatedecosystemcanbe usedtorecyclenutrientsandtomaintainwaterquality.However,thesecon darymodules( Nereis, Solieria )werefoundtobelessimportantforthenutri entretention,butincreasedvalorisationofthesystem. Thus,integrationof differenttrophiclevelsledtoanincreasednutrientutilization.

Keywords: marinerecirculationsystem,integration,nutrientbudgetmodel, Nereis diversicolor , Sparus aurata , Solieria chordalis ,artificialecosystem

40 Chapter2 2.1 Introduction In closed recirculation systems waste is usually concentrated and dis charged(solidsinsinks)ordissolvednutrientsareaccumulating(nitrateand phosphate).Thedailyamountofwasteisratherhigh:resultsfromdifferent aquaculturalproductionsystemsshowedthatonly2030%ofnitrogeninthe feed are used by fish to synthesize biomass (Krom et al. , 1985; Krom and Neori,1989;Halletal.,1992;LupatschandKissil,1998; Hargreaves,1998). Utilization of phosphorus is between 1030% of feed intake (Krom et al., 1985;KromandNeori,1989;BarakandvanRijn,2000;LupatschandKis sil,1998).Thus,7090%ofthephosphorusprovidedwiththefeedareex cretedeitherindissolvedorparticulateform. To date, the operation of recirculation systems is focused on recycling the water only. Nutrients like nitrogen, phosphorus or carbon compounds are eliminated by water treatment steps either biologically (biofiltration) or by waterexchange,(Losordo et al. ,1999;Waller et al. ,2005).Thus,thesevalu ableorganiccompoundsarelostforthesystemand released having enor mousimpactsontheenvironment(e.g.eutrophication).Inmodernaquacul ture systems a comprehensive nutrient recycling should be maintained in order to reduce these environmental impacts. Waste from fish production should be understood as „new resources“ (Chamberlain and Rosenthal, 1995).Duetothebetterutilizationoftheseresourcesbyintegrationofdif ferent trophic levels, the profitability of recirculation systems can be en hanced (Asgard et al. , 1999; Schneider et al. , 2005). Additional biomass supportstheeconomicaldiversificationandthebenefitperproductionunit (Chopin et al. ,2001).Productionsystemswithoutanynutrientand energy recyclingaresupposedtohavelesschancesinfuture(Troell et al. 2003). However,integrationisnotanewideabecauseinfreshwaterandbrackish aquaculturesystemsintegratedaquaculturehasbeenpracticedforcenturies (Chopin et al. ,2001).Marineseaweedproductionisthemainlyusedintegra tionstepinopenmarine(Petrelletal.,1996;Newkirk,1996;Chopin et al. 1999a;b)aswellinlandbasedsystems(Neori et al. , 1991; 2000; Krom et

41 Chapter2 al., 1995;VandermeulenandGordin,1990;Buschmann,1996).Anoverview aboutthecurrentdiscussionconcerningtheintegrationofmacroalgaeinto thesesystemsisgiveninChopin et al. (2001).Severalstudiesdescribethe usageofmacroandmicroalgae,hydroponics(growingplantswithoutsoil), artificial wetlands, filtering or detritivorous organisms as secondary steps (Schneider et al., 2005andreferencestherein),butthesesystemsarechar acterizedbylargerwaterexchangingrates.

Based on the knowledge of low discharge (<1% per day) recirculation sys tems,thegoalofthisstudywastodevelopacompletely new recirculation systembeingcharacterizedbyaclosedwaterrecirculationaswellasbynu trientrecyclingviatheintegrationofsecondarysteps( Nereis, Soleria ).

2.2 Material and Methods 2.2.1 MARE-System MARE(4.5m³)consistedofdifferentunits(Fig.1): two fishtanks (700L vol ume) (1) each stocked with 85 juvenile Gilthead seabream ( Sparus aurata ) withanaverageweightof66.5±11g.Acircularcurrentwasestablishedby airlifts.GiltheadSeabreamwaschosenduetoitscomparativelyeasycultiva tion and its wide range of tolerated salt concentrations and temperatures. Waterfromthefishtankswascompletelytransferredtothedetritivorousre actor(2).Thebioreactorfordetritivorousorganisms(2.1m²sedimentsurface, water column 0.7m) was filled with a 0.1m deep sand layer (grain size ≤ 2mm) and stockedwith Nereis diversicolor atadensityofapprox.900950 individuals per m² on 18.6.04. Additional walls were installed within the tanktoelongatedthewaterroutethroughthetankandthustoenhancethe settlingofsuspendedsolids.Fortheremovalofdissolvednutrientsamacro algae cultivation unit (2.3 m² surface area) was included with a stocking density of 4.4 kg/m² surface (3) of floating Solieria chordalis in an aerated circulartankwith400Em2s 1 illumination(day:night16:8hours). A pump (type AG8, ITT Hydroair international, Denmark) (4) provided two foamfractionators(typeOutsideSkimmerIII;ErwinSanderElektroapparate

42 Chapter2

GmbH;UetzeEltze,Germany)withanaverageflowrateof1000L*h 1each(6) aswellasthetwofishtankswithabout600to800 L*h 1 respectively. The proteinskimmerswereaeratedwithcompressedairandanadditionalozone addition, produced by an ozone generator (Sander, Ozonizer A2000). In a separatebypassanadditionaltankfilledwith50litresoffreshwaterwasat tachedtothefoamfractionatorsforrinsingthefoamcollectorsautomatically every15minutes.Removedfoamwascollectedinthefreshwatertank. When the MARE experiment started, Gilthead seabream were already cul tured for 182 days within the MAREsystem. Also Nereis diversicolor was stockedonemonthbeforethestartoftheexperiments at 11.11.04. At the beginning,abiofilterfornitrificationwasincludedforsafetyreasons,butit wasshutdownduringtheexperimentalperiod(11.11.2004–01.06.2005).

43 Chapter2

1) 2) 3) 5)

400

1000 A Z

1670 Z 1700 0

0 Z 3 1 0

3 A Z 0 7 A 0 1 0 0 0 1 9 0 1 0 1 1 A

Fig. 1 FlowchartoftheMAREsystem(MarineArtificialRecirculatingEcosystem)and3Dfiguresof themodules.Allunitsofthemodulearegiveninmm.(1)=fishtanks( Sparus aurata ),(2)=detritivo rousculturetank( Nereis diversicolor )filledwithsedimentandadditionalwallsegments;(3)=macro algae tank ( Solieria chordalis ) with a central aeration; (4) = pump; (5) = foam fractionators, arrows indicatewaterflow,doubletriangle=valve,Z=inlet,A=outlet

2.2.2 Measurements and Methods Biomass determination Fishwerefedwithpelletsof4.5mmsize(Biomar,Aqualife17,seeTable1). Thedailyfoodratewasadjustedfollowingtheresultsoffishbiomassdeter mination(wetweightofatleast30individualspertank)atintervalsofappr. 3weeks.

44 Chapter2

The Nereis biomasswasalsodetermined(numberandwetweightofworms) using four subsamples. Therefore, the detritivorous tank was divided into fourparts.Fromeachpart,acoreofapprox.800cm 3wassampled.Tore move the sediment and to enrich worms, a sieve of 1 mm mesh size was usedforsampling.

Wetweightof Solieria wasdeterminedatanaverageof1to2weeks.Yieldof biomasswasremainedinthetankuntilreachingstockingdensityof8kg/m² atweek20oftheexperimentalperiod.Afterwardsthestockingdensitywas remainedconstantatthisvaluebyremovingtheweeklygainfromthesys tem.

Water parameters Watersamplesforanalysisofdissolvednutrientsweretakendailyatthree differentpointsoftheMAREsystem:outletfishtanks,outlet Nereis tankand outletalgaetank.Watersampleswerestoredat–20°Candanalysedwithan AA3Autoanalyzer(Methodno.G01691forNitrateN,G02992forNitrite N,G10293forAmmoniaN,G10393 forPhosphate, BranLübbe GmbH; Norderstedt,Germany). Flowratesthroughfishtanksandfoamfractionatorswererecordedandad justedto600Lh 1and1000Lh 1,respectively.Onlinemeasurementsofre doxpotential,pHanddissolvedoxygenwererecordedwithacontrolmodule KM2000(Meinsberg)andaportablemeasuringdevice(WTWmulti350). Systemwaterlevelwascontrolleddailyandifnecessary, adjusted with fil teredbrackishseawater.Salinityofthesystemwaterwas24.1±0.8psu.If needed,artificialseasaltwasusedtoincreasesalinity.Thefoamcollectors were cleaned daily and the freshwater for rinsing was changed. The daily lossofwaterviathefoamfractionatorswasrecordedbytheincreasedwater volumeinthefreshwatertank.

45 Chapter2

Solid components The analysis of solid waste, tissues and sediment parameters were per formedasfollows:drymattercontentwasdeterminedbydryingthesample inadryingovenat60°Covernight.Organiccontentwasmeasuredbyincin erationoforganicmatterinamufflefurnace.C/Nratiowasdeterminedby an element analyzer (type NA 1500 series 2, FISONS). Calorific value was measuredbycompletesamplecombustionusinganIKAcalorimeterC4000. WeighingwasperformedusingwithaSartoriusA210P(max.200g) anda SartoriusU4600P(max.4000g). Everyweekasampleoftherinsingwaterofthefoamfractionatorswastaken todeterminetheproportionofsuspendedsolidsremoved from the system. 12tubesof10mlsamplewerecentrifugedandthesupernatantwasstored forlaterwateranalysis.DrymatterandC/Nratioanalysisofthepelletsre sultingfromcentrifugationwereperformedanalogoustotheanalysisofsolid components.Theorganicmattercontentofthesedimentalsowasanalysed weeklywith5subsamplesofappr.10cm³sedimentaccordingtothisprinci ple 2.2.3 Modelling TheaimofthisstudywasnotonlytotestthefeasibilityoftheMAREconcept butalsotoprocess theexperimentaldatawithina mathematical model in order to evaluate the nutrient flows and biomass developments within the MARE system. Mathematical models are integrative and important tools of interdisciplinaryworkinordertocombineknowledgeandscientificmethods from different subjects or data from diverse sources. A model can simplify complexprocessesforbetterunderstandingandhelpstoconcentrateonthe essentialprocesses.Insummary,developingamodeldemandscomprehen sionbutalsoaugmentsknowledge(Ebenhöh,2004).

46 Chapter2

Fig.2showstheconceptofthenumericmodeldeveloped for MARE. Vari ables and parameters are listed in Tab. 1 and indicate the connections amongtherespectivemodules.

Fig. 2 FlowchartofthenutrientfluxesintheMAREsystem.Theconceptofthenumericmodeland theconnectionsofthesinglemodulesareshownschematically.Themarkedboxesindicatethefinal valuesofthenutrientbudget.Themodelwasdesignedtoanalysenitrogenandphosphorusasnutri entsofmajorimportanceforthesystem.

47 Chapter2

Tab.1Denominationofvariablesandparameters,dimensions,descriptionandsourceusedfornumeric MAREmodel, t denotes production time in days, x denotes kind of nutrient Denomination Dimension Description Source Wfish,t g individualweightoffish experiment tdenotestimeindays(d) fish,t d1 specificgrowthrate calculated Yfish,t gd 1 yield,weightincrement calculated F,t gd 1 weightofgivenaquafeedperday calculated FCR t feedconversationratio calculated intake nutrients gd 1 total amount of nutrients introduced to recirculation calculated systemperday Cx,feed % percentageofnutrientingivenfeed literature xdenotesthekindofnutrient Faeces x,t g amountofnutrientsinfaeces literature ADC x % apparentdigestibilitycoefficient literature faecessoluble x,t g dissolvedfractionoffaecesduetoleaching literature faeces unsolu g unsolublefractionoffaecesafterleaching literature ble x,t RM mean,x % remainingmatteroffaecesafterleaching literature excretion x,t g amountofdissolvednutrientfromfishmetabolism calculated retention x,t g amountofnutrientremainedinbodytissues calculated suspended sol g amountofnutrientinparticlesseparatedbyfoamfrac experiment ids x,t tionation efficiency foam % sharesolidsremovedbyfoamfractionationprocess calculated fractionator SettableSolids x,t % shareofsolidsremovedbyswirlseparation calculated worm,t d1 growth rate of polychaetes depending on the energy literature suppliedwithfishfaeces EsettableSolids,t kJd 1 dailyamountofenergyavailablefromsettablesolidsfor literature worm 1 eachindividualworm CE,settableSolids kJ Energycontentofsettablesolids experiment Yworm,t g yield, weight increment of worms in the detritivorous calculated reactor Wworm,t g individualweightofworms experiment nworm,t numberofwormsinthedetritivorousreactor experiment MN,worm,t nworm,t d 1 naturalwormmortality calculated EnergyloadTotal t KJd 1 totalenergyavailableforproductioninthedetritivorous reactorderivedfromfaecesandwormmortality cDM,worm gkg 1 drymatterofworm literature Eworm KJg 1 DW energycontentofworm literature MC,worm,t nworm,t d1 wormmortalityduetocannibalisticbehaviour calculated cTAN,t mgL 1 TANconcentrationintherecirculationwater calculated rTAN,algae,t gTANh 1 dailyTANuptakebymacroalgae experiment m2 rmax,TAN,algae gTANh 1 maximumdailyTANuptakebymacroalgae experiment m2 rTAN%,algae,t %TANh 1 relativedailyTANuptakebymacroalgae experiment m2 rmax,TAN%,algae %TANh 1 maximumrelativedailyTANuptakebymacroalgae experiment m2 BTAN,t gm 2h 1 amountofammoniaavailableinthemacroalgaereactor calculated yalgae,t g yield,biomassincreaseinthemacroalgaereactor calculated rP,algae,t gPh 1m 2 phosphorusuptakeofalgae calculated rnitrification,t mgh 1m 2 microbialTANoxidation calculated BOM,t g organicmatteravailablefordenitrification calculated rdenitrification,t mgh 1m 2 microbialremovalofnitrate calculated z ratioofrequiredorganicmattertoreducenitratetoni calculated trogengas ct mgL 1 nitrateconcentrationinthesystemwater calculated rN,bacteria,t mgNO 3h 1 nitrateassimilationbybacteria calculated m2 rP,bacteria,t mgPO 4h 1 phosphorousassimilationbybacteria calculated m2 cP,t mgL 1 phosphateconcentrationinthesystemwater calculated

48 Chapter2

Module Fish a) Fish growth and feeding rate Firstly,fishassimilationresultsinanincreaseoffishbiomass.Inthemodel, thespecificgrowthrateperday( fish,t )wasdeterminedby W = fish ,t+1 µ fish ,t Ln (Equ.1) W fish ,t whereW fish,t =wetweightfish,tdayofexperiment

fish,t wasderivedfromexperimentaldataofwetfishweight(seesection3.1 fish growth ).

Theyieldoffish(Y fish,t )perdaycanbedescribedby = × Y fish ,t µ fish ,t W fish ,t (Equ.2)

Therelationshipbetweenfeedingrate(F t)andspecificgrowthrate( fish,t )can bedescribedasfeedconversionratio(FCR t)

= Ft FCR t (Equ.3) Yt,Fisch andhence,dailyfeedingrate(F t)iscalculatedby = × Ft FCR t Yt, fish (Equ.4)

b) Fish faeces FishdonotusethecompleteamountofNandPoftheprovidedfeedforsyn thesisofbiomass.Over70%areexcretedasdissolvednutrients(esp.ammo nianitrogen)andsolids.Theseunusednutrientsformthebasisfortheinte gratedmodules“detritivorousculturetank”and“macroalgae”.

49 Chapter2

The total nutrient entry (entry nutrients ) into the recirculation system can be calculatedfromthefeedingrateperday(F t)andthenutrientconcentration ofthefeed(c x,feed ): F × c entry = t x, feed (Equ.5) nutrients ,x 100 wherec xisthefractionofeachnutrientcomponent(protein,PON,POP,or ganicmatter(OM)ordryweight(DW)ofthefeed,Tab.1). Tab. 1 Feedcomposition(BIOMAREcostart17),apparentdigestibilitycoefficients(ADC,2024°C)and nutrientconcentrationsofSeabream( Sparus aurata )(Lupatsch&Kissil,1998) fractioninfeed Digestibility fractioninfish nutrient[x] [c x,feed in%] [ADC xin%] [c x,fish in%] protein 50 82.8 17.8 nitrogen(PON) 8 82.8 2.85 Phosphor(POP) 1.4 47.8 0.72 org.matter(OM) 79.9 68.9 dryweight(DW) 90.4 60.7 Faecesaredefinedasundigestedremainsofthefeed.Basedonexperimen tallyderivedapparentdigestibilitycoefficients(ADC) for Gilthead seabream (Lupatsch & Kissil, 1998) and the composition of the feed (Tab. 1) the amountofexpectedsolidfaecesperday(faeces x,t )foreachnutrientwascal culatedby

100 − ADC faeces = entry × x (Equ.6) x,t nutrients ,x 100 Oncereleasedintowater,theexcretedfaecesaresubjecttogradualchang ing of nutrient composition with time due to passive leaching. Leaching processes are considered to be terminated after 6 hours retention time in water (Lupatsch & Kissil, 1998; Tab. 2). For the numeric model average numbersfortheremainingmatter(RM mean )wereused.

50 Chapter2

Tab. 2 Remainingmatter(RM,%)ofthesolidfaecesforeachnutrient(x)after6h,24hand48hwater retentiontimeforGiltheadseabream(followingLupatsch&Kissil,1998) RMafter6 RMafter24 RMafter48 nutrient[x] RMmean hours hours hours nitrogen(PON) 57.4 54.9 56.8 56.4 phosphor(POP) 88.3 81.5 84.0 84.6 org.matter 59.0 57.8 57.8 58.2 (OM) dryweight(DW) 65.0 63.7 64.6 64.4

Duetoleaching,faecescanbedividedintoasolublepart(faeces soluble )and unsolublepart(faeces unsoluble )by faeces ×(100 − RM ) faecesSo lub le = t,x mean (Equ.7) x,t 100 faeces × RM faecesUnso lub le = t,x mean ,respectively (Equ.8) x,t 100 c) fish biomass synthesis (= retention) RetentionofNandPinfishbiomasswasassessedbyconsideringtheyield offish(Y t,fish )andthenutrientfractioninfish(c x,fish ;Tab.1)by × Y fish ,t c x, fish retention = (Equ.9) x,t 100 d) excretion Incontrasttofaeces,allmetabolicproductsfromfisharetermedasexcre tion.TheexcreteddissolvedproportionsofNandPinformoftotalammonia nitrogen(TAN)andorthophosphateweredeterminedbythefollowingequa tion: × Ft c x, feed excretion = − retention − faeces (Equ.10) x,t 100 x,t x,t

51 Chapter2

Forthemodel,aminorimportanceofexcretedureaortherapidconversion of urea to ammonia was assumed. Consequently, total ammonianitrogen (TAN)isconsideredtobetheonlyexcreteddissolvednitrogencompound.

Module Foam Fractionation Totaldailyamountoffaeces(dryweight,DW)inrelationtototalnutrienten try (DW) (Equ. 5) is 39.3% calculated according to Equ. 6 (faeces DW,t ) and Tab. 1 (digestibility of DW). The unsoluble fraction can be determined ac cording to Equ. 8 (faeces unsoluble DW,t ) and Tab. 2 (RM mean DW) 25,3%. The amountofunsolublefaecescanbedividedintoafractionofsettablesolids andafractionofsuspendedsolids. Thefractionofsuspendedsolidsisremovedfromtheprocesswaterbyfoam fractionation. This process is considered to be very effective, because the turbidity in a closed recirculation system with a foam fractionator for re movalofsuspendedsolidsisatconstantlowlevelsof<7mgdryweightL 1 (Walleretal.,2003). Theefficiencyofthefoamfractionatorswasusedtodeterminetheamountof suspended solids as fraction of nutrient entry (entry nutrients ). Assuming the amountofsuspendedsolidsseparatedbyfoamfractionation to correspond tothedailyloadofsuspendedsolidsintherecirculationsystem(experimen talobservations,thisstudy),thefollowingequationcanbeused:

cx, feed Efficiency FoamFracti onators SuspendedS olids = F × × (Equ.11) x,t t 100 100 DataconcerningdryweightandC/Nratioofremovedsuspendedsolidswere available from rinsing water samples of the foam fractionators: regression analysis of experimental data (removed suspended solids vs. nutrient up take) resulted in 9.5% for the efficiency of foam fractionation (see Fig. 9, subsection3.2.1 Module foam fractionator ).

52 Chapter2

Module Detritivorous Reactor TheproportionofsettablesolidscanbeestimatedaccordingtoEqu.11as suming100%ofsettablesolidstobefoundinthedetritivorousreactor:

c 25 3, − Efficiency FoamFracti onators SettableSo lids = F × x,Futter × (Equ.12) x,t t 100 100 Thisproportionisusedasnutritionsourceby Nereis diversicolor .Therela tivegrowthrateofthepolychaeteisbasicallydependingontheamount,the nutrient composition and the energy content of the fish faeces (Bischoff, 2003).Growthexperimentswithfaecesfromaswirlseparatorofaclosedre circulationsystemshowedthatgrowthratesupto2,8%d 1arepossible,if thefeedenergycontentissufficient(Bischoff,2003).

Growthofworms( worm,t )canbedescribedby (µ − µ )× E µ = max min settablesS olids ,t + µ (Equ.13) worm ,t ± min K s EsettableSo lids ,t where E settableSolids,t isthedailyenergyloadderivedfromsettablesolids per individualworm[KJd 1worm 1], max themaximumgrowthrate[atE settableSol ids,t =∞in%d 1],min theminimumgrowthrate[atE settableSolids,t =0in%d 1] andK SistheMichaelisconstant[KJd 1worm 1].

The energy load of settable solids (DW) (E settableSolids DM,t ) reaching the detri tivorousreactorisdefinedby: SettableSo lids × c = DM ,t E,settableSo lids EsettableSo lids ,t (Equ.14) nworm ,t where c Eistheenergycontentofthesettablesolids(C E,settableSolids ) and the numberofworms(n worm,t) inthedetritivoroustank.

53 Chapter2

The yield (weight increment) of worm (Y worm,t ) can be calculated by using Equ.13and14: µ ×(W ⋅n , t) Y = worm ,t worm ,t worm (Equ.15) worm ,t 100

Theaveragewetwormweight(W worm,t )atanyproductionday(t)is:

W × µ W × µ worm ,t−1 worm ,t + worm ,t worm ,t 100 100 W = W − + (Equ.16) worm ,t worm ,t 1 2 Equ.16containsamathematicaloperation,ifisnegative:thedailyyieldis summedwiththeabsolutevalueandafterwardsdividedby2toensurethat theaveragewormweightcannotdecrease.Thus,inthemodelthesmallestY is0.Thisapproximationwasperformedbecauseitcanbeassumedthat Ne- reis sp.doesnotbuildupconsiderablebiologicalreserves(e.g.lipids)toen durestarvationperiodsandthereforedieafterrathershortstarvationperi ods.Accordingly,themodelconvertsnegativeintoanaturalmortalityrate perday(M N,worm,t ):

Y − Y = worm ,t worm ,t × 1 M N ,worm ,t (Equ.17) 2 Wworm ,t The same mathematical operation ensures, that only <0 are converted to deadindividualsperday.Inthiscasen worm,tisdecreasingcalculatedby: = − nWorm ,t nworm ,t−1 M N ,t−1 (Equ.18)

Themodelensuresthatthewormnumbersaredecreasing,if worm,t <0.This processisstopped,whentheenergyloadofsettablesolidsperworm(E settable solids,t ) is sufficient to ensure worm metabolism ( worm,t ≥0). Additionally, the

54 Chapter2 modelassumesthedeadwormstobeconsumedbythelivingworms.Soto talenergyloadperdaycanbedescribedasfollows: = + × × × Energyload Total t EsettableSo lids ,t M N ,worm ,t Wworm ,t cDM ,worm E worm (Equ.19)

Dataforc DM,worm (0.14±0.002gkg 1)andE worm (15.0±0.8KJg 1)werede rivedfromliteraturedata(Bischoff,2003). isdescribedforthiswormspecies(HartmannSchröder,1996) andthereforehastobeconsideredinthemodel.Thisoptiononlyhastobe takenintoaccount,whenthenaturalmortalityislowerthanthemortalityby cannibalism (M C,worm,t ). It appears to be unlikely, that the worms exhibit cannibalism when there are enough dead individuals available. If the

MN,worm,t =0,itisreplacedinEqu.19byM C,worm,tatthesamerate(1.3%d 1).

Module Macroalgae Assimilation TAN (= total ammonia nitrogen) uptake by macroalgae was determined by thedailyamountofTANinthemacroalgaetank(B TAN,t )oftheMAREsystem.

TheuptakeratesofTANbymacroalgae(r TAN,algae,t )canbedescribedfollowing MichaelisMentenkinetics: × rmax, TAN ,a lg ae BTAN ,t r = (Equ.20) TAN ,a lg ae ,t + K s BTAN ,t

where r max,TAN,algae is the maximum uptake rate, B TAN,t the amount of TAN availableinthemacroalgaetankandK sthehalfsaturationconstant.Rela tiveuptakeofTANinrelationtoB TAN,t canbedescribedbythesamekinetics: × rmax, TAN %, a lg ae BTAN ,t 100 r = ⋅ (Equ.21) TAN %, a lg ae ,t + K s BTAN ,t BTAN ,t

55 Chapter2

BTAN,t canbecalculatedbyusingtheaverageTANconcentrationinthesys temwater(c TAN,t )andtheflowrate(R)throughthemacroalgaetank: = × BTAN ,t cTAN ,t R (Equ.22) The yield (biomass increase in the macroalgae tank) is described by N assimilation of macroalgae determined by the amount of nitrogen in the macroalgaebiomass(c N,algae ):

= × 100 × 100 Ya lg ae ,t rt,TAN ,alg ae (Equ.23) cN,a lg ae cDW ,a lg ae

where c N,algae isthecontentofNinthealgaebiomassandC DW,algae the dry weightofthealgae.Forthemodellingtheusedvalueswereforc Nalgae 6%N

1 DW andforc DW 14%ofthefreshweight. TheuptakeofphosphoruswasestimatedviatheTANuptakewithrespectto aRedfieldratioof16.Inconsiderationofthemolarweightoftheatomsthe ratiois7.3,soitis r r = t,TAN ,a lg ae (Equ.24) t,P,a lg ae 7.3

Module Nitrification IncontrasttoconventionalrecirculationsystemstheMAREsystemwasop erated without any additional nitrifying biofilter. However, nitrification was performed because no significant increase in TAN or nitrite was observed. This ammoniaconverting process plays an important role, because on the onehand,itcompeteswiththeammoniauptakeofthemacroalgaetank.On theotherhandthesetwoprocessesmaybecumulative, leading to an effi cientammoniaremoval.Thesedimentofthedetritivorousreactorincreased the biologically active surface probably enhancing settlement of nitrifying

56 Chapter2 bacteria. Thus, the integration of an additional nitrifying biofilter was not necessary. Experimental results of the performance of a fluizedbed biofilter from a technical recirculation system were used for modelling the daily nitrifying activityoftheseadditional“nitrifyingsurfaces”(Fig.3).Temperature,salinity andturbidity(factorswhichcouldinfluencenitrification)werecomparablein bothsystems. 4,5

4,0 Fig. 3 Performance of a nitrifying fluizedbed

] biofilterofaclosedrecirculationsystem,stocked -2

m 3,5

-1 with Sea Bass ( Dicentrarchus labrax ), in relation totheinflowammoniaconcentration(Weckerand 3,0 Orellana, unpub.). The nitrifying activity was 2,5 determined by the concentration difference of inflow and outflow. It only considers the oxida 2,0

TAN[mg oxidation h tionfromammoniatonitrateandisgivenbythe 1,5 slope(s=2,68;r²=0,86). Thesedatadonotincludedataofzeroorderki 1,0 0,4 0,6 0,8 1,0 1,2 1,4 1,6 netic,butammoniavaluesinthesystemdidnot reach more than 1mgL 1 TAN in average in the -3 TAN concentration [mg N dm ] MAREsystem. Forsimplifyingreasonsthemodelassumedammoniatobecompletelycon vertedtonitrate.Thiswasreasonable,becausenitrite concentrations were ratherlowduringtheexperimentalperiodintheMAREsystem. Viatheslope(s)fromFig.3nitrificationwascalculatedasfollows: = × rnitrificat ion ,t s cTAN ,t (Equ.25) where c TAN,t is total ammonia nitrogen (TAN) concentrations of the MARE system.Itiswerecalculatedby:

excretion + (c − ×V − r − − r − ) c = TAN ,t TAN ,t 1 nitrificat ion ,t 1 TAN ,a lg ae ,t 1 (Equ.26) TAN ,t V

57 Chapter2 where c TAN,t1 is the total ammonianitrogen (TAN) concentration in the MAREsystemfromthepreviousday,VisMAREsystemvolume(4500l)and rnitrification,t1isthenitrifyingactivityofbacteriapotentiallyattachedtowalls andtubesfromthepreviousdayandr TAN,algae,t1istheuptakerateofTANby macroalgaefromthepreviousday. Total surface of MARE was calculated with 60m², (30m² walls and tubes, 30m²sediment).Experimentalresultsofammoniaoxidationrateswithinthe sedimentyielded1,78±0,77gd 1 (Bischoff,unpub.).

Module Denitrification Denitrificationisananaerobicprocessandplaysan important role for the nitrogen removal from the recirculation system. Within the MARE system anaerobicconditionsareexpectedtobeprevalentinthelowersedimentcen timetresofthedetritivorousreactor. Denitrificationcanbecalculatedbasedonoftheamountoforganicmatter

(B OM,t )leftbythewormsfordenitrifyingbacteria.Assumingthatnoorganic matterisaccumulating(experimentaldata:organicmatterofsedimentdur ingMAREexperiment:2.4±0.5%),B t,OM iscalculatedonadailybaseby: = − × BOM ,t SettableSo lids OM ,t Yworm , cOM ,worm (Equ.27)

Furthermore,forpracticalreasonsitwasassumedthatthebacteriaareutil izingthecompleteamountofB t,OM forthereductionofnitratetoN 2.Thus, denitrificationrateswerecalculatedasfollows: = ⋅ rdenitirfic ation ,t z Bt,OM ifc nitrate,t ≥0 (Equ.28) wherezistheratiobetweenorganicmatterneededforthereductionof1mg nitrateN.OM:Nratiowascalculatedtobe3.

58 Chapter2

ThenitrateconcentrationoftherecirculationwaterintheMAREsystemwas calculatedby:

c − ⋅V + 98.0 ⋅ r − − r − c = t ,1 nitrate t ,1 nitrificat ion t ,1 denitrific ation (Equ.29) t,nitrate V

Module Bacterial Assimilation DuringnitrificationanddenitrificationbacteriaareassimilatingNandPfor biomass production. Heterotrophic denitrifying bacteria can produce more biomassthanautotrophicnitrifyingbacteria,becauseenergyyieldpermolof electrondonator(NH 4+,NO 2)fromnitrificationisrelativelylow(Rheinheimer et al., 1988). Utilization of ammonianitrogen by Nitrosomonas provides 0,015mgorganicNpermgutilizedN,whileoxidationofnitriteNby Nitrobac- ter gives0,005mgorganicN(Rheinheimer et al. ,1988).Duringdenitrification 0,065mg organic N is formed by the complete reduction of 1mg nitrateN withmethanolashydrogendonator(McCarty et al. ,1969).SoNassimila tionbybacteriacanbecalculatedasfollows: = × + × rN ,bacteria ,t .0 020 rt,nitrificat ion .0 065 rt,denitrific ation (Equ.30) ForthecalculationofPassimilationthestoichiometricratiobetweenPand

N in bacterial biomass was used. The empirical formula C 250 H611 077 N55 P6S describes the average chemical composition of bacteria, independent from thespecies(Rheinheimer et al. ,1988).Thus,thestoichiometricN:Pratiois 9.2.Consideringthemolarmassoftheatoms,theweightratioisgivenby 4.2. SoPAssimilationiscalculatedby: r r = N ,bacteria ,t (Equ.31) P,bacteria ,t 4.2

59 Chapter2

Combination of all modules – simulation of the MARE-system ModellingthenutrientbudgetintheMAREsystemwasperformedwiththe objective to understand the biological processes and crosslinks in the ex perimentalrecirculationsystem.Allpresentedmodulesindividuallyshowed a good correlation between experimental and modelled data. So it can be supposedthatallessentialprocesseswereadequatelymodelled.Inasimula tion of the complete model a coupling of all stated modules (Fig. 2) was tested. Nitrateandphosphateconcentrationsarechosentobethemonitoredvalues because of the following reasons: (1) they are simple to analyse, (2) they showverylowdailyvariations,(3)concentrationchangeshappenveryslowly and(4)theyareinfluencedbyallindividualmodules.

Nitrateconcentrationswerecalculatedincludingnitrification,denitrification andbacterialassimilation:

c − ⋅V + 98.0 ⋅ r − − r − c = t ,1 nitrate t ,1 nitrificat ion t ,1 denitrific ation (Equ.32) t,nitrate V Phosphateconcentrationscanbetoleratedbyfishathighconcentrations,so removalofphosphateplaysaminorroleinrecirculationsystems.However, theremovalofphosphatemustbetakenintoaccount,becauseoveralonger perioditwillaccumulateinthesystemandmayresultinawaterexchange andcanbemainlyfoundinunsolublefaecesandexcretoryproducts.Con sideringphosphateuptakebyalgaeandbacteria,phosphateconcentrations werecalculatedby:

excretion + faecesUnso lub le + (c − ⋅V − r − − r − ) c = P,t P,t P,t 1 P,bacteria ,t 1 P,a lg ae ,t 1 (Equ.33) t,P V

60 Chapter2 2.3 Results 2.3.1 Feasibility of the MARE-system

Water parameters During the 5months MARE experiment primary water quality parameters werealwayswithinsafelimitsforallculturedorganisms:concentrationsof toxicsubstanceslikenitriteandammoniawereattolerable concentrations (0.36±0.33mgL 1forammoniaand0.009±0.12mgL 1fornitriteduring theentireexperimentalperiod(11.11.2004–1.6.2005).Nitratewasdecreas ing from 49.40 mgL 1 to less than 1.45 ±0.03 mg L 1, respectively. pH was stableat7.97±0.24butshowedaslightdecreaseattheveryendoftheex perimentalperiod.However,pHdidneverreachcriticalvaluesbelow7.Oxy genlevelsaveraged5.73±1.20mgL 1duringtheentireexperimentalperiod.

Additionally, MARE fulfilled the demands of a closed recirculation system (lessthan10%waterexchangeperday)(Losordo et al. ,1999)Thedailywater replacementrateduetoevaporation,foamfractionationandlossesbymain tenanceorbiomassdeterminationaveraged0.8%ofthetotalsystemvolume (Fig.4a).Nowaterwasexchangedduringtheentirerecirculationsystemop erationperiodfromApril2004toDecember2005.

200 9,0 a b

150 8,5

100 8,0 pH pH

50 7,5

0 7,0 water consumption [% system volume] system [% consumption water 200 250 300 350 400 200 250 300 350 400 production days production days Fig. 4 (a)PresentationofthecumulativewaterreplacementoftheMAREsystemduringtheexperi mentalphase.Thedailyreplacementresultsfromtheslopeoflinearregression,whichwas0.8%per day.(r²=0.996).(b)DevelopmentofpHvalueduringtheMAREtrial.

61 Chapter2

Fish growth Fig.5showsthegrowthof Sparus aurata intheMAREsystemovertheex perimentalphaseof400days(datashownfromTank1).Theexperimental period started at after Sparus aurata wasalreadyculturedfor182daysin thetankshowingweightsof71±12g(Tab.3).Table3showsthedatafrom thebiomassdeterminationsduringtheMAREtrial.Forthenumericmodel lingexperimentaldataoffishweight(Equ.1)weretakenfromfishtank1. Averagefeedconversionratio(FCR)fortank1was1.09±0.32andranged from0.71to1.64.

500 0,2 0,4

350

300 400 250 200

0,2 0,4 150

250 300 200 0,2 0,4 150

250 100 0,2 0,4 200 200 50 0,5 1,0 250 150 100 250 200 50 average individual fishweight [g] fishweight individual average 200 150 0 150 100 100 100 50 50 0 0

0

0 100 200 300 400 production days Fig. 5 Growth of Sparus aurata over a cultivation period of 400 days (tank 1). Average individual fishweightsareshowninrelationtotime.Sizedistributions of Sparus aurata are indicated for the = + ⋅ 5,0 black spots. Growth is described by ln Gt a b t . Regression analysis gave a=0.840; b=0.245; r²=1.00.

62 Chapter2

Tab. 3 Averagefresh weight,totallength(TL)andstockingdensitiesof Sparus aurata culturedin theMAREsystemduringtheexperimentalphaseperm³tankvolume.Asubsampleofatleast20 fishesfromeachtankwastakenformeasurements. Tank1 Tank2 date produc av. av. tion weight av.TL stocking weight TL stocking day [g] [mm] [kgm ³] [g] [mm] [kgm ³]

11.11.04 182 71±12 160±10 3.6 62±10 155±12 3.2

01.12.04 202 73±12 161±8 3.7 78±12 167±9 4.0

22.12.04 223 88±13 174±8 4.5 90±13 179±7 4.6

14.01.04 246 105±15 185±9 5.4 104±15 186±10 5.3

11.02.05 274 133±16 200±8 6.8 132±16 201±10 6.7

14.03.05 305 162±24 213±10 8.3 159±17 211±9 8.1

13.04.05 335 206±27 226±11 10.5 190±15 222±12 9.7

24.05.05 376 268±36 244±11 13.7 242±10 242±11 12.4

16.06.05 399 310±48 259±13 15.8 280±10 251±11 14.3

2.3.2 Modelling the nutrient budget

VALIDATION OF SINGLE MODULES Thenutrientbudgetplaysanimportantroleforcomprehensive analysis of thesystemandpotentialfutureupscaling.Forsizeoptimizationofthesingle modules with respect to the biological and physicochemical interactions within the system a model was developed in order to be able to trace the pathwaysofthenutrientsprovidedbythefeed.

Module Fish a) fish growth and feeding rate Experimentaldataforfeedingrate,absoluteandrelativegrowthoffishand FCRaregiveninFig.6adandshowagoodcorrelationtomodeldata(solid line).

63 Chapter2

The experimental feeding rate was below the recommendation of the feed producer(Fig.6a,dashedline).However,absoluteandrelativegrowthofthe fishfollowedthemodelpredictions(Fig.6b,c):withincreasingfishweightab solutegrowthrateisincreasing.However,relativegrowthisdecreasingbe causethespecificmetabolicrateofthefishisalsodecreasingwithincreas ing weight (Wehner and Gehring, 1995). Therefore, the proportion of feed used for biomass synthesis also decreases. Consequently, the feed conver sionratiomustbeincreasingwithincreasingfish weight (Fig. 6d). Experi mentaldatawereinaccordancetomodelpredictions;themodelcanthere forebeconsideredassuitableforthederivationofthesephysiologicalinter actions.

3,0 3,0 a b ] ]

2,5 -1 2,5 -1 fish fish 2,0 -1 2,0 -1

1,5 1,5

1,0 1,0 feeding rate [g d [g rate feeding

0,5 d [g yield absolute 0,5

0,0 0,0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

individual fishweight [g] individual fishweight [g]

0,05 2,0 c d

] 1,8 -1 0,04 1,6 fish -1 0,03 1,4

FCR 1,2 0,02 1,0

0,01 0,8 relative growth [d growth relative 0,6 0,00 0 50 100 150 200 250 300 0 50 100 150 200 250 300 individual fishweight [g] individual fishweight [g] Fig. 6 Validationofthenumericmodelling(line)withexperimentaldatafromfishbiomassdetermina tions(symbols).Thedashedlinein(a)indicatetherecommendedfeedingratefromthefishfeedpro ducer(feedingrateat20°C).r²for(a)0.98;(b)0.96;(c)0.95;(d)0.86.

64 Chapter2 b) Fractions of solid faeces, excretion and retention TheproportionofNandPretainedinthefishbiomassandtheproportionof NandPreleasedtothesystemenvironmentisofmajorimportanceforthe evaluation of the system concerning fish yield. Fig. 7 shows the modelled, individualnutrientbalanceperfishinrelationto fish weight. According to physiologicalprinciples,thefeedproportionusedforbiomasssynthesis de creaseswithincreasingfishweight.Thisleadsto a percentage decrease of feed remaining in the fish body. Consequently, the proportion of excreted substances (e.g. urea, ammonia resulting from protein metabolism) is in creasing. Accordingly, the proportion of excreted solid nutrients is also in creasing. Therelativecontributionsofthedifferentnutrientstotheexcretoryproducts vary.Nitrogenismainlyreleasedtothewaterbyexcretionprocesses(urea, ammonia)whereasphosphateisacompoundoffishfaeces(settablesolids, Fig.7a,b). Relativeproportionsofexcretednutrientsinrelationtototalamountoffeed nutrients varied over the experimental period according to the changing utilisationefficiency:forexampleNexcretionratesincreasedfromappr.50% Nd 1nutrientuptakefromfeed(at50gfishweight)toappr.73%Nd 1 nutri entuptakefromfeed(at400gfishweight)(Fig.7a).

400 75 a b

300 retention fish retention fish faeces undiss. 50 faeces undiss. -1 faeces diss. -1 faeces diss. 200 excretion excretion mg Pd mg mg N d N mg 25 100

0 0 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

fishweight [g] fishweight [g]

Fig. 7 ModellednutrientbalancesforfishintheMAREsystemforNitrogen(a)andPhosphorus(b). The height of the bars corresponds to the feeding rate of each nutrient. The relative fractions are changingwithincreasingfishweightbecauseofadifferentutilisationefficiency.

65 Chapter2

Experimentaldataforvalidationofthemodelareonlyavailablefornitrogen. Fig.8showsagoodagreementbetweenmodelledandexperimentaldatafor feedingrate(Fig.6a),feedretentionandexcretion(Fig.7a,b). ExperimentaldataforexcretionarederivedfromthedifferenceofTANcon centrationsbetweeninflowandoutflowsamplesofthefishtanks.Rawdata ofTANconcentrationswereexpectedtobeunderestimated,becausesamples were taken before the feeding, but peaks of TAN concentrations occur at least8hoursafterfeedingduetodiurnalvariationsofTANconcentrations. 24hourexperimentsyieldedthefactor2.5toequalizethisunderestimation. Therefore,datawerecorrectedwiththisvalue.Thus,allmodeldataexcept theparticulatefractioncanbevalidatedbyexperimentalvalues(Fig.7).

100 200

a ] b -1 ]

-1 80 fish

150 fish -1

-1 60 100 40

50 20 retention [mg N d N [mg retention excretion [mg TAN d [mg excretion

0 0 50 100 150 200 250 300 50 100 150 200 250 300

average fishweight [g] average fishweight [g]

Fig. 8 Validationofthemodelfornitrogen(line)byavailableexperimentaldata(symbols):(a)retention (=feedingratexY fish,t xfractioninfish,Tab.1)r²=0,96;(b)excretion(=concentrationdifferenceofTAN betweeninflowandoutflowxflowratex2,5);r²=0,59.Valuesforfishweightweresummarizedin10g weightclasses;TANconcentrationsareaveragevaluesofallexperimentaldatafromthattimeperiod whereeachweightclasswasmeasured(n>5). Itwasnotpossibletovalidatethemodeldataforphosphorus,becausethe sensitivity of the orthophosphate analysis for dissolved nutrients was not sensitiveenoughtomeasureadifferencebetweeninflowandoutflowconcen trationsofthefishtanks.Thus,theapplicabilityofthemodelforpredicting phosphate concentrations can only be tested over the entire experimental MAREphase(seesubection2.2.3.2).

66 Chapter2

Module foam fractionation Foamfractionationremovesallsuspendedparticlesfromtheprocesswater. Datafromtherinsingwaterofthefoamfractionatorswereusedtodetermine thefoamfractionationefficiencybyregressionanalysis.Maximumvaluesfor r²werecalculatedbyusingMicrosoftExcelAddIn“Solver”:9,5%ofthefeed entry(DW)canbefoundassuspendedsolidsintheMAREsystem(Fig.9). Asaresultthefractionofsettablefaecesis15.8%offeedentry(DW),calcu latedbyEqu.13.

0,8 0,6 a b 0,5 0,6 faeces sedimentation

-1 faeces undiss. -1 0,4 foam fractionation suspended solids fish fish -1 0,4 foam fractionation -1 0,3

0,2 g DW d DW g d DW g 0,2 0,1

0,0 0,0 50 100 150 200 100 200 300 400

fishweight [g] production days

Fig. 9 (a)Modelledtotalamountoffaeces(Equ.7,solidline),fractionsofundissolvedfaeces(Equ.9, dashedline)andsuspendedsolids(Equ.12,spottedline)inrelationtofishweight.Experimentalval ues (symbols) from the rinsing water of foam fractionation show a good correlation (r² = 0,71). (b) Calculated daily amounts of faeces transferred to the detritivorous reactor (sedimentation) and the foamfractionatorsfortheentireproductionperiod.

Module Detritivorous reactor a) Worm growth and biomass development The daily amount of settable solids (sedimentation from Fig. 9b) is trans ferredtothedetritivorousreactorforutilizationby Nereis diversicolor. Fig.10aindicatesthatthegrowthof Nereis canbewelldescribedbyEqu.13 (p<0,001)(datafromBischoff,2003).Thus,theenergycontentofthefaeces

(B E) is an adequate variable to describe the growth performance of the worms.GrossenergycontentofthefeedinMAREisgivenas20.5MJkg 1by thefishfeedproducer,digestibleenergycontentwas17MJkg 1(givenbythe feedproducer),hencethenondigestibleproportionwas3.5MJkg 1.Accord

67 Chapter2 ingtoEqu.9mostofthenondigestibleproportionwasdetectedasundis solvedfaecesandtheestimatedenergycontentofthe faeces was 15KJ g 1 DW.Thisvaluecouldbeconfirmedbycalorificvaluemeasurements(14.6± 0.5KJgDW,datanotshown)ofthefaeces. Theindividualenergyloadisinfluencedbythewormnumberlivinginthe sediment(Equ.14).Thebioreactorwasstockedwithappr.2000individuals of Nereis atday36withatotalbiomassof1.8±0.5kg.Theaverageindivid ualwormweightwas890±260mg(n=270).Biomassdeterminationatthe startoftheMAREexperimentalphase(day182)resultedinwormnumbers approximating50.000withatotalbiomassof4.4±3.7kg(Fig.10b).Individ ualwormweightaveraged87±73mg.Thisclearlyindicatesareproduction eventbetweenday36and182(datanotshown).After spawning Nereis di- versicolor dies(monotelicreproduction).Thehighstandarddeviationvalues intheindividualweight(±84%)atthebeginningof the MARE experiment indicates that there were still larger Nereis individuals which had not yet spawned.Biomassandtotalnumberofwormsinthebioreactor showed a continuousdecreaseduringtheexperimentalperiod(Fig.10b,d).Theaver agewormweightwasnearlyconstantuntilday340andincreasedattheend oftheexperimentalphase(Fig.10c).

68 Chapter2

3 12x10 3

a 3 b 2 10x10

] 3 -1 8x10 1 6x10 3 0 4x10 3

-1 [g] biomass 2x10 3 growth rate [% d [% rate growth

-2 0

-3 -2x10 3 0,0 0,5 1,0 1,5 2,0 2,5 150 200 250 300 350 400

energy content of solids [KJ d -1 worm -1 ] production days

1,0 60x10 3 c d 50x10 3 0,8 40x10 3 0,6 30x10 3 0,4 20x10 3 average weight [g] weight average individual numbers individual 0,2 10x10 3

0,0 0 150 200 250 300 350 400 150 200 250 300 350 400

production days production days

Fig. 10 (a)Growthperformanceof Nereis diversicolor inrelationtoenergycontentofthesolids(Bisch off,2003).Regressionanalysisgave: max =2.78; min =2.72;K s =0.22.(bd)Modelledandexperimen taldataof(a)totalbiomass,(b)averagewormweightand(c)individualnumbersof Nereis diversicolor inthedetritivorousreactorintheMAREsystem.Dashedlinesarecalculationswithoutcannibalism, solidlineincludesarelativemortalityof1.3%d 1.Validationwithexperimentaldatagavefor(a)r²= 0.98and(b)r²=0.93and(c)r²=0.99and(d)r²=0.97. Considering elevated energy input by dead worms (Equ. 19) and potential cannibalismundercertainconditions,modeldatashowagoodcorrelationto theexperimentaldata.ByusingEqu.14relativeandabsolutewormgrowth rates can be calculated for the experimental period. The results indicate a feedundersupplyofthewormsbecauseoftheelevatednumbersofindividu alsduetothereproductioneventbeforethestartoftheexperimentalperiod. Theenergyloadprovidedbythefeed(fishfaeces)turnedouttobenotsuffi cient to satisfy thebasic metabolic needs (Fig. 11a). This may explain the negativeabsoluteandrelativegrowthratesuntilexperimentalday340(Fig.

69 Chapter2

11b,c),andtheincreaseafterwards,resultingintheincreasedaverageworm weightattheend(Fig.10c).

1,6 3 a b ]

-1 2

1,2 ] -1

worm 1 -1

0,8 0

-1

0,4 d [% rate growth -2 energy load [KJ d [KJ load energy

0,0 -3 200 250 300 350 400 200 250 300 350 400 production days production days

40 c 20

0 ]

-1 -20 -40 -60 yield [g d [g yield -80 -100

-120 200 250 300 350 400 production days Fig. 11 Modellingoftheenergyload(a),relativegrowth rate (b) and absolute growth rate (c) in the detritivorousreactorduringthecompleteMAREexperiment.Themodelwascalculatedwithoutmor talitybycannibalism(dashedline)andregardingarelativemortalityof1.3%d 1(solidline).

Module Macroalgae Filter AmmoniauptakebymacroalgaeisdescribedbyaMichaelisMentenkinetic (Equ. 20). Experimental values show a better correlation to Equ. 21 (Fig. 12b,dashedline,r²=0.75),causedbyabetteradaptationtolownutrient concentrationsincontrasttotheabsoluteuptakeratesaccordingtoEqu.20 (solidline).Absoluteuptakerateswereusedformodelcalculations,because anunderestimationofmaximumuptakerateinEqu.21wasexpected(r max = 0,06gTANh 1m 2,Fig.9a).

70 Chapter2

Fig.12ccomparesmodelledandexperimentaldataofammoniauptakedur ingtheMAREtrial,whichdidnotshowagoodcorrelationduetodailyvaria tions of the TAN concentrations and increasing modelled TAN concentra tions.

0,30 a b ]

-2 0,25 100 m -1 0,20 80

0,15 60

0,10 40 TAN uptakee [% TAN load] [% TAN uptakee TAN

ammonium uptake [g TAN h [g TAN uptake ammonium 0,05 20

0,00 0 0,0 0,5 1,0 1,5 2,0 0,0 0,5 1,0 1,5 2,0

TAN load [g TAN h -1 m -2 ] TAN load [g TAN h -1 m -2 ]

0,30 500 c d ]

-2 0,25 400 m -1

0,20 ] -1 300

0,15

200

0,10 yield [g FW d

100

ammonium uptake [g TAN h [g TAN uptake ammonium 0,05

0,00 0 200 250 300 350 400 150 200 250 300

production days production days

Fig. 12 Macroalgaefilter:(a)absoluteTANuptakeinrelationtoTANload.Numericanalysisgavefor Equ.26:r max =0.11;K s=0.25;r²=0.28;(b)relativeTANuptakeinrelationofTANload.Solidline representszeroorderkineticfromFig.9a(r²=0,64),dashedlinefromEqu.25.Regressionanalysis gave:r max =0.06;K s =0.05;r²=0,75.c)modelledandexperimentaldataofammoniauptakeduring theMAREtrial.Experimentaldataarerepresentingtheconcentrationdifferencebetweeninflowand outflowof themacroalgaetank.d)Modelledandexperimental growth yield in the macroalgae tank duringtheexperimentaltime.

In Table 4 the growth yield of Solieria chordalis in the MARE system is shown. At experimental day 125 (15.09.2004) Solieria was stocked for the first time. Recommended stocking density was 8kg FW m 2 surface area (SylterAlgenfarm,pers.comm.).Therefore,fortheMAREtankwithasurface areaof2.3m²atotalbiomassof18kgFWwasneeded.Technical problems

71 Chapter2

(deliverybottlenecksofthealgaefarm)resultedinatotalstockofonly10kg FWand11.2kgFW,respectively. Tab.4Startandendstockingsof Solieria chordalis intheMAREsystemduringtheex perimentaltrial.Numberspresentfreshweight. start stock- end stock- specific experimental pe- growth rate days ing density ing density growth rate riod FW d -1 m-2 [g] [g] [100 d -1]

Solieria chordalis Ifirststocking

15.09.04–29.09.04 13 10000 11806 60 1.28

29.09.04–06.10.04 6 11806 13653 134 2.42

06.10.04–13.10.04 6 13653 14561 66 1.07

13.10.04–21.10.04 7 14561 15454 56 0.85

21.10.04–27.10.04 5 15454 16039 51 0.74

27.10.04–10.11.04 13 16039 16800 26 0.36

10.11.04–17.11.04 6 16800 17000 15 0.20

17.11.04–24.11.04 6 15600 15731 10 0.14

24.11.04–10.01.05 46 14331 15000 6 0.10

Solieria chordalis IIsecondstocking

10.01.05–21.01.05 10 11195 11836 28 0.56

21.01.05–02.02.05 11 11836 15649 151 2.54

02.02.05–09.02.05 6 15649 17201 113 1.58

09.02.05–18.02.05 8 17201 20069 156 1.93

18.02.05–25.02.05 6 18000 18453 33 0.41

25.02.05–03.03.05 5 18000 18785 68 0.85

03.03.05–11.03.05 7 18000 20758 171 2.04

11.03.05–17.03.05 5 18000 18682 59 0.74

17.03.05–30.03.05 12 18000 21054 111 1.31 During the first experimental phase ( Solieria chordalis I) recommended stockingdensitieswerenotreachedduetodecreasinggrowthrates.There fore,asecondstocking( Solieria chordalis II ) was necessary. Additionally, a heavyfoulingofepiphytescouldbeobservedandthe Solieria thalli werein 72 Chapter2 terspersed with the green algae Enteromorpha sp.. Because of delivery bot tlenecks the second stocking could not be performed before 10 th January 2005. During the second experimental phase growth rates increased, but strongfoulingofepiphytesand Enteromorpha growthoccurredagainaftera fewweeks.

COMBINATIONOFALLMODULES –SIMULATIONOFTHE MARESYSTEM Thepredictionofnitrateandphosphateconcentrationsintheresearchrecir culationsystemneedsacomprehensiveunderstandingofallbiologicalproc essesintheMAREsystem.Thepresentedmoduleswerecombinedaccording toEqu.29und30.Modelledandexperimentalnitrateandphosphatecon centrationsareshowninFig.13a,b.

100 40 a b

80 30 ] -3 ] -3 60 20

40

Nitrate [mgNitrate N dm 10 Phosphate [mgPhosphate dm P 20

0 0

200 250 300 350 400 200 250 300 350 400 production days production days

50 ] 30 -3 ] -3 c d 25 40

20 30

15

20 10

10 5 Modelled nitrate concentrationnitrate [mg dm P Modelled

0 P [mg dm concentration phosphate modelled 0 0 10 20 30 40 50 0 5 10 15 20 25 30

experimental nitrate concentration [mg N dm -3 ] experimental phosphat concentration [mg P dm -3 ] Fig. 13 Experimental (symbols) andmodelleddata (solid line)of(a)nitrateconcentrations(b)phos phateconcentrationsintheprocesswaterofMAREovertheexperimentalperiod.(cd)linearregres sionanalysis:Modelledvs.experimentalnutrientconcentrations(c)y=1.05x+1.38;r²=0.84(d)y= 0.92x+2.04;r²=0.87

73 Chapter2

Linearregressionanalysis(Fig.14c,d)underlinesthesuitablepredictionsof themodelovertheentireexperimentalperiod.Standarderrorofregression was5.7mgNdm ³fornitrateand1.8mgPdm 3forphosphate.

ThemodelledN:Pratiowascomparedtotheexperimentaldata(Fig.14)and alsoshowedaverygoodcorrelation.BothresultsunderlinethattheMARE modeldescribestheprocessintheexperimentalsystemadequately.

20 14 a b 12

15 10

8 10

N:P ratio N:P 6

5 ratio N:P Modelled 4

2 0

0 200 250 300 350 400 0 2 4 6 8 10 12 14 production days experimental N:P ratio Fig. 14 (a)Modelled(solidline)andexperimentaldata(symbols)ofthestoichiometricN:Pratiointhe processwaterovertheentireexperimentalperiod(b)linearregressionanalysis:Modelledvs.Experi mentalstoichiometricN:Pratio:y=1.04x+0.30,r²=0.87.

2.4 Discussion Themajoraimsofthepresentstudywere:a)theoperationoftheintegrated systemwithinsafelimitsforallculturedorganisms (e.g. keeping ammonia andnitriteconcentrationslow,maintainpHvaluesandoxygensaturationat constantlevels,stabilizingnitrateandphosphateconcentrationsorevenre ducethemthroughcultureofsuitablesecondaryorganisms).b)totestthe feasibilityofrecyclingnutrientswithinthedifferentcomponentsofthesys tem.c)achievealongexperimentalperiodtoobtainsufficientdataformod elling.Thedifferentaimsarediscussedindetailinthefollowingchapters.

74 Chapter2

2.4.1 Feasibility of the MARE system Theprimaryaimofthisstudywastoensureasafeoperationofthesystem. Comparedtoconventionalrecirculatingaquaculturesystemsthestockden sityoffishwaslow:attheendofthetrialitwas7kgm 3basedonthesys temvolume,15kgm 3basedonthefishtankvolume.Althoughtheconcen trations of inorganic dissolved nutrients (ammonia and nitrite) as well as oxygenlevelswouldhaveallowedabiomassincrease,thevolumeofthefish tankslimitedthenumbersoffishregardingthewelfareoftheanimals.Lar gertankscouldnotbeusedduetothelocalisationandtechnicalfeaturesof thelaboratory. Fish grew well in the system, they reached commercial size after 1415 months. The reduced growth compared to other systems (1213 months) (LupatschandKissil,1998;Lupatsch et al., 2003;CollocaandCerasi,2005; Fig.16)wassupposedtobecausedbylowertemperatures,areducedfeed ingrate,irregularfeedingbeforeandonbiomassdeterminationdays,larger maintenance/construction work or foam fractionator failures, which oc curredespeciallyatthebeginningoftheexperiment. However, in compari sontocultivationinnetcagesobservedgrowthwasfaster.Fishculturein net cages resulted in rearing periods of 1516 months due to lower water temperaturessurroundingthecages(Porter et al. ,1986;CollocaandCerasi, 2005). Noticeable,foodconversionratiowasverygood(1.0–1.3)duringthecom pleteexperimentalperiodandintherangedescribedforcommercialfarms (CollocaandCerasi,2005).Themeasuredvalueof1.1isbelowtheFCR(1.5) described by Lupatsch and Kissil (1998, Fig 16b) and Porter et al. (1986) FCR=2.7.Thismightbeduetoenhancedeffortsoffishfeedproducersin thelastfewyearstoadaptfeedcompositionsbettertotherequirementsof theculturedspecies. Toensuresafesystemoperationthecontrolofthefaecesplayedakeyrole, duetothepotentialofinfluencingwaterqualityseverely(CrippsandBerg heim,2000).MAREincludedatwostepsolidseparation(sedimentationand

75 Chapter2 foamfractionation)toensurebestwaterquality(Losordo,1999;Summerfelt, 2002).Incontrasttoconventionalsystemstheparticulatewaste(fishfaeces and remaining food pellets) was not eliminated from the system, conse quently leaching occurred within the first 6 hours (Lupatsch and Kissil, 1998)andcouldnotbeinfluenced.However,concentrations of toxic nutri entsandoxygensaturationdidnotreachcriticalvaluesintheMAREsystem atanytimeduetoefficientmacroalgaefilter. ThedecreaseofpHattheendoftheexperimentalperiodcanbeexplained duetothelowergrowthperformanceofthemacroalgae(furtherdiscussedin subsection 2.4.2). Because of the reduced growth rates of macroalgae the uptakeofessential CO 2forphotoautotrophicproductionresultingfromthe fish metabolism was not efficient enough. Consequently, carbon dioxide

(CO 2)canreactinthewatertoformbicarbonateions(HCO 3)aswellascar bonateions(CO 32),dependingonthepHvalueofthewater. 2.4.2 Nutrient recycling by integration of secondary organisms (Solieria, Nereis ) Secondaimofthestudywastoinvestigatethefeasibilityofanenhancednu trientrecyclingbyintegrationofbiologicalsecondarysteps( Solieria chordata, Nereis diversicolor ).Fig.17showsthemodelleddailyretentionofNandPfor all cultured organisms during the entire experimental period in the MARE system.

60 80 a Sparus aurata b Sparus aurata 50 Solieria chordalis 70 Solieria chordalis Nereis diversicolor 60 Nereis diversicolor ] 40 bacteria ] bacteria -1 -1 50 30 40 20 30 10 20 10 P retention [% d [% Pretention N retention [% d [% retention N 0 0 -10 -10 -20 -20 200 250 300 350 400 200 250 300 350 400

production days production days

Fig. 15 Dailyretentionof(a)nitrogenand(b)phosphorusofthenutrientintakebyfeedforallculti vatedorganismsintheMAREsystemduringtheentireexperimentalperiod.

76 Chapter2 a) Fish unit Asexpected,nutrientretentioninfishdecreasedoverthecultivationperiod duetodecreasedfeedutilizationwithincreasingfishsize(LupatschandKis sil,1998,Fig.15a,b).InthisexperimentthedeterminedvaluesforNreten tion in fish (31±3%) are within valuesdescribed in the literature (1136%, Hargreaves1998;Paspatis et al. ,2000;VanHam et al. ,2003).ForPreten tioninfish(45±5%)valuesobtainedfromexperiments are higher than de scribedinliterature(2129%;Krom et al. ,1985;Porter et al. ,1987b;Krom andNeori,1989;Krom et al. 1995).Thiscanbecausedbytheselectedkind offeed,asrelativePrententiondependsontype,concentration,availability and digestibility of this nutrient, which can vary due to different sources (fishmeal,fishoil,cropsetc.)(HuaandBureau,2005). b) Macroalgae unit Around 17% of N and 13% of P were additionally retained in macroalgae biomass(Tab.6).Themacroalgaefilterwassufficienttoensurelowconcen trations of nitrite and ammonia in the recirculation water of the MARE system.However,growthperformanceofthemacroalgaewasinadequateand canbeexplainedbythefollowingreasons:concentrationsofammoniawere veryoftenonlysufficienttocovertheminimumphysiologicalrequirementsof thealgaebutnotenoughforsignificantgrowth.Additionally, artificial illu mination results inlower nutrient uptake rates compared to natural light. Solieria chordalis didnotswitchtonitrateuptakebecauseofthepreference forammonia,whichwaspermanentlyavailableatlowlevelsinthetank.It takesatleasta12hourabsenceofthisnutrienttoinducenitrateuptakein Soleria chordalis (Lüning,pers.comm.),butsuchasituationisunlikely to happeninrecirculationsystemsduetoaconstantavailability of ammonia caused by fish metabolism. Although concurrent uptake of ammonia and nitrateisknownformacroalgae(Ahn et al., 1998),themeasurementsclearly showedthat Solieria chordalis didnottakeupnitrate.Biofoulingofepiphytes occurredasaconsequenceofthepoorgrowthandinsufficientstockdensity of macroalgae at the beginning of the experiment (recommended stocking densityapprox.18kgm 2).Inconclusion,asmallermacroalgaecultivation

77 Chapter2 unitmighthaveyieldedbetterresultswithrespecttotheseconditions.An other explanation for the insufficient performance of the macroalgae unit couldbealimitationbymicronutrients,althoughit is assumed that suffi cient amounts of micronutrients are provided to the system by fish feed (Metaxa et al. ,2006).Nevertheless,itmightbepossiblethatanegativeeffect onsomeessentialionsoccurred(e.g.oxidizingFe 3+ toFe 2+ )asaresultofthe utilizationofozone.Thus,someessentialionsmaynotfurtherbeavailable forthemacroalgae.Additionofmicronutrientswas performed for a limited timeperiod,butresultsshowednobettergrowthperformanceofthemacro algaeandadditionwasthereforeterminated. c) Worm unit Caused by the spontaneous reproduction of Nereis diversicolor a biomass lossduetothemonotelicbehaviour(deathofmaturewormsafterthespawn ingincident)appeared.Thisresultedinnegativegrowthratesof Nereis diver- sicolor sincematureindividualspossessahigherbodyweightthanjuveniles. This further leads to a negative nutrient retention. Simultaneously the re productionincidentincreasedstockdensitywithinthedetritivoroustankup to about 50 000 individuals/m². The available energy load per worm de creasedfarbelowminimumrequirementsofanindividual (Bischoff, 2003). MAREhastobeconsideredasasimplifiedecosystem. A destabilisation of this “artificial ecosystem” due to insufficient energy uptake by the worms andhighindividualwormnumbersdidnothappenbecausetheseprocesses were regulated by decreased survival of juvenile worms. The number of worms decreased until sufficient energy was provided for each worm, and subsequentlygrowthratesandaverageweightincreasedtopositivevaluesat theendoftheexperiment.Inlaterexperimentspositivegrowthofwormsup tospawningsizecouldbeobserved(seeChapter5).

Insummary,thenutrientbudgetgivesanoverviewoftheretentionofNand Pineachmoduleofthesystemfortheentireexperimentalperiod(produc tionday182–399)inrelationtothefeeduptake(Tab.6).

78 Chapter2

Tab.6 Nutrientbudgetfornitrogen(N)andphosphorus(P)accordingtothemodelleddata. TheyarepresentedassumofabsoluteandrelativeamountfromtheMAREexperiment. Nitrogen Nitrogen Phosphorus Phosphors [g] [%] [g] [%]

Sparus aurata 1194 30 302 43

Nereis diversicolor 50 1 7 1

Solieria chordalis 666 17 92 13

Foamfractionation 145 4 62 9

Bacteria 134 3 32 5

Denitrification 1417 35

Processwater 259 6 118 17

Sum 3765 94 599 86

Feedintake 4003 100 701 100

Difference 238 6 102 14 d) Nitrogen recycling Itseemsobviousthatoneofthemajorprocesseswithinthesystemwasde nitrification,possiblymainlylocatedinthesedimentofthedetritivorousre actor: bacterial degradation of the organic matter could create anaerobic conditionsinthesediment.Combinedwithobservednitrateconcentrations andorganiccontentinthesedimentfavourableconditionsfordenitrification canoccur.Nitratewillbereducedtoelementarynitrogenduringdenitrifica tion; ascending gas bubbles could be observed during sediment sampling processes. Anotherconsiderableconversionprocessofnitrateisthebacterialassimila torynitratereduction.Thisprocessmaythereforealsoberesponsiblefora certainpartofthenitrateremoval,butaconsiderablepartwasaccumulat inginthesystemwaterandintherinsingwaterofthefoamfractionators. Appliedtothemodel,94%ofthenutrientbalanceofthesystemcouldbeex plained for nitrogen as well as 86% for phosphorus, so the model can be

79 Chapter2 consideredassuitableforthesimulationofamarineartificialrecirculation system. e) General considerations Generally, it seems that the spatial dimensions of the different biological secondaryunitsdidnotexactlymatchintheexperiment.Therefore,system optimisation can include stocking density, harvesting processes or water flowrates.Inordertocalculatetherightspatialdimensionsforsuchasys temitisnecessarytodefinethecriteriaforoptimisation: e.g. the financial benefitofthesecondarystepsorthenutrientretentionwithinthedifferent biologicalsecondaryelements.Itisnotpossibletooptimiseallcriteriasimul taneously. Maximum biomass yield in all components at the same time is also impossible due to the different physiological requirements of the cul turedorganisms.Therefore,themodelcanbeapowerfultoolforoptimising integratedrecirculatingsystems. f) Commercial applications Althoughnutrientretentionofthebiologicalsecondaryunitsaccountedfor onlyonefifthofthetotalnutrientbudget,thefinancialbenefitoftheaddi tional biomass production can significantly improve the economical out come. For example, the harvested worms may be directly sold as bait for fishersorashighqualityaquaculturefood(highproportionsofpolyunsatu ratedfattyacids).PreliminarycalculationsbasedontheMAREdataandcur rentmarketpricesof€30/kgindicateacostcoverageofoneyear´sfishfeed bysellingtheadditionalcropofworms. Thedirectsaleofmacroalgaeappearstobemoredifficult, but macroalgae canbealsousedinaquacultureasfeedformoreprofitableorganisms,like abalone( Haliothis spec.)orasdietarysupplementforaquaculturefishspe cies e.g. Sparus aurata . However, results from feeding experiments (this study,datanotshown)didnotshowasignificantdifferenceinfishgrowth withafeedreplacementof5%.Furtheroptionsforthecommercialusageof

80 Chapter2 culturedmacroalgaeareproductsfromfermentationprocessesofalgae(e.g. forcosmeticsandpharmacy). 2.4.3 Modelling Inaquacultureabroadspectrumofmodelsweredevelopedfordifferentspe ciesandvariousaquacultureproductionsforms(RolandandBrown,1990; Piedrahita,1990;Watten,1992;Kochba et al. ,1994;Ellner et al. 1996,Cho andBureau,1998;Pagand et al. ,2000a;Lefebvreet al. 2001b;GascaLeyva et al. ,2002).Itisobvious,thatinmodelsnaturalprocessescanonlybede scribedinasimplifiedway.Duringthedevelopmentofthismodel15mod uleswereidentifiedandcharacterisedwithintheparticularsystem compo nents(fishtank,macroalgaetank,detritivorousreactor,foamfractionation), althoughsomewereoverlapping,e.g.nitrification. Forpracticalreasonsdifferentassumptionsconcerningthe modellingproc ess were made. The following paragraph lists and explains these assump tions: Itwasassumedthattheexcretionofureabyfishis of minor importance. This was done despite the results presented by Dosdat and coauthors (1996)whichshowedthattheexcretionofurearepresentsabout15%ofto talnitrogenexcretion.Measurementsofureaproductionduringtheexperi mentalperiodwerenotperformedandthereforemodelling of urea produc tionandremineralisationcouldnotbeachieved.Itwasfurtherassumedthat all settable solids are transferred to the detritivorous reactor. Another assumption was that Nereis diversicolor could not build up any lipid reserves. Lipids are well recognised as an energy source for marine invertebrates(LuisandPassos,1995;GraeveandWehrtmann,2003;Sewell, 2005).Beyondthat,lipidsprovidestructuralcomponentsformembranesin theformofphospholipids(SargentandWhittle,1981).Thislackofreserves and essential components led to death of worms during the course of the experiment. Another preassumption was that no organic matter accumulates in the sediment of the detritivorous reactor. This could be provedbyexperimentalresultsofsedimentsamplesduring the experiment andthereforethisassumptionwasincludedintothe 81 model.Additionally,it Chapter2 sumptionwasincludedintothemodel.Additionally,itwasassumedthatall theorganicmatternotbeingusedbytheworms(B t,OM )willbeusedfordeni trificationprocesses.ConditionsfavouringdenitrificationorANAMMOX(an aerobic ammonia oxidation) (suboxic areas, sufficient contents of organic matterandelevatednitrateconcentrations)occurredduringtheexperiment.

The ANAMMOX process leads to the formation of N 2 assuming suboxic/anoxicconditions.Suboxicconditionsareconsideredtodevelopat organicparticlesurfacesandindeepersedimentregions.However,elevated nitriteconcentrationscouldnotbedetectedbeingaprerequisitefortheon set of the ANAMMOX process. Therefore, this process may be neglectable. Additionally,nitrateconcentrationsrosebeforeintegrationofthemacroalgae unit,indicatingconsiderablyhighernitrificationratescomparedtodenitrifi cation rates, although no quantifications were made. Although all these processes have to be taken into account, for practical reasons it was as sumedthatallavailableammoniaisconvertedtonitrate. In contrast to many other static models, this dynamic model refers to the variable“productionday”withthechangingvariable“fishgrowth”of Sparus aurata. Basedonthesedata theinfluenceofallpresentedmoduleswasin vestigated.Withinanumericmodeliterativealgorithms were developed for nutrientflowsofeachproductionday.Itisbasedonfunctionalcorrelations resulting from theoretical considerations, literature data and regression analysesofempiricalandliteraturedata. Theinformationalvalueofthemodelwasevaluatedbythemodelledandex perimentalconcentrationsofnitrateandphosphateintheMAREsystemand showedgoodcorrelations(Fig.14).Howeverthemodelwasnotyetvalidated byanindependentdataset.Theempiricaldataforfishgrowthwereusedfor development and linear regression analyses for numeric modelling. So, transferabilityoftheresultstootherrecirculationsystemcouldnotbesta tisticallyaffirmed.Nevertheless,itcanbeassumedthatthemodelrepresents avaluabletooltocalculatetheproperdimensionsoffutureintegratedrecir culating system and to forecast nutrient flows within the different compo

82 Chapter2 nentsofsuchasystem.Itcanbeusedasareasonablebasisforfurtherin vestigationsintothisarea. DespiteallachievementsofthemodelsystemslikethepresentedMAREsys temstillstrugglewithproblemsliketheaccumulationofdissolvedinorganic nutrients. The excess of certain critical values can cause limitations in growthperformanceorevendeathoftheculturedorganisms.Sofarnorec ommendationsconcerningharvestingoftheculturedorganismsweremade. Inordertoavoidproductionfailures(duetoe.g.reproductionevents)worms forexampleshouldbeharvestedbeforetheystartreproduction.

2.5 Conclusions MAREisaninnovativeconceptfornewmarineaquaculturecultivationsys tems which allows not only water reprocessing but also nutrient recycling withtheaimofenhancingeconomicalprofitability. The presented numeric modelling identified all essential biological processes and linked them to a completetool,whichisabletopredictthegrowthoftheculturedorganisms aswellsasconcentrationsofaccumulatingdissolvedinorganicnutrients(ni trateandphosphate). Theobservedresultsenabletheuseofthemodelfor future scientific questions, e.g. to integrate further biological steps for im proving the nutrient recycling to replace technical solutions. The replace mentoffoamfractionatorsbyfilteringorganisms(e.g.bivalves)andthede velopment of a suitable microalgae photobioreactor system (Kube et al. , in prep.,seeChapter3&4)maybestepstowardsthisdirection.Althoughthe first attempt of this new type of recirculation system was beyond optimal configuration, the experimental data and the developed model can help to calculatethenutrientfluxesandmodulesizesinvirtualsimulationstoim provethebiologicalandeconomicalefficiencyoffuturecommercialrecircula tionsystems(vonHarlem,2006).

83 Chapter2 2.6 Acknowledgements ThisworkwasfoundedbyDeutscheBundesstiftungUmwelt(DBU)andthe EU(InterregIIIA).WethankThomasHansen(IFMGEOMAR)formeasuring POCandPON. 2.7 References AhnO.,PetrellR.J.,andHarrisonP.J.(1998).Ammoniumandnitrateup take by Laminaria saccharina and Nereocystis luetkeana originating from a salmonseacagefarm.JournalofAppliedPhycology10:333–340. AsgardT.,AustrengE.,HolmefjordI.,andHillestadM.(1999).effi ciencyintheproductionofvariousspecies. In :SvennevigN.,ReinertsenN., New H., and New M. (eds). Sustainable aquaculture: food for the future ? A.A.Balkema,Rotterdam,Holland.:171183. BarakY.andvanRijnJ.(2000).Biologicalphosphateremovalinaprototype recirculation aquaculture treatment system. Aquacultural Engineering 22: 121136. BischoffA.A.(2003).Growthandmortalityofthepolychaete Nereis diversi- color underexperimentalrearingconditions.M.Sc.thesis,InstituteofMarine Research&DepartmentofAnimalSciences,ChairgroupofFishCultureand Fisheries,ChristianAlbrechtsUniversityKiel,Germany/WageningenUniver sity,TheNetherlands;103pp. BuschmannA.H.,TroellM.,KautskyN.,andKautskyL. (1996). Integrated tankcultivationofsalmonidsand Gracilaria chilensis (Rhodophyta).Hydro biologica326/327:7582. ChamberlainG.andRosenthalH.(1995).Aquacultureinthenextcentury: Opportunitiesforgrowthchallengesofsustainability.WorldAquaculture26: 2125. ChoC.Y.andBureauD.P.(1998).Developmentofbioenergeticmodelsand the fishPrFEQ software to estimate production, feeding ration and waste outputinaquaculture.Aquat.LivingResour.11(4):199–210. Chopin T., Buschman A.H., Halling C., Troell M., Kautsky N., Neori A., KraemerG.P.,ZertucheGonzalesJ.A.,YarishC.,andNeefusC.(2001).Inte grating seaweeds into marine aquaculture systems: A key toward sustain ability.JournalofPhycology37:975986. ChopinT.,SharpG.,BelyeaE.,SempleR.,andJonesD.(1999a).Openwa teraquacultureoftheredalgae Chondrus crispus inPrinceEdwardIsland, Canada.Hydrobiologica398/399:417425.

84 Chapter2

ChopinT.,YarishC.,WilkesR.,BelyeaE.,LuS.,andMathiesonA.(1999b). Developing Porphyra /salmonintegratedaquacultureforbioremediationand diversification of the aquaculture industry. Journal Applied Phycology 11: 463472. Colloca,F.andCerasi,S.(2005).CulturedAquaticSpeciesInformationPro grammeSparus aurata .FAOInlandWaterResourcesandAquacultureSer vice(FIRI).FAOFIGIS. CrippsS.J.andBergheimA.(2000).Solidsmanagementandremovalforin tensivelandbasedaquacultureproductionsystems.AquaculturalEngineer ing22:3356. DosdatA.,ServiasF.,MetaillerR.,HuelvanC.,andDesbruyèresE.(1996). Comparison of nitrogenous losses in five teleost fish species. Aquaculture 141:107–127. Ebenhöh(2004). www.icbm.de/~mathmod/pages/lectures/mm/Kap00_Ziele_Bedeutung.pdf. EllnerS.,NeoriA.,KromM.D.,TsaiK.,andEasterllingM.R.(1996).Simu lationmodelofrecirculatingmariculturewithseaweedbiofilter:Development andexperimentaltestsofthemodel.Aquaculture143(2):167–184. GascaLeyvaE.,LeonC.J.,HernandezJ.M.,andVergaraJ.M.(2002).Bio economicanalysisofproductionlocationofseabream( Sparus aurata )culti vation.Aquaculture213:219–232. GraeveM.andWehrtmannI.S.(2003).Lipidandfattyacidcompositionof Antarcticshrimpeggs(Decapoda:Caridea).PolarBiology26:5561. HallP.O.J.,KollbergS.,andSamuelssonM.O.(1992).Chemicalfluxesand massbalanceinamarinefishcagefarm.IV.Nitrogen. Marine Ecology Pro gressSeries89:8191. Hargreaves J.A. (1998). Nitrogen biogeochemistry of aquaculture ponds. Aquaculture166:181212. HuaK.,LiuL.,andBureauD.P.(2005).Determinationofphosphorousfrac tionsinanimalproteiningredients.JournalofAgriculturalandFoodChem istry53:1571–1574. KochbaM.,DiabS.,andAvnimelechY.(1994).Modellingofnitrogentrans formation in intensively aerated fish ponds. Aquaculture120(1–2):95– 104. KromM.D.,EllnerS.,RijnJ.van,andNeoriA.(1995).Nitrogenandphos phorous cycling and transformations in a prototype ‘nonpolluting’ inte gratedmariculturesystem,Eilat,Israel.Marineecologyprogressseries,118 (1–3):25–36.

85 Chapter2

KromM.D.andNeoriA.(1989).Atotalnutrientbudgetforanexperimental intensive fishpond with circularly moving seawater. Aquaculture 83: 345 358. KromM.D.,PorterC.,andGordinH.(1985).Nutrientbudgetofamarinefish pondinEilat,Israel.Aquaculture51:6580. LefebvreS.,BacherC.,Meuret,A.,andHussenotJ.(2001).ModellingNitro genCyclinginaMaricultureEcosystemasatooltoevaluateitsoutflow.Es tuarine,CoastalandShelfScience52(3):305325. LosordoT.M.,MasserM.P.,andRakocyJ.E.(1999).Recirculatingaquacul turetankproductionsystems:Areviewofcomponentoptions.SRACPubli cation453. LuisO.J.andPassosA.M.(1995).Seasonalchangesinlipidcontentand compositionofthepolychaeteNereis( Hediste ) diversicolor .ComparativeBio chemistryandPhysiology.PartB:Biochemistry&MolecularBiology[COMP. BIOCHEM.PHYSIOL.,B].VOL.IIIB,no.4:579–586. LupatschI.andKissilG.W.(1998).PredictingaquaculturewastefromGilt headSeabream( Sparus aurata )cultureusinganutritionalapproach.Aquat. LivingRessour.11:265268. LupatschI.,KissilG.W.,andSklanD.(2003).Comparisonofenergyprotein efficiency among three fish species gilthead sea bream ( Sparus aurata ), European sea bass ( Dicentrarchus labrax ) and white grouper ( Epinephelus aeneus ): energy expenditure for protein and lipid deposition. Aquaculture 225(1–4):175–189. McCartyP.L.,BeckL.,andAmantP.S.(1969).Biologicaldenitrificationof wastewaterbyadditionoforganicmaterials.P1271. In :Proceedingsofthe 24 th IndianaWasteConference,no.135.PurdueUniversity,Lafayette,Ind. MetaxaE.,DevillerG.,PagandP.,AlliaumeC.,CasellasC.,andBlancheton J.P.(2006).Highratealgalpondtreatmentforwaterreuseinamarinefish recirculation system: Water purification and fish health. Aquaculture 252 (1):92–101. NeoriA.,CohenI.,andGordinH.(1991). Ulva lactuca biofilters for marine fishpondeffluents.II.Growthrate,yieldandC:Nratio.BotanicaMarina34: 483489. NeoriA.,ShpigelM.,andBenEzra,D.(2000).Asustainableintegratedsys temforcultureoffish,seaweedandabalone.Aquaculture186:279291. NewkirkG.(1996).Sustainablecoastalproductionsystems:amodelforin tegrating aquaculture and fisheries under community management. Ocean Coast.Manag.32:6983.

86 Chapter2

PagandP.,BlanchetonJ.P.,andCasellasC.(2000).Amodelforpredicting thequantitiesofdissolvedinorganicnitrogenreleasedineffluentsfromasea bass ( Dicentrarchus labrax ) recirculating water system. Aquacultural Engi neering22(1–2):137–153. PaspatisM.,BoujardT.,MaragoudakiD.,andKentouriM.(2000).European seabassgrowthandNandPlossunderdifferentfeedingpractices.Aquacul ture184(1–2):77–88. Petrell R.J. and Alie S.Y. (1996). Integrated aquaculture of salmonids and seaweedsinopensystems.Hydrobiologica326/327:6773. PfeifferT.J.andRuschK.A.(2000).Anintegratedsystemformicroalgaland nurseryseedclamculture.AquaculturalEngineering24:1531. PorterC.B.,KromM.D.,andGordinH.(1986).Theeffectofwaterquality onthegrowthof Sparus aurata inmarinefishponds.Aquaculture59:299– 315. PorterC.B.,KromM.D.,RobbinsM.G.,BrickellL.,andDavidsonA.(1987). Ammonia excretion and total N budget for gilthead sea bream ( Sparus au- rata )anditseffectonwaterqualityconditions.Aquaculture66:287–297. Rheinheimer G., Hegemann W., Raff J. and Sekoulov I. (1988). Stickstoff kreislauf im Wasser: Stickstoffumsetzungen in natürlichen Gewässern, in derAbwasserreinigungundWasserversorgung.R.OldenburgVerlagGmbH, München. RolandW.G.andBrownJ.R.(1990).Productionmodelforsuspendedcul tureofthePacificoyster, Crassostrea gigas .Aquaculture87:3552. SargentJ.R.andWhittleK.J.(1981).Lipidsandhydrocarnbonsinthema rinefoodweb. In: LonghurstA.(ed)Analysisofmarineecosystems.Academic Press,London,pp.491–533. Schneider O., Sereti V., Eding E.H., and Verreth J.A.J. (2005). Analysis of nutrient flows in integrated intensive aquaculture systems. Aquacultural Engineering32:379401. SewellM.S.(2005).Utilizationoflipidsduringearlydevelopmentofthesea urchin Evechinus chloroticus . Marine Ecology Progress Series 304: 133 – 142. SummerfeltS.T.(2002).Anintegratedapproachtoaquaculturewasteman agementinflowingwatersystems.Proceedingsofthe2ndInternationalCon ferenceonRecirculatingAquaculture:8797. TroellM.,HallingC.,NeoriA.,ChopinT.,BuschmanA.H.,KautskyN.,and YarishC.(2003).Integratedmariculture:askingthe right questions. Aqua culture226:6990.

87 Chapter2

VanHamE.H.,BerntssenM.H.,ImslandA.K.,ParpouraA.C.,Wendelaar BongaS.E.,andStefanssonS.O.(2003).Theinfluenceoftemperatureand rationongrowth,feedconversion,bodycompositionandnutrientretention ofjuvenileturbot( Scophthalmus maximus ).Aquaculture217:547–558. Vandermeulen H. and Gordin H. (1990). Ammonium uptake using Ulva (Chlorophyta)inintensivefishpondsystems:masscultureandtreatmentof effluent.JournalAppliedPhycology2:363374. VonHarlem,O.(2006).NumerischeModellierungder Nährstoffdynamik ei nerintegriertenAquakulturKreislaufanlage.M.Sc.thesis,CarlvonOssietzky UniversitätOldenburg. WallerU.,BischoffA.A.,OrellanaJ.,SanderM.,andWeckerB.(2003).An advancedtechnologyforclearwateraquaculturerecirculationsystems:Re sults from a pilot production of Sea bass and hints towards "Zero Dis charge".EuropeanAquacultureSocietySpecialPublications33:356357. Waller U., Sander M., and Orellana J. (2005). A “low energy” commercial scalerecirculationsystemformarinefinfish.EuropeanAquacultureSociety SpecialPublications35:459460. WattenB.J.(1992).Modellingtheeffectsofsequentialrearingofthepoten tialproductionofcontrolledenvironmentfishculturesystems.Aquacultural engineering11:33–46. WehnerR.andGehringW.(1995).Zoologie.GeorgThiemeVerlagStuttgard, NewYork.861pp.

88

Chapter 3 Cultivationofmicroalgaeusingacontinuous photobioreactorsystembasedondissolvednutri entsofamarinerecirculationsystem KubeN.,BischoffA.A.,WeckerB.,WallerU.(2006)

89 Chapter3 Cultivation of microalgae using a continuous photobioreactor system based on dissolved nutrientsofamarinerecirculationsystem Kube,N.,BischoffA.A.,WeckerB.,WallerU. Abstract Inthisstudyaphotobioreactorsystemforcontinuousmicroalgaecultivation wasdevelopedandtestedinanintegratedrecirculationsystemwithawater renewalrateoflessthan1%systemvolume(MARE=MarineArtificialRecir culatingEcosystem). The photobioreactor system was equipped with a continuous water pre treatmentunitandharvestingunit(foamfractionation)andtestedforitsap plicability in aquaculture systems. Nannochloropsis was the target species andcultivatedwithadailyyieldof0.93±0.5gdryweightm 2.C/Nratio,en ergy content and organic amount was determined for the harvest. Growth performanceandfattyacidprofilesof Nannochloropsis weredeterminedac cording to different nutrient concentrations at different irradiations (100, 250and400mols 1m 2),anddescribedbyMichaelisMentenkinetics. Thisstudyshowedthatacontinuouscultivationwithoutautomaticregula tionoflightintensityandflowratesresultsinveryunstableconditionsre garding biomass concentration within the photobioreactors due to varying cultureconditions.Asemicontinuoussystemmightbemorefeasible.

90 Chapter3 3.1 Introduction Microalgaeplayanimportantroleinmariculture.Theyareusedforrearing fishlarvae,bivalves,shrimpsandcrabs(Brown et al., 1997;Moss,1994)and forthenutritionoffoodorganismslikerotifersandcopepods(Støttrupand McEvoy,2002;Pinto et al., 2001).Differentspeciesareusedforthispurpose (e.g. Nannochloropsis spec., Tetraselmis spec., Dunaniella spec., Isochrysis spec.,(Brown et al. ,1989,Rocha et al. ,2003).Especiallymicroalgaecharac terized by an elevated content of polyunsaturated fatty acids are preferred (Volkman et al., 1992;Renaud et al. ,1994;1999).Considerablepopulations ofmicroalgaearecultivatednotonlyforaquaculturepurposeswithstandard cultivationmethods(Becker,1994),e.g.largepondculturesandhighlyeffec tivephotobioreactorsystems(Borowitzka,1999;Pulz,2001). Theusageofmicroalgaeasasecondaryintegrationstepinmarinerecircula tion systems for removing dissolved nutrients from the system water is a new goal in aquaculture (Hussenot, 2003; Schneider 2005). High nutrient concentrationsarepresentinthedischargewaterof recirculation systems: nitrateandphosphatearethetwomajornutrientswhich accumulate in a recirculation system. In comparison with conventional microbial biofilters, microalgae have several advantages: nitrate and phosphate are consumed simultaneously and used for incorporation into biomass (primary produc tion).Microalgaecanalsoberegardedasavaluable“industrial”productwith a variety of applications (food, cosmetics, human consumption, pharmacy etc.)(WikforsandOhno,2001). Aimofthisstudywasthedevelopmentofacontinuouscultivationsystemfor marinemicroalgaebasedondissolvednutrientsfromamarinerecirculation system. A maximal flowback of purified water (without algae) needs to be achieved,becauseinmodernmarinerecirculationsystemswater discharge islessthan1%perday(Waller et al. ,2003). New developments of systems for cultivation of microalgae in a secondary loop within a recirculation system are scarce because of the considerable technicaleffortforoperation.Thus,thesemoduleshavebeenintegratedinto

91 Chapter3 fishfarmsonlyoccasionally.Firstapproacheshavebeenperformed,butwere mainlyfocusedon benthicdiatoms,althoughcommercialvalueofdiatoms appears to be limited (Tandler, 2003; Hussenot, 2003). Microalgae with commercialvalueorrequirednutrientcompositionforaquaculturepurposes aremainlyfloatingalgae.Duetotheirfloatingwayofliving,harvestingofthe algae is a technical problem. Standard methods like filtration, sedimenta tion, flocculation or centrifugation require high technical/financial invest mentsandarelabourintensive(Becker,1994).Therefore,integrationoffil tratingorganismsintotherecirculationsystemlikebivalvesarecheaperand more valuable alternatives for removing microalgae from the system water. (PfeifferandRusch,2000;Hussenot et al. ,1998;Hussenot,2003). However,additionaltotheproblemsconcerningtheharvestingprocessofthe algae, cultivation of free floating microalgae in fish effluent waters makes high demands compared to the cultivation using standard (sterile) media. Firstly,effluentsfromafishtankarefarfrombeingsterile.Bacteria,fungi, virusesandparticlesmaybetransferredintothecultureandmaycausesig nificant difficulties during operation. Additionally, denitrification processes within a recirculation system can cause an inappropriate N:P ratio of the systemwater(e.g.4:1;seeChapter2).Thisleadstolimitationofnutrients(N limitation),resultinginpoorgrowthandsuddencrashesofcultures(Bene mann1992,ownobservations). Insummary,theconceptionaldesignofaphotobioreactorsysteminasec ondaryloopofamarinerecirculationsystemneedstofulfillseveralrequire ments.Technicalaspectsare:(1)efficientwaterpretreatmenttoreducemi crobialcontamination,(2)sufficientnutrientflowand(3)simpleandefficient harvesting.However,forpracticalreasonsthephotobioreactormustbeeasy tooperateandtoclean.Alsoadaptabilitytodifferentalgalspeciesshouldbe possible. Nannochloropsis sp.wasselectedbecauseofitsprofileofhighlyunsaturated fattyacids,itsapplicabilityasfoodandthewiderangeoftemperaturesand salinitiestoleratedbythisspecies(Rocha et al., 2003). Nannnochloropsis sp.

92 Chapter3 taxonomically belongs to the Eustigmatophyceae (Xanthophyceae, Chryso phyta).Theflagellatecells(Fig.1)arecharacterizedbythepossessionofthe xanthophyllsheteroxanthineandvaucheriaxanthineandbyalackofchlb. Besidesoil,chrysolaminarineandlaminarineareaccumulatedasrepository polymers.

Fig.1: Nannochloropsis sp.(imagesource: www.innovationsreport.de ) 3.2 Material and Methods 3.2.1 Design of the continuous photobioreactor system The photobioreactor system used in this study consisted of three different units(Fig.2):the"disinfection"unit,themicroalgaecultivationunitandthe harvestingunit.Thesystemwasoperatedasabypassloopoftherecircula tionsystemforcontinuoustreatmentoftheprocesswaterfromtherecircu lationsystem.

The „disinfection“ unit (Fig.1)wasan8Lfoamfractionator(Sander,Uetze Eltze,Germany)(1)combinedwithawaterstoragecolumn.Waterwasper manentlypumped(Eheim1260)tothefoamfractionator.Flowratethrough the foam fractionator was manually adjusted to 32L/hour. The foam frac tionationwasoperatedwithacompressedair/ozone mixture, produced by an ozone generator (Sander, Ozonizer A500). Redoxpotential (ORP) was measuredintheoutletofthefoamfractionatorbyasensorandregulatedto reachvaluesbetween500and600mVusingacontrolmoduleKM2000(both SensortechnikMeinsbergGmbH,ZiegraKnobelsdorf,Germany).

93 Chapter3

Wasteairfromthefoamfractionationandthewastecollectorwaspassedto anozonefilledwithactivatedcarbon.Thepretreatedwaterwas transferredtothestoragecolumnwherewatergotaeratedtorelease residual ozoneandtostabilizepH.Remainingwaterinthewaterstoragecolumnwas dischargedviaanoverflowpipeintotheprimaryrecirculationsystem.

The microalgae cultivation unit consisted of three parallel photobioreactors (Fig.1,B).Eachphotobioreactorconsistedofanacrylic column with a di ameterof20cmand1,50mheight,resultinginatotalvolumeof50litres. Theacryliccolumnwasfixedwithscrewstoabaseplateof50x40cm.The topcoverwasdesignedtoberemovable.Yshapeairspargerswereattached inthelowerpartofthereactor,producinglargeairbubblesinordertoagi tate/stirtheculture.Fourremovablelamps(individuallyswitched)withtwo fluorescenttubeseach(daylightspectrum)wereattached vertically around thebioreactor. Toensuremaximalreturnofwaterbacktotheprimaryrecirculationsystem, an efficient harvesting unit needed to be included. Foam fractionation was consideredtobethemostefficientmethodtoharvest thesuspended algae fromtheoutflowwaterofthephotobioreactors.Asecond foam fractionator identical to the first one (see above) was installed (Fig. 2 and 3a, (4)). The foam fractionator was also operated with an ozone/air mixture. Harvested algaewerecollectedinaseparatecontainer(box“harvest”,Fig.2).Purified waterwasledbacktotheprimaryrecirculationsystem(samplingpointC).A redoxpotentialsensorwasinstalledtocontroltheredoxpotentialintheout flowwater.

94 Chapter3

A 3 B

disinfection unit KM 2000 waste A 3 B microalgae cultivation unit 1 2 A ozone 3 B

recirculationsystem C 4 ozone harvest D harvesting unit

Fig. 2 Schematicdrawingofthecontinuousphotobioreactorsysteminstalledinamarinerecircula tionsystem:(1)=foamfractionatorforwaterpretreatmentsuppliedwithozone;(2)=storagecolumn withaerationtoremoveresidualozone,brokenarrowindicatesoverflowfordispensablewater;(3)= photobioreactorswithattachedlighttubes;(4)=harvestingfoamfractionatorwithozone;greycircle witharrow=electrodeforredoxpotential;whitecirclewitharrow=electrodeforpH;technicalsym bolsforpump(circlewithtriangle)andvalves(doubletriangle),Arrowsindicateflowofwater.A,B,C,D =samplingpoints(Tab.1).

95 Chapter3

a 1 b 1 3 3

7

4 6

5 Fig. 3 Photobioreactorsystem: c (a) entire system with pretreatment foam frac tionator (1), two bioreactors (3) [one with light tubes, left), one without (right)] and har vestingfoamfractionator(4);(b)disinfectionfoam 3 fractionator(1)withstoragecolumnwithaeration (5) and overflow pipe (6), pump (7); (c) bottom sector of the bioreactors (3) with Yshape spargers and attached light sockets (without fluorescenttubes).

3.2.2 Functional principle of the photobioreactors Thefunctionalprincipleofthephotobioreactoroperation is analogous to a chemostat(Pirt,1975,Fig.4):mediumisinsertedintothereactorcontaining thecultureataconstantflowrate(F).Thetotal volume of the culture (V) remainsconstantbycontinuousremovalfollowinganoverflowprinciple(Fig. 4). Thus, constant mixing processes are ensured in order to dispense the newmediauniformlythroughoutthewholeculturewithinaveryshorttime.

96 Chapter3

x=0 x s s=s r mixing F F

medium culture

x s

Fig. 4 Simplifiedprincipleofachemostat(Pirt,1975):x=biomass,s=growthlimitingsubstrate,s r= inflowconcentrationforgrowthlimitingnutrient;F=flowrate;V=culturevolume If a growing batch culture is changed into continuous cultivation modus, therearedifferentscenariostobeconsideredasaresultofthecultivation efforts:(1)therateofwashoutexceedsthegrowthrate()andbiomassac cumulation in the photobioreactor will decrease and growth limiting sub strateconcentrationwilltendtowardss r; (2)theinitialrateofwashoutwill balancethegrowthrate,somicroalgaewillgrowatmaximumrates( m)and (3)therateofwashoutisminortothemaximumgrowthrate,thebiomass willincreasewithinthephotobioreactor. Therefore, growth of biomass can be described as follows for an infinitely smalltimeintervaldt : dx F × x = µ × x − (Equ.1) dt V When the flow rate equalizes the specific growth in the photobioreactor, “steadystate”isachieved.Thesteadystateisaselfregulatingprocess:bio massconcentrationandsubstrateconcentrationareactingfollowinganos cillatingrelation:adecreaseinbiomassconcentrationwillbeassociatedwith anincreaseinsubstrateconcentration;thisinturnwillleadtoanincrease ofthegrowthrateandthus,restorethesteadystateconditions.Anincrease inbiomassconcentrationwillhavethe reverseeffects. Therefore, a certain timeintervalisrequireduntilthisoscillationeffectwilltendtozero.Soalso

97 Chapter3 biomass output possibility (1) and (3) will also result in a steady state at constantnutrientinflowsconditionsafteracertaintime. Duringtheentireexperimentalperiodnoreal“steadystate”canbeexpected todevelopduetochangingnutrientconcentrationsoftheinflowprocesswa ter.Thus,measurementsofthecriticaldilutionrates (rates where diluting washoutoftheculturetakesplace)wereusedtodetermine growth rate at differentconcentrationsoftherecirculationwater.Flowratesofrecirculation waterwereadjustedtoavalue,atwhichopticaldensity (OD 665 )within the bioreactor remained constant for several hours. “Steady state” conditions wereassumedandspecificgrowthwasdeterminedbymeasuringthepropor tion of microalgae removed from the photobioreactor within a certain time interval(1hour):

ln N − ln N µ = t 0 (Equ.2) t whereN 0=cellnumberatt 0 inthebioreactor,N t=cellnumberaftert(calcu latedfromcellnumbersofbioreactor+cellnumbersofoutflow),tistimebe tweentwosamplingpoints(1hour).

Specific growth rates vary according to nutrient concentrations of the me dium.Therelationshipbetweenspecificgrowthrateandgrowthlimitingnu trientcanbedescribedbyaMichaelisMentenkinetic: µ ⋅ x µ = max (Equ.3) + K s x where max =maximumgrowthrate,x=algaebiomass,K s=halfsaturation constant. Tocalculatethenutrientconcentrations(alsocallednutrientload)withinthe photobioreactorsomeadditionalaspectshavetobetakenintoaccount.Ifa verysmallinflowvolumeisintroducedintoalargervolume(e.g.volumeof thephotobioreactor),dilutionprocessesoccurfollowinganexponentialequa 98 Chapter3 tion: for example a dilution rate of 0.02 will not result in a 2% water ex changeofthetotalphotobioreactorvolume.Thepercentageofexchangedwa ter(R)hastobecalculatedasafunctionoftheflowrate(F)andthevolume ofasinglephotobioreactor(V)foradefinitetimeinterval(t):

−tF R = 1− e V (Equ.4)

Consideringthis,thevirtualeffluentconcentration(c out, virtual)describesthe hypotheticeffluentconcentrationattheendofthesamplingperiod,assum ingthatnoalgaearepresent.Thefunctionrequiresthemeasurementofthe influent (c in ) and effluent (c out ) concentration at the beginning (t 1) and the end(t 2)ofthesamplingperiod. + + cin ,t cin ,t cout ,t cout ,t c = R ⋅ 1 2 + ()1− R ⋅ 1 2 (Equ.5) out ,virtual 2 2

Thevirtualeffluentconcentration(c out,virtual )wasusedtocalculatethenutri entuptakerate(r A)asthedifferencebetweenthevirtualandthemeasured effluentconcentration(c out,t 2)pertimeinterval(t). − (cout ,virtual cout ,t ) r = 2 (Equ.6) A t

Thisstudywasfocusedonthedeterminationofspecificgrowthratesofthe microalgaewithregardtodifferentnutrientconcentrationsofthephotobio reactor in order to define suitable dilution rates for the operation of the photobioreactors.Thiswastestedatdifferentradiationintensities(100mol s1 m 2, 250mol s 1 m 2, 400mol s 1 m2).Thephotobioreactorsystemwas attachedtoamarinerecirculationsystemforrearingseabream( Sparus au- rata) (seeChapter5).Itwasoperatedduringa4months experimental pe riod.Eachreactorwasworkingwithadifferentirradiation andwas illumi natedfor24hours(Table1).

99 Chapter3

Tab.1Numberoffluorescenttubesforilluminationandmeasuredaverageirra diation Photobioreactor Numberoffluores radiation(mols 1m 2) centtubes 1 2 100 2 4 250 3 8 400

3.2.3 Algae Nannochloropsis wasobtainedfromasterilestockculturestrain,availableat IFMGEOMAR. Stock cultures served as backup and were cultured on f/2 medium(Guillard,1975)applyingsterileconditions. Workingculturesof5lvolumeforbioreactorinoculationwerealreadygrown onpretreatedrecirculationwater.

3.2.4 Culture conditions Watertemperatureoftherecirculationsystemwaskept at 20 ± 2.2°C and salinityat23±1.0psu.Temperatureinthebioreactorsvariedbetween23 and26°Cduetodifferentradiationintensities.pHvaluesrangedfrom7.5to 8.5andwasnotregulatedautomatically,butHClwasaddedwhenpHrose abovevaluesof8.7.Compressedairwassuppliedtothephotobioreactorsin ordertoaeratethecultures. Bioreactors were started as batch cultures until the exponential growth phaseofmicroalgaewasobserved.Whentheexponentialgrowthphasewas reached,thephotobioreactorsweretransferredtothecontinuouscultivation modus.Flowratesvariedbetween0.36Lh 1to1.5Lh 1.

3.2.5 Sampling and analytical methods TheprotocolsofdailymeasurementsaresummarizedinTable2.Depending ontheproductionmode(batch,continuous),samplesweretakenatdifferent samplingpoints(A,B,C,D,Fig.2).

100 Chapter3

Tab.2Dailymeasurementsaccordingtocultivationmodusofthephotobioreactorsystemincluded intoamarinerecirculationsystem.A,B,C,Darethesamplingpoints(seeFig.2).OD 665 =opticalden sityofmicroalgaeculturesat665nmwavelength. A B C D Cultivation mode (inflowtobiore (bioreactors) (outflowto (harvest) actors) MARE)

OD 665 pH Batch dissolvednutri ents

OD 665

OD 665 OD 665 pH pH pH pH drymatter Continuous dissolvednutri organicmatter ents dissolvednutri dissolvednutri ents ents C/N energy Opticaldensitywasmeasuredat665nmwithaHachspectrometer (10 ml sample).Inordertoallowrapiddeterminationofcellnumbersalinearrela tionshipbetweencellcountsandopticaldensitywasestablished.Cellnum berswerecountedusingalightmicroscopeandahaemocytometer(Fuchs Rosenthal). Watersamplesofapprox.20mlwerecentrifugedat5000rpmfor10min.To removealgaeandthenfrozenat20°C.Dissolvednutrients (PO 4P, NO 3N,

NO 2N,TAN)wereanalysedusinganautoanalyzerAA3(BranLübbeGmbH, Norderstedt,Germany).pHwasmeasuredwithaWTWmulti340pHmeter.

Dailywatervolumeintheharvestcollectionunit(Fig.2,D)andcellnumbers ofharvestedmicroalgaewererecorded.12subsamplesofmicroalgaeharvest (10mleach)werecentrifugedat5000rpmfor10min.Themicroalgaepellets formedbycentrifugationwereanalysedasfollows:contentofdrymatterwas determinedbydryingthesampleinafurnaceat60°Cfor12hours.Organic content was then measured by incineration of organic matter in a muffle furnace.C/Nratiowasdeterminedbygaschromatography(GC)inanele mentanalyser(EUROEAelementalanalyser,Milano, Italy). Calorific value was measured by combustion in anIKA calorimeter C4000. Weighing was performedusingaSartoriusA210P(max.200g).

101 Chapter3

Microalgae samples from the photobioreactors were filtered using 25mm glassfibre filters (Whatman GF/F). The filters were precombusted for at least12hoursat550°Ctoremovetracesoforganicmatter.POCandPON weremeasuredapplyinggaschromatography.POPwasconvertedtoortho phosphatebycookingwithpotassiumperoxydisulphate.Theorthophosphate wasthenmeasuredphotometrically. Fattyacidswereextractedwithdichloromethane:methanol(2:1,vol/vol)as described by Fink (Fink, 2006). PUFAs (polyunsaturated fatty acids) were quantifiedasfattyacidmethylesters(FAMEs)usingaHP5890SeriesIIGC (AgilentTechnologies,Waldbronn,Germany)equippedwithaDB225fused silicacolumn(J&WScientific,Folsom,USA)andaflameionisationdetector with heptadecanoic acid methyl ester and tricosanoic acid methyl ester as internal standards (Von Elert and Stampfl, 2000). Identification of the FAMEs was based on comparison of retention times to those of reference compounds. 3.3 Results 3.3.1 Feasibility of the photobioreactor system for algae cultivation a) pretreatment of recirculation water and harvesting process The photobioreactor system fulfilled the technical requirements concerning continuouswatertreatmentandharvestingaswellas space requirements. Ingeneral,theconceptionaldesignofthephotobioreactorsystemturnedout tobefeasible.Itwaspossibletosuccessfullycultivate Nannochloropsis ina continuous culture based on dissolved nutrients derived from the marine recirculationsystem. Water from the detritivorous culture tank (harbouring Nereis diversicolor ) was continuously pretreated with ozone in combination using foam frac tionation.Thistreatmentprocesswasanalyzedforitseffectivenessinpurify inghighlyloadedwastewaterfromrecirculationsystems.Asaresult,disin fectingeffectcouldbeachievedduetotheremovalofparticlesandbacteria cellsbythefoamfractionationprocess.FordetailsseeChapter4.

102 Chapter3

Theharvestingprocesscouldbesuccessfullyestablished.Harvestofallcul tivatedalgaebythefoamfractionationtechniquewasachieved,whichisrep resented by an average optical densityat 665nm (OD665 ) of 0.007 ± 0.007 (<1Mio.cellsml 1).Thedailyamountofalgaebiomassyieldaveraged2.49± 1.34gDWd 1.DailyyieldsareshowninTab.3.Atthebeginningoftheex perimentstheharvestingfoamfractionatorwasoperatedwithoutozone.This turned out not to be effective enough, resulting in remaining algae in the outflowandanelevatedharvestingvolume(2.5Litres)withrelativelylowcell densities.Additionofozoneimprovedtheperformance.Attheendoftheex perimental period the harvest volume reached 0.184 ±0.053Ld1 at very highcelldensitiesof227.9x10 8±6.7x10 8cellsml 1(Tab.3).99.68±0.38 %ofthewatercomingfromthephotobioreactorswere transferred back to themainrecirculationsystem. b) nutritional value of the cultivated microalgae Thenutritionalqualityofthealgaewasincreasingduringtheexperimental period.Theorganicproportionincreasedfrom4050%tomorethan80%of algaeDW algae (Tab.3),coincidingwithanelevatedenergycontentofthemi croalgae.Measuredenergyvaluesof21.07 ±4.6KJd 1DW algae indicatehigh nutritional quality of the microalgae. In initial samples a proportion of an unknownwhitesubstancecouldbeobserved,whichwasprobablylime.This may explain the lower organic fraction, but not the high C:N ratio of the samples,becausesampleswerepretreatedwithHClinordertoremoveinor ganiccarbonbeforegaschromatographicaldetermination.

Fattyacidprofilesweredeterminedattheendoftheexperimentstogetan otherhintaboutthenutritionalvalueofthecultivatedmicroalgae(Tab.4).

Totalamountoffattyacidsvariedfrom16.72ngfattyacids(FA)/gPOC algae

(100mols 1m 2)to14.01ngFA/gPOC algae (250mols 1m 2).Valuesfor fullilluminationwasverylowat5.5ngFA/gPOC algae . HighestvaluesforArachidonicacid(ARA)andEicosapentaenoic acid (EPA) havebeenfoundinbioreactorsatlowirradiancesat1.12 ±0.18ngARA/g

103 Chapter3

POC algae (100mols 1m 2)and1.16 ±0.06ngARA/gPOC algae (250mols 1m2). Values for Eicosapentaenoic acid (EPA) were 2.54 ± 0.44 ng EPA/g

POC algae and2.66 ±0.14ngEPA/gPOC algae ,respectively.Valuesforirradia tionat400mols 1m 2 werefoundtobedramaticallylowat0.22 ±0.04ng

ARA/gPOC algae and0.50ngEPA/gPOC algae forEPA. Relative amounts of highly unsaturated fatty acids compared to the total amount of fatty acidswas high: relative amount of arachidonic acid (ARA, 20:4 n4) of the total fatty acid content were at 6.7% (100mol s 1 m 2), 8.27%(250mols 1m 2)and4.0%(400mols 1m 2),respectively.Valuesfor eicosapentaenoic acid (EPA, 20:5 n5) were at 15.2% (100mol s 1 m 2), 18.9% (250mol s 1 m 2) and 9.1% of total fatty acid amount (400mols 1m 2),respectively.

104

Tab.3Harvestingresultsbyfoamfractionation(totalamountofall3photobioreactorswithdifferentirradiationsat100mols 1m 2,250mols 1 m2and400mols 1m 2,respectively).Flowrateperday=totalflowthroughallthreebioreactors,foamvolume=harvestedvolumeinthehar vestingvessel,celldensity,pH,yield(DWd 1)intheharvest.Organicfraction,energycontentandC/Nratioofthecultivatedalgae. Date Flowrate Foamvol Celldensity pH YieldDW Org.frac Energy N C C:Nratio perday[L] ume[L] [Mioml 1 Harvest (gd 1) tion (KJg 1) [mgg 1DW] [mgg 1DW] harvest] 15.10.05 108.0 1.0 129.1 7.09 4.44 55.8 16.05 36.06 317.4 8.8 17.10.05 108.0 0.4 164.6 7.46 2.58 57.4 14.21 38.84 297.8 7.7 19.10.05 108.0 0.12 126.1 n.d. 0.62 50.2 13.85 29.62 263.8 8.9 20.10.05 108.0 0.58 133.8 7.09 3.01 53.6 13.22 24.90 213.1 8.6 27.10.05 73.4 2.5 68.8 7.15 n.d. 39.9 13.54 15.36 143.8 9.4 28.10.05 73.4 1.5 392.2 7.06 n.d. 53.9 9.16 31.16 298.2 9.6 29.10.05 73.4 0.98 115.6 7.3 2.69 83.4 14.27 45.01 386.2 8.6 31.10.05 73.4 1.75 65.3 7.42 3.07 78.9 23.53 52.46 458.1 8.7 1.11.05 73.4 0.35 207.4 7.06 1.69 87.9 24.63 58.8 499.3 8.5

105 2.11.05 73.4 0.4 214.2 7.15 3.44 82.9 22.88 57.2 473.3 8.3 16.11.05 260.8 0.8 25.0 7.03 82.5 21.39 49.8 408.2 8.2 18.11.05 108.0 0.4 31.80 n.d. 4.58 78.5 21.49 55.1 417.3 7.6 20.11.05 86.4 0.49 46.6 6.93 7.41 78.5 21.66 49.5 416.3 8.4 21.11.05 86.4 0.18 32.7 6.81 3.02 73.4 21.23 36.5 307.2 8.4 24.11.05 86.4 0.2 35.3 6.81 2.74 82.1 23.46 45.3 341.9 7.6 25.11.05 86.4 0.2 29.6 6.38 1.86 85.1 23.88 63.9 480.0 7.5 26.11.05 86.4 0.3 27.7 6.55 3.16 80.6 21.93 52.0 381.5 7.3 27.11.05 86.4 0.16 56.6 6.87 2.62 85.9 23.80 80.3 593.6 7.4 28.11.05 86.4 0.05 75.3 5.88 1.48 91.9 25.98 50.7 407.5 8.0 10.1.06 43.2 0.16 355.0 6.85 2.38 11.1.06 43.2 0.15 466.1 n.d. 1.45 85.1 23.61 53.8 463.0 8.6 16.1.06 64.8 0.18 704.1 6.81 1.58 84.0 22.82 62.8 506.6 8.1 17.1.06 43.2 0.22 674.5 6.94 1.88 84.8 24.19 65.6 472.8 7.2 18.1.06 60.5 0.19 667.9 7.43 1.56 85.1 23.78 60.6 448.6 7.4

Date Foamvol Celldensity PH YieldDW Org.frac Energy N C C:Nratio ume[L] [Mioml 1 Harvest (gd 1) tion (KJg 1) [mgg 1DW] [mgg 1DW] harvest] 19.1.06 64.8 0.2 901.4 7.35 2.31 84.7 24.48 56.6 432.6 7.6 20.1.06 64.8 0.1 954.8 6.96 1.15 86.9 25.12 72.9 538.6 7.4 22.1.06 64.8 0.18 849.6 5.48 1.77 87.8 24.96 75.1 534.7 7.1 23.1.06 64.8 0.11 772.3 7.92 0.98 86.7 24.8 65.3 493.5 7.6 24.1.06 64.8 0.31 683.5 5.66 2.43 85.7 24.12 67.8 482.7 7.1 25.1.06 64.8 0.18 760.0 n.d. 2.10 84.9 22.97 64.3 468.6 7.3 Tab. 4 Fatty acid profiles of Nannochloropsis spec. from batch cultures at stationary phase at different irradiances (100mols 1m 2,250mols 1m 2,400mols 1m 2) Fattyacid:posi nomenclature 100mols 1m2 250mols 1m 2 400mols 1m tionofdouble 2 bonds average ±SD average ±SD average ±SD ngFA/gPO ngFA/gPO ngFA/gPO 106 Calgae Calgae Calgae 14:0 Myristicacid 0.23 ±0.32 0.15 ±0.34 16:0 Palmiticacid 5.75 ±0.79 5.12 ±0.33 2.01 ±0.46 16:1 Palmitoleicacid 3.44 ±0.34 2.76 ±0.17 0.68 ±0.16 18:1(9)/(6) Oleicacid 2.96 ±0.40 1.71 ±0.09 0.93 ±0.20 18:1(11) Vaccenicacid 0.14 ±0.08 0.10 ±0.01 0.37 ±0.07 18:3(6,9,12) yLinolenicacid 0.03 ±0.04 0.09 ±0.00 18:3(9,12,15) aLinolenicacid 0.51 ±0.06 0.26 ±0.01 0.79 ±0.37

20:4(5,8,11,1) Arachidonic acid 1.12 ±0.18 1.16 ±0.06 0.22 ±0.04 (ARA) 20:5(5,8,11,14,17) Eicosapentaenoic 2.54 ±0.44 2.66 ±0.14 0.50 ±0.10 acid(EPA) Total 16.72 14.01 5.5

Chapter3

3.3.2 Specific growth rates and nutrient uptake rates of Nannochlorop- sis at different light intensities Thedutyofacontinuousphotobioreactorsystemin a marine recirculation systemistomaintaincultivationratesatconstantrateswithmaximumyield rates.Thereforeadequateflowrateaccordingtotheavailablenutrientcon centrationandhencespecificgrowthrateneedsto beadjusted:iftheflow rate is higher than the specific growth rate of the microalgae, washout of biomasswillsetinandmayresultinalowperformanceofthephotobioreac tor. Flow rates where washout happens are called “critical dilution rates” and weredeterminedinthisstudyatvariousnutrientconcentrationswithinthe photobioreactorbyadjustingdifferentflowratesduringthefourmonthex perimental period at different irradiations (100mol s 1m2, 250mol s 1m2 and400mols 1m2)inordertoobtaininformationaboutmaximumspecific growthrateswithinthistypeofphotobioreactor.

Dataarepresentedexemplaryfromthephotobioreactorwiththelowestirra diation(100mols 1m2,Fig.4,Tab.3).Batchculture(blackdots)wasoper ateduntilasufficientopticaldensitywasreached.DuringperiodA(Fig.5) flowrateof1.5Litreperhourwasadjustedatday8andresultedinarapid decreaseofbiomasswithin4days.Therefore,continuousmodewaschanged tobatchculturetoincreasecellnumbers.Atday21flowrateof1Litre/hour was adjusted (period B). For the initial cultivation days biomass remained constant,indicatingthatflowrateequalizedspecificgrowthrateofmicroal gae.Fromday23onwardsadecreaseofspecificgrowthrateswasobserved. Thisisduetoaslowbutconstant(untilday30)washoutofalgalbiomass. Anothercontinuouscultivationperiodwasstartedatday42(periodC)with a flow rate of 3.6 Litres per hour resulting in a rapid biomass decrease withinashorttimeperiod.Flowratewasadjustedto1.2Litres/hour(period D). At this flow rate biomass values in the photobioreactor remained con stant.Cultivationwasstoppedatday58duetoasystemfailure.Duringthat periodwaterparameters(dissolvednutrients,pHetc.,Tab.4)remainedcon stant.

107 Chapter3

InperiodsE,F,Gflowratesneededtobeadjustedtolowervalues,becauseof limitedalgaegrowth,becausenitratewaslimitedintherecirculationsystem (seeChapter5)(Tab.4,periodE,F,G).Thisresultedinlowergrowthratesof Nannochloropsis sp.

14 100 µmol s -1 m-2 batch 12 continuous

10

-1 8

6

4 cells Mio ml cells Mio

2

0 A B C D EFG

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

days Fig. 5 Celldensities of Nannochloropsis perml inthephotobioreactorilluminatedwith2fluorescent tubes (100 mol s 1m2). Batch cultures (black dots) were used to reach sufficient densities, before operation mode was changed to continuous production (white dots). Letters indicate adjusted flow rateswithintheperiodswithcontinuousproduction:A=1,5L/hour(dilutionrate0.03);B=1L/hour (dilution rate 0.02); C = 3.6L/hour (dilution rate 0.08); D = 1.2L/hour (dilution rate = 0.027); E = 0.6L/hour(dilutionrate0.027);F=0.9L/hour(dilutionrate=0.02);G=0.36L/hour(dilutionrate= 0.014)(forfurtherdetails,seealsoTab.4).

108 Chapter3

Tab. 4 Waterparametersduringcontinuousproductionof Nannochloropsis spec.inthe photobioreactorwithlowillumination(100mols 1m2)duringthe4monthexperimental time.A,B,C,D,E,F,Gareindicatingdifferenttimeintervalswithdifferentadjustedflow rates.D=dilutionrate/h Flow inflowconcentration outflowconcentration Period rate D pH tophotobioreactor fromphotobioreactor L/h

PO 4P NO 3N TAN NO 2N PO 4P NO 3N TAN NO 2N

A 1.5 0.03 7.44 25.2 60.5 n.d. n.d. 19.5 56.2 n.d. n.d. ±0.05 ±2.2 ±2.0 ±19.5 ±3.0 B 1.0 0.02 8.01 30.6 80.7 0.93 0.15 20.5 71.4 0.17 0.19 ±0.21 ±3.3 ±8.4 ±0.58 ±0.08 ±2.6 ±8.4 ±0.08 ±0.12 C 3.6 0.08 7.8 32.2 82.4 0.3 0.5 19.9 72.6 0.1 1.4 ±0.1 ±2.3 ±1.8 ±0.2 ±0.4 ±2.4 ±5.4 ±0.03 ±0.6 D 1.2 0.027 7.88 37.3 92.1 0.14 0.07 22.1 87.1 0.08 0.18 ±0.2 ±1.28 ±4.7 ±0.06 ±0.06 ±4.3 ±1.6 ±0.05 ±0.21 E 0.6 0.022 8.4 28.9 12.2 2.6 0.01 11.5 36.2 0.1 0.4 ±0.4 ±4.8 ±1.6 ±0.5 ±0.01 ±3.0 ±3.0 ±0.1 ±0.1 F 0.9 0.02 7.51 33.0 8.9 1.7 0.04 14.6 5.5 0.11 0.06 ±1.4 ±6.3 ±2.0 ±0.97 ±0.05 ±7.2 ±2.91 ±0.11 ±0.03 G 0.36 0.014 8.12 41.2 9.5 3.7 0.11 25.9 0.00 0.06 0.06 ±0.1 ±3.4 ±0.9 ±0.4 ±0.07 ±1.7 ±0.2 ±0.04 ±0.03 Photobioreactors with irradiations of 250mol s 1m2 and 400mol s 1m2 showedsimilarperformances,althoughwashoutratesdiffered.Fordetermi nation of specific growth rates, time intervals with constant cell densities within the photobioreactor at a certain flow rate were chosen. Specific growthrate()wasdeterminedfor1hourintervalsaccordingtoequation2. These values were plotted against the nutrient concentrations within the photobioreactoraccordingtoequations4and5. Fig.6showsMichaelisMentenkineticsdeterminedforeachphotobioreactor for nitrogen (sum of N0 3N, TAN, NO 2N). Kinetics for all three treatments turnedouttoberathersimilar,maximumspecificgrowthratesforallthree radiation intensities were approx. 0.024h 1. Best growth and nutrient re moval rates have been determined for the photobioreactor operated at 400mols 1 m2irradiationforshorttimeperiods.However,photobioreactor athighilluminationwasveryunstable,washoutofbiomassoccurredvery

109 Chapter3 often. Best longterm performance was observed for photobioreactor with 250mols 1m 2irradiation.

0,035 0,035 a 100 µmol s -1 m-2 b 250µmol s -1 m -2 0,030 0,030

0,025 0,025

0,020 0,020

0,015 0,015

specific growth 0,010 0,010 specific growth rate

0,005 0,005

0,000 0,000 0 20 40 60 80 100 0 20 40 60 80 100 -1 -1 N concentration in the photobioreactor in mg L N concentration in the photobioreactor mg L

0,035 c 400 µmol s -1 m-2 0,030

0,025

0,020

0,015

0,010 Specific growth rate 0,005

0,000 0 20 40 60 80 100

N concentration in photobioreactor mg L -1 Fig. 6 Growthof Nannochloropsis spec.incontinuousculturesofaphotobioreactorsystemincludedina marinerecirculationsystematdifferentnutrientconcentrationsinthephotobioreactoratdifferentirra diations(100mols 1m 2,250mols 1m 2,400mols1m 2). Ksvaluesforallthreekineticsindicatethatnutrient limitation is normally notoccurringwithinarecirculationsystem,assystemwaterconcentrations of nitrogen and phosphorus are normally above limiting values. However, verylownitrogenconcentrationsmayoccur,ifanenhanced denitrification occurswithinarecirculationsystem,ashappenedintheexperimentaltrial withinthisstudywasaccomplished(MAREII,seeChapter5).Nitrogencon centrationstendedtowardzero,resultinginalowergrowthperformanceof themicroalgae.

110

Tab. 5 Growthperformanceof Nannochloropsis spec.incontinuousculturesinphotobioreactorsincludedinamarinerecirculationsystematdifferentirradian ces(100mols 1m 2,250mols 1 m2,400mols 1m2) =specificgrowthrate, max =maximumgrowthrate,K s =halfsaturationconstant(MichaelisMentenkinetic),SE=StandardError;SD=StandardDeviation a=meanofexperimentaldatafromcontinuousculture(n=35),b=parametersfromregressionanalysis(SigmaPlot) irradiance 100Wm 2 250Wm 2 400Wm 2 1 1 1 1 1 1 h max h Ks h max h Ks h max h Ks ±SD ±SE ±SE ±SD ±SE ±SE ±SD ±SE ±SE continuous 0.020 0.024 0.41 0.020± 0.024± 2.01 0.021± 0.024± 0.53± ±0.008 a ±0.001 b ±0.17 b 0.009 a 0.001b ±0.59 b 0.008 a 0.001 b 0.15 b

111

Tab. 6 Calculationofnutrientuptake(r)perhourperlitreof Nannochloropsis spec.incontinuousculturesinphotobioreactorsincludedinamarinerecirculation systematdifferentirradiances(100mols 1m2,250mmols 1m2,400mols 1m2).r=uptakerateperhour,r max =maximumgrowthrate;SD=StandardDevia tion a=meanofexperimentaldatafromcontinuousculture(n=50);b=maximumobservedvalue(n=1); irradiance 100Wm 2 250Wm 2 400Wm 2

r r max r rmax r rmax r rmax r rmax r rmax

PO 4P PO 4P NO 3N NO 3N PO 4P PO 4P NO 3N NO 3N PO 4P PO 4P NO 3N NO 3N mgL 1h1 mgL 1h 1 mgL 1h 1 mgL 1 h1 mgL 1h 1 mgL 1h 1 mgL 1h 1 mgL 1h 1 mgL 1h 1 mgL 1h 1 mgL 1h 1 mgL 1h 1 ±SD ±SD ±SD ±SD ±SD ±SD continuous 0.190 0.41 b 0.129 0.29 b 0.219 0.52 b 0.135 0.48 b 0.294 0.59 b 0.186 0.51 b ±0.11 a ±0.09 a ±0.16 a ±0.14 a ±0.15 a ±0.15 a

Chapter3 3.4 Discussion 3.4.1 Applicability of the photobioreactor design Inthisstudy, Nannochloropsis sp. was cultivatedforthefirsttimebasedon dissolved nutrients from a marine recirculation system. The conceptional design of the photobioreactor system was feasible concerning the pretreat ment of recirculation water for microalgae cultivation and the harvesting methodofmicroalgae.Forbothprocesses,waterpretreatmentandharvest ing, the foam fractionation technique was applied. Foam fractionation was also applied in previous studies for harvesting of algal cells (Csordas and Wang,2004)andturnedouttobeaveryeffectiveharvestingmethod.Very dense algal suspensions were harvested at minimum volumes, the outflow waterfromthefoamfractionatorswasclear.Thus,foamfractionationproved to be a very effective method for microalgae removal. However, there are othertechniquestobeconsideredwithinanintegratedsystem.Filtratingor ganisms like bivalves can use microalgae directly, and might be an addi tionaltrophiclevel(Hussenot et al., 1998,PfeifferandRusch,2000). There are several types of bioreactors, most of them reported to have very highyieldrates.Thesereactorsareoftenoperatedatoptimumlightintensi ties(Richmond et al. ,2003;Pulz,2001).Especially Nannochloropsis waseffi ciently cultivated in flat plate glass reactors (ChengWu et al. , 2001). Re portedcelldensitiesforpolyethylenebagsortransparentfibreglasscolumns varybetween25150x10 6cellsperml 1(0.1to0.6gashfreedrymassL 1), inflatplatereactorscelldensitycanreach5to6x10 8cellsml 1(12gdrycell massm 2day 1or650mgEPAm 2day 1 (ChengWu et al. ,2001). Thesevaluescouldnotbeachievedduringthisstudy,inaverage0.94gdry cellmassperm 2anddaycouldbeharvested.Thisisconsideredtobemainly causedbythelargerdiameterofthephotobioreactorcolumns,resultingina comparablylongdistanceforthelighttoreachallalgalcells.Althoughthe culturehasbeenagitatedbyairbubbles,selfshadingofthealgaeinduced photolimitation. In hightech bioreactors the equal supply of all algal cells withlighthastobeguaranteedtoensuremaximumgrowthratesofthemi

112 Chapter3 croalgae (e.g. 1cm in flat plate reactors, Richmond et al. , 2003). However, cultivation in long tubular systems with a low diameter has also already been reported to show acceptable growth rates (Pulz, 1994; Borowitzka, 1996).Thesesystemshavehighspatialrequirements,whichareoftenlim itedinaquaculturesystems.Inthisstudy,itwasnotpossibletoinstallsuch photobioreactorsystemsduetospatiallimitationsofthelaboratory. A comparably large diameter of 20cm of the photobioreactor column was choseninordertoincreasetheculturevolume.Henceatotalvolumeof50 Litrescouldbeplacedinaroomprovidinganareaofonly0.16m².There duction of the optical path (equal supply with light for all algal cells) was compensated by agitating of the culture. Air bubbles were constantly di rectedthroughthetanktoensureanequallightsupplyofallalgalcells.This “bubblecolumnsystem”hasalsobeenappliedduringcultivationofmicroal gae and was considered to be suitable (Eriksen et al. , 1998). However, a strongagitationcancausecelldamageandhencetheintensityofthebub blinghastobecarefullyadjusted. The culture has to be monitored cautiously. During cell division Nan- nochloropsis sp.newcellwallsaregeneratedandthe“old”multilayeredpar entcellwallsarereleased.Thereleaseofthisparentcellwallcoincideswith thereleaseofautoinhibitorysubstances(Rodolfi et al. ,2003).Whencellden sitiesreachacriticalvalue,furthergrowthcanbeinhibitedbyautoinhibiting substancesreleasedbythealgae.Thus,bothcellwallremainsandautoin hibitorsmaynegativelyaffectculturegrowth.Additionally,biofoulingatthe walls of the photobioreactor could be observed and may be another factor influencing continuous growth once maximum growth rates were reached. Becauseofthisbiofoulingprocess,photobioreactorshadtobecleanedevery 2to3weeks. 3.4.2 Nutritional value of microalgae

113 Chapter3

Theharvestedalgaehadahighenergycontentofup to 20kJ g 1 DW.This comparablyhighnutritionalvaluemakesthealgaeasuitablefeedforother feed organisms like Brachionus or Copepods (Støttrup & Norsker, 1997). Nannochloropsis species are known for the high content of highly unsatu ratedfattyacids(HUFA):20:4n6haveaproportionof1.93.9%(byweightof totalfattyacids)and20:5n3contents(12.1%17.8%asweightpercentageof totalfattyacids)atatotallipidcontentof10.316.1%(dryweight,Mourente et al., 1990).Similarvalueshavebeenobservedinthecultivatedalgaedur ingthisstudy:therelativeproportionofarachidonicacid(ARA,20:4n4)of totalfattyacidamountwereat6.7%(100mols 1m 2),8.27%(250mols 1 m2)and4.0%oftotalfattyacidamount(400mols 1m 2),respectively.Simi lar values were determined for eicosapentaenoic acid (EPA, 20:5 n5) at 15.2%oftotalfattyacidamount(100mols 1m 2),18.9%(250mols 1m 2) and9.1%oftotalfattyacidamount(400mols 1m 2),respectively.Thenu tritionalvalueofthecultivatedmicroalgaewasofspecialinterestbecauseof the applicability for successful fish larvae rearing (Støttrup and McEvoy, 2002). ThedecreasingcontentofHUFAwithincreasinglightintensitieswasalready reportedbefore(Fabregas et al. ,2003).Illuminationexceedinglightsatura tion (>220mol s 1 m 2) induces a dramatically decrease in the content of highly unsaturated fatty acids in the microalgal cells. Temperature also is reportedtoinfluencefattyacidsynthesisin Nannochloropsis :withincreasing temperaturesupto25°CanincreasingtrendinthecontentofHUFAscanbe shown,butthenarapiddecreaseoccurswhentemperaturesof25°Careex ceeded(James et al. ,1989).Alsosalinityhasaninfluenceonthecontentof HUFAs.Optimumsalinitiesfor Nannochloropsis oculata werereportedtobe 2030ppt(RenaudandParry,1994).Thesesalinitieswerethereforechosen for cultivation of Nannochloropsis sp. in the photobioreactors during this study.

114 Chapter3

3.4.3 Growth performance of Nannochloropsis spec. in continuous cul- tures Thespecificgrowthratesdeterminedfromcontinuousculturescanonlybe regardedasapproximatevaluescharacterizingasmalltimeintervalofsev eralhours.Themaximumspecificgrowthrateof0.025h 1canbereachedat allirradiations,iftheothercultivationconditionsaresuitable(e.g.nutrient supply, cell density, light intensity). But for long term cultivation periods, thesevaluesmight beoverestimated,becausedensity in the photobioreac torswasalwaysdecreasingafteracertaintimeprobably partly due to the releaseofautoinhibitorysubstances. Anotherexplanationistheabsenceofanautomatic regulation of flow rate and illumination: it was not possible to reach a real “steady state” in the photobioreactorsduetovaryingnutrientconcentrationsoftheinflowwater comingfromtherecirculationsystem.Generally,biomassandnutrientcon centrations tend towards the steady state conditions with an oscillating process (Pirt, 1975). However, changes in cultivation conditions, especially nutrientconcentrations,maydisturbthisprocess.Consideringconstantcul tivationofmicroalgaeathighbiomasslevels,amayresultinan outwashofbiomass.Steadystateconditionsareunlikelytodevelopinare circulationsystem,whereseveralconditionscanchangewithinaveryshort time(e.g.diurnalvariationofammonia,increasing temperatures (optimum 1520°C,James et al. ,1989)etc.).Theseconditionchangesarefollowedbya decreasedgrowthrateduetoa lag phaseneededbythealgaetoadapttothe newcondition.This lag phaseleadstoanwashoutofbiomassinacontinu ousculturewithaconstantflow,ifflowrateisconstantinturnresultingin areducedcelldensityinthephotobioreactor.This cascade effect will con tinue:iftheirradiationisnotsuitableforthe“new”reducedcelldensityand isnotadjusted,growthratewillcontinuouslydecrease(duetolightlimita tionorphotoinhibition,Richmond et al. 2003).Biomasswillthenbewashed outevenmorerapidly.Thisprocessisconsideredto be the reason for the unstableperformanceofthephotobioreactorathigh irradiations (400mol) duringlongtermexperiments.

115 Chapter3

Algae growth in the photobioreactor at the lowest irradiation (100mols 1m 2)wasaffectedbylightlimitation,butthisphotobioreactor operatedratherstableinlongtermexperimentscomparedtothebioreactors being treated with elevated radiation intensities. At this radiation intensity thealgalgrowthratemayincreaseatareducedvelocityduetotheloweril lumination. The photobioreactor at 250mol s 1 m 2 radiation intensity showed best longterm performance during the experiment, because light intensitiesfittedbesttothevaryingcultivationconditions(temperature,nu trientavailability),althoughbiomasswashoutalsooccurred. These results fit to a laboratory study where light saturation for Nan- nochloropsis wasachievedat220mols 1m 2withnosignificantincreasein steadystatecelldensityordryweightathigherirradiationsup to480mols 1m 2(Fabregas et al. ,2004).Similarresultshavebeenfound inthisstudy,althoughnutrientuptakeratescanreachmuchhighervalues atirradiationof400mols 1m2.

In this study, growth of Nannochloropsis sp. was limited by nitrogen and couldbedescribedbyaMichaelisMentenkineticinrelationtototalnitrogen concentration, because in the photobioreactors different chemical forms of nitrogen(nitrate,ammoniumandnitrite)weresuppliedto Nannochloropsis. It could not be proved that Nannochloropsis prefers one of these form, al thoughaccordingtothedatahintsaregivenfornitrate preference. In na ture,summerandautumnphytoplanktonbloomsexhibitstypicalMichelis

MentenuptakekineticsforNO 3,NH 4+andurea,althoughalsolinearuptake ratesmayoccurwithincreasingnitrogenconcentrationsduetoeutrophica tion(HornerRosser,2004).Similartotheconditionsinthepresentedphoto bioreactor, growth rates and nutrient uptake rates in natural systems are notinsteadystatebutwillfluctuateaccordingtolargeandsmallscalespa tial and temporal variations in nutrient availability. Certain species (e.g. Clamydomonas )areabletomaximisegrowththroughshorttermrapidutili sation.Thisisconsideredtobeamechanismforcompetitive success in a mixedpopulation(Rhee et al., 1988).Nannochloropsis wasfoundtogrowat

116 Chapter3 similargrowthratesatnitrate,ammoniaandurea(Lourenco et al., 2002), indicatinganacclimationofmicroalgaetotherespective N sources (Levas seur et al. ,1993).Ingeneral,ammoniumisthepreferredchemical form of nitrogenandisreadilytakenupandassimilatedby phytoplankton (Collos andSlawyk,1981).Incontrasttonitrate,microalgaedonotneedtoreduce ammoniapriortoassimilation(Syrett,1981).However,somestudiesindicate thatmicroalgaegrowthcanbenegativelyinfluencedathighammoniacon centrationsduetotoxificationeffects(e.g.inmediausedinaquacultureor nutrientloadedeffluents).Lourenco et al. (2002)showedthatgrowthof Nan- nochloropsis oculata on urea resulted in a lower final biomassyield. How ever,supplyofammoniaandureawasverylowinthephotobioreactorsys tem,sotoxificationeffectsareconsideredtobeunrealistic.

Ithasbeenshowninfewstudiesthatdifferentnitrogensourcesmayresult ineffectsongrowthandbiochemicalcomposition(contentofprotein,lipids andcarbohydrates,fattyacidprofiles)(Lourencoetal.,2002;Fidalgo et al., 1995). High nitrogen concentrations in the culture medium stimulates the accumulationofproteinbymicroalgae(Fabregas et al. ,1989;Fidalgo et al. , 1995).Thismightbeonereasonofthehighenergycontentofthemicroal gae.

Results from this study showed that uptake rates for phosphorus were higherthanfornitrate.ThiswasunexpectedwithregardstotheRedfieldra tio.However,ithasbeenshownthatinnutrientrichwaterphosphoruscan berapidlytakenup,resultinginadepletionofexternalphosphorusconcen trationinthemedium.Phosphoruscanbestoredinsidethecells(Passarge et al. ,2006).Also,highintracellularconcentrationsofinorganicnitrogencan be built up if the nitrogen is available in large amounts in the medium (Lourenqo et al., 1998),butnitrogenwaslimitedattheendoftheexperimen talperiod(seeChapter5).

117 Chapter3

3.4.4 Filter efficiency of microalgae photobioreactors In contrast to the macroalgae filter, microalgae are able to remove nitrate fromthewaterduetolongerretentiontimesofnitrate within the culture. Accordingtothespecificgrowthdilutionratesinthephotobioreactorsmay notexceed0.025h 1.Forthepresentedphotobioreactorsystemwithatotal volumeof150Litrestheflowrateperhourwasappr.3.75Litres.Thisflow rateisfartoolowtobeaneffectivebiofilterfortheremovaloftoxicammonia andnitrite.However,dailyremovalratesofnitrateandphosphatehavebeen determinedat0.87gPO 4Pd1and0.57gNO 3Nd1,respectively,supporting theimportancetocontrolnitrateandphosphateconcentrationswithinare circulationsystem.Thus,simultaneousintegration of microalgae photobio reactorsandmacroalgaefiltersintoarecirculationsystemisrecommended to achieve an optimal removal of all dissolved nutrients derived from fish cultivation(seealsoMAREIIexperiment,chapter5). 3.5 Conclusion Thecontinuousculturemodeturnedoutnottobesuitableforalongterm cultivationofmicroalgaewithinarecirculationsystem,ifflowrateandlight intensitiesarenotautomaticallyadjusted.Itistechnicallypossibletoinstall anonlineflowthroughphotometerandacomputercontrolled light regula tionintoarecirculationsystem.However,theseinstallations are expensive and may exceed investment costs for aquaculture systems. Better results maybeachievedwithsemicontinuousmicroalgaecultures,whereacertain percentageofthetotalvolumeisreplacedeveryday.

3.6 Acknowledgements ThisstudywasfundedbytheEU(InterregIIIa).WethankLineChristensen andJensJorgenLonsmanIversenfromtheSyddanskUniversitetOdensefor supporting with knowledge about bubble column photobioreactors. We thank Kerstin Nachtigall and Peter Fritsche (IFMGEOMAR) for analysis of POC,PONandPOPandPatrickFink(MaxPlanckInstitutePlön)fordeter miningfattyacidprofiles.

118 Chapter3 3.7 References BeckerE.W.(ed)(1994).Microalgae:biotechnology and microbiology. Cam bridgeUniversityPress.287pp. Benemann J.R. (1992). Microalgae aquaculture feeds. Journal of Applied Phycology4:233245. BorowitzkaM.A.(1996).Closedalgalphotobioreactors:designconsiderations forlargescalesystems.JournalofMarineBiotechnology4,185191. BorowitzkaM.A.(1999).Commercialproductionofmicroalgae:ponds,tanks, tubesandfermenters.JournalofBiotechnology70:313321. Brown M.R., Jeffrey S.W., and Garland C.D. (1989). Nutritional aspects of microalgaeusedinmariculture:aliteraturereview.CSIROMarineLaborato riesReport205.44pp. Brown M.R., Jeffrey S.W., Volkman J.K., and Dunstan G.A. (1997). Nutri tionalpropertiesofmicroalgaeformariculture.Aquaculture151:315331. ChengWu Z., Zmora O., Kopel R., Richmond A. (2001). An industrialsize flatplateglassreactorformassproductionof Nannochloropsis sp. (Eustig matophyceae).Aquaculture195:3549. CsordasA.andWangJ.K.(2004).Anintegratedphotobioreactor and foam fractionation unit for the growth and harvest of Chaetoceros spp. in open systems.AquaculturalEngineering30:1530. CollosY.andSlawykG.(1980).Uptakeandassimilation by marine phyto plankton. In: FalkowskiP.G.Primaryproductivityinthesea.PlenumPress, NewYork.Pp.195211. Eriksen N.T., Poulsen B.R., and Lønsmann Iversen J.J. (1998). Dual sparging laboratoryscale photobioreactor for continuous production of mi croalgae.JournalofAppliedPhycology10:377328. FabregasJ.,AbaldeJ.,andHerreroC.(1989).Biochemicalcompositionand growthofthemarinemicroalgae Dunaliella tertiolecta (Butcher)withdifferent ammonium nitrogen concentrations as chloride, sulphate, nitrate and car bonate.Aquaculture83:289304. FabregasJ.,MasedaA.,DomínguezA,andOteroA.(2004).Thecellcompo sition of Nannochloropsis sp. Changes under different irradiances in semi continuous culture. World Journal of Microbiology and Biotechnology 20: 3135.

119 Chapter3

FidalgoJ.P.,CidA.,AbaldeJ.,andHerreroC.(1995).Cultureofthemarine diatom Phaeodactylum tricornutum with different nitrogen sources: growth, nutrient conversion and biochemical composition. Cahiers de Biologie Ma rine36:165173. Fink,P.(2006).Foodqualityandfoodchoiceinfreshwatergastropods:Field andlaboratoryinvestigationsonakeycomponentoflittoralfoodwebs.Ber lin,Germany,LogosVerlag,. Guillard,R.R.L.(1975).Cultureofphytoplanktonforfeedingmarineinverte brates.Pp2660. In: Smith,W.L.andChanley,M.H.(eds.)CultureofMarine InvertebrateAnimals.PlenumPress,NewYork,USA. Horner Rosser J. (2004). Phytoplankton Ecology in the Upper Swan River Estuary,WesternAustralia:withSpecialReference to Nitrogen uptake and Microheterotroph . PhD thesis. Curtin University of Technology. 265pp. HussenotJ.M.E.,LefebvreS.,andBrossardN.(1998).Openairtreatmentof wastewater from landbased marine fish farms in extensive and intensive systems: current technology and future perspectives. Aquating Living Re sources11:297304. HussenotJ.M.E.(2003).Emergingeffluentmanagementstrategiesinmarine fishculturefarmslocatedinEuropeancoastalwetlands. Aquaculture 226: 113128. JamesC.M.,AlHintyS.,andSalmanA.E.(1989).Growthandω3fattyacid and amino acid composition of microalgae under different temperature re gimes.Aquaculture77:337351. LevasseurM.,ThompsonP.A.,andHarrisonP.J.(1993).Physiologicalaccli mation of marine phytoplankton to different nitrogen sources. Journal of Phycology29:587595. Lourence S.O., Barbarino E., Lanfer Marquez U.M., and Adaire E. (1998). Distributionofintracellularnitrogeninmarinemicroalgae:basisforthecal culationofspecificnitrogentoproteinconversionfactors.JournalofPhycol ogy34:798811. Lourenco S.O., Barbarino E., ManciniFilho J., Schinke K.P., and Aidar E. (2002).Effectsofdifferentnitrogensourcesonthegrowthandbiochemical profileof10marinemicroalgaeinbatchculture:Anevaluationforaquacul ture.Phycologica41:158168. MossS.M.(1994).Growthrates,nucleidacidconcentrations,andRNA/DNA ratiosofjuvenilewhiteshrimp, Penaeus vannamei Boone,feddifferentalgal diets.JournalofExperimentalMarineBiologyandEcology182:193204.

120 Chapter3

MourenteG.,LubiánL.M.,andOdriozolaJ.M.(1990).Totalfattyacidcom position as a taxonomic index of some marine microalgae used as food in marineaquaculture.Hydrobiologica203:147154. PassargeJ.,HolS.,EscherM.,andHuismanJ.(2006).Competitionfonutri ents and light: stable coexistence, alternative stable states, or competitive exclusion?EcologicalMonographs76:5772. PfeifferT.J.andRuschK.A.(2000).Anintegratedsystemformicroalgaland nurseryseedclamculture.AquaculturalEngineering24:1531. PintoC.S.C.,SouzaSantosL.,and SantosP.J.P.(2001). Development and population dynamics of Tisbe biminiensis (Copepoda: Harpacticoida) reared ondifferentdiets.Aquaculture198:253267. PirtS.J.(1975).Principlesofmicrobeandcellcultivations.BlackwellScien tificpublications.284pp. PulzO.(1994).Openairandsemiclosedcultivation systems for the mass cultivationofmicroalgae. In: PhangS.M.,LeeK.,BorowitzkaM.A.,Whitton B.(eds).AlgalbiotechnologyintheAsiaPacificRegion.InstituteofAdvanced Studies,UniversityofMalaya,KualaLumpur,pp.13117. Pulz O. (2001). Photobioreactors: production systems for phototrophic mi croorganisms.AppliedMicrobiologyandBiotechnology57:287293. RheeG.Y.,GothamI.J.andChisolmS.W.(1981).Ueofcyclostatcultureto studyphytoplanktonecology. In: CalcottP.(ed) Continuouscultureofcells. CRCPress,Florida.159186. RenaudS.M.andParryD.L.(1994).Microalgaeforuseintropicalaquacul ture II: Effect of salinity on growth, gross chemical composition and fatty acidcompositionofthreespeciesofmarinemicroalgae. Journal of Applied Phycology6:347356. RenaudS.M.,LuongVanThinh,ParryD.L.(1999).Thegrosschemicalcom positionandfattyacidcompositionof18speciesof tropical Australian mi croalgaeforpossibleuseinmariculture.Aquaculture170:147159. RichmondA.,ChengWuZ.,andZarmiY.(2003).Efficientuseofstronglight for high photosynthetic productivity: interrelationships between the optical path,theoptimalpopulationdensityancellgrowthinhibition.Biomolecular engineering20:229236. RochaJ.M.S.,GarciaJ.E.C.,andHenriquesM.H.F.(2003).Growthaspects ofthemarinemicroalgae Nannochlorpsis gaditana .BiomolecularEngineering 20:237242. Rodolfi L., Zitteli G.C., Barsanti L., Rosati G., and Tredici M.R. (2003). Growthmediumrecyclingin Nannochloropsis sp.masscultivation.Biomole kularEngineering20:243248.

121 Chapter3

Schneider O., Sereti V., Eding E.H., and Verreth J.A.J. (2005). Analysis of nutrientflowsinintegratedaquaculturesystems.Aquacultural engineering 32:379401. StøttrupJ.G.andNorskerN.H.(1997).Productionanduseofcopepodsin marinefishlarviculture.Aquaculture155:231247. StøttrupJ.G.andMcEvoyL.A.(eds.)(2002).Livefeeds in marine aquacul ture.Blackwellpublishing,336pp. Syrett P.J. (1981). Nitrogen metabolism of microalgae. In: Platt T. (ed). Physiologicalbasesofphytoplanktonecology.CanadianBulletinofFisheries andAquaticSciences210:182210. TandlerA.,MozesN.,andUckoM.(2003).Theassimilationofdissolvedfish waste by microalgae. Annual report 2003 of the EUproject ZAFIRA (Zero discharge Aquaculture by Farming in Integrated Recirculation Systems in Asia),http://zafira.wau.nl:4269. Volkman J.K., Dunstan G.A., Barrett S.M., Nichols P.D., and Jeffrey S.W. (1992). Essential polyunsaturated fatty acids of microalgae used in feed stocks in aquaculture. In: Proceedings in Aquaculture Nutrition Workshop, edited by AllanG.L.andDallW.,SalamanderBay,1517April1991.NSW Fisheries,BrackishWaterFishCultureResearchStation,SalamanderBay, Australia,pp.180186. WallerU.,BischoffA.A.,OrellanaJ.,SanderM.,andWeckerB.(2003).An advancedtechnologyforclearwateraquaculturerecirculationsystems:Re sults from a pilot production of Sea bass and hints towards "Zero Dis charge".EuropeanAquacultureSocietySpecialPublications33:356357. WikforsG.H.andOhnoM.(2001).Impactofalgalresearchinaquaculture. JournalofPhycology37:968974. VonElertE.andStampflP.(2000).Foodqualityfor Eudiaptomus gracilis : theimportanceofparticularhighlyunsaturatedfattyacids.FreshwaterBiol ogy45:189200.

122 Chapter 4 Ozonationandfoamfractionationusedforthere movalofbacteriaandparticlesinamarinerecir culationsystemformicroalgaecultivation KubeN.andRosenthalH.

123 Chapter4 Ozonationandfoamfractionationusedforthere movalofbacteriaandparticlesinamarinerecircu lationsystemformicroalgaecultivation KubeN.andRosenthalH. Abstract Theuseofozoneincombinationwithfoamfractionationwastestedforits effectivenessindisinfectinghighlyloadedwastewaterinabypassofama rinerecirculationsystemusedformicroalgaecultivation.Waterwastreated withozoneatdifferentlevelsasmeasuredindirectlyviadifferentredoxpo tentials(400mV,500mV,600mV).Theredoxlevelswerealsoappliedatdif ferent retention times of the water in a foam fractionator (5min, 10min, 15min).Abroadspectrumofwaterqualityandmicrobialdataforinflowand outflowsampleswasrecorded:viableandtotalnumbersofbacteria,qualita tiveanalysisoflivinganddeadcells(Live/Dead®staining),sizedistribution ofparticlesandamountofattachedlivingbacteria;pH,freeozonecontent anddissolvednutrientsofthewater. Theresultsshowedclearlythatozonekillsfreefloatingbacteriaundergiven operationalconditions.However,almostallsurvivingbacteriawereattached tomostlyorganicparticles,wheretheyseemtobesufficientlyprotectedfrom ozoneattackasrevealedbythespecificstainingmethod.Asanticipatedby theoperationalcriteriaofthefoamseparationandcontactingtower,much lessbacteriaandfineparticlesweredetectedintheoutflowsamples.Itcan be concluded the foam fractionation process contributes also substantially themechanicalremovaloffinesandaggregatedbacteriacells.

124 Chapter4 4.1 Introduction Forseveraldecades,interestinaquaticapplicationsofozoneotherthanfor drinking water sterilization (Legeron, 1984) has increased considerably (Rosenthal, 1981, Rosenthal and Wilson, 1987). Ozonation is now widely usedandwellestablishedinmunicipalwastewater treatment (Hoigne and Bader,1980),inprocesswaterpolishing(RichardandBrener,1984),insoft drinkmanufacturing(SchneiderandRump,1983),inpulpandpaperwaste watertreatment(Rice,1984),inswimmingpoolwatertreatment(Eichelsdo erfer and Jandik, 1985), and many other industrial applications including fish processing to extend the shelflife for fresh fish (Kötters et al. , 1997; Crappo et al. ,2004).Itsapplicationinaquaculturerecirculationsystemhas alsobeenpracticedformorethanthreedecades(Rosenthal,1981),mostlyin experimentalfishculturesystemsbutalsoinagrowingnumberofcommer cial production units, particularly in hatcheries. (Rosenthal and Wilson, 1987, Buchan et al. , 2004; Sander, 1998; Summerfelt et al. , 2002; Fraser, 2004). This application gains importance (Brazil et al. , 1998; Waller et al. , 2002; Chen et al. ,2003)andhasrecentlybeenincreasinglystudiedinChina(Gong et al. ,2002;Liu et al. 2003,2004)whileapplyingmethodologicalprinciples previouslydevelopedbyRosenthal(1981). Whiletheargumentforitsusewasoftentodisinfectthewater,someofthe studiesclearlyidentifiedthebenefitsofozoneuseincombinationwithfoam fractionationandnitriteoxidation.(Rosenthal,1981;RosenthalandWilson, 1987;Summerfelt,2001).Theneedfordisinfectionoreven„sterilisation“(as indrinkingwaterapplications)isnotevendesiredinaquaculturesystemsas theserecyclingsystemsworkwithlivinganimals,andcanbeconsideredthe asa„commercialecosystem“inwhichabalancedandfloraoforgan ismsthrives(Rosenthal,1981;RosenthalandBlack,1993).Ozonationhas, therefore,mostlybeencombinedwithfoamfractionationtoenhancethere movalofparticles.

125 Chapter4

Itshouldbenotedthattheterm„ozone“isusedhereinagenericsenseas ozonereactswithseveralseawatercomponentstoformsecondaryoxidants within seconds. Among ozone specialists the term TRO (total residual oxi dants)iscommonlyusedtoreflectthisfactwhilealsocircumventingthedif ficultytoexactlydeterminetheozoneconcentration,particularlyinseawater (Buchan et al., 2005),wheresomebromideradicalsandhypobromousacid is formed (Tango and Gagnon, 2003). Further, the output of various mix turesofoxygenradicalsinanyelectricaldischargeozonizerdependsonsys tem configuration and operational procedures (high frequency or low fre quencyozonizer).Itisalsoforthisreasonthattheredoxpotentialhasbeen chosenasaconvenientmeasuretocharacterizetotalradicaloxidant(TRO) activity.Therefore,thecommonlanguageusageof„ozone“ in this paper is meanttorefertoTROs. Although ozone cannot be considered a coagulant in the classical sense, manystudieshaveevaluateditsuseasacoagulantaid.Dissolvedorganic matterhasbeenidentifiedasplayingaprimaryroleinparticlestabilization andhence,ozonation–throughelectrostaticloadingandpolarizationofthe hydrophobichydrophilicendsfostersettlingcharacteristicsofsuspended solids while also assisting in forming aggregates that attach to waterair interfaces, producing a stable foam which can be removed by counter currentstripping. Depending on the organic and microbial load, there will certainly also be some reduction of bacterial counts, however, there have been only a few quantifying studies on the fate of bacteria in ozone contacting chambers (WuhrmannandMeyrath, 1955),particularlywithregardtovirusinactiva tion(AkeyandWalton,1984;Liu et al. ,2004),however,thereisverylittle information on the bactericidal effects of ozone application in conjunction withaquaculturerecyclingsystemsusingfoamfractionators.Certainly,the removalofunwantedfineparticleswhichnotonlyconsumeoxygen,butalso arerepeatedlyincontactwithrespiratorytissuesoftheculturedspeciesand –aboveall–potentiallyactas„carriers“forfacultativepathogens,isdesir ableandalsoreducessimultaneouslythebacterialload.

126 Chapter4

Theobjectivesofthepresentstudywere(a)toidentifythe„disinfectionca pacity“ofafoamfractionationsystem usingozone at three different levels andthreedifferentretention(contact)timesinthecontactchamberand(b) to investigate whether there are differences in the survival of freefloating bacteriaincontrasttoparticleattachedmicrobialspecies.

4.2 Material and Methods 4.2.1 System configuration Theexaminedfoamfractionatorwasasmallunitoperated in an extra by pass(volume8.4L,Fig.1).Thepurposewasmainlytoremovefineparticles whileatthesametimeaimingtoactasadisinfectionunit.Theeffluentof this foam fractionator was supplied to a novel photobioreactor system, in whichmicroalgaeareproducedfromdissolvednutrientsderivedfromama rinerecirculationsystem.Thesystemwasstockedwith Sparus aurata (Kube et al., 2006ainprep.,Chapter3,Fig.1).Consideringthesystemconfigura tionthefoamfractionatoractedaspretreatmentoffisheffluentsinorderto removesuspendedparticlesandbacteriaenteringthemicroalgaeproduction unitwhichconsistedofthreeacryliccolumns(50Leach).Fordetailedinfor mationaboutthemarinerecirculationsystemandthemicroalgaeproduction unitseeChapters3and5,respectively. Waterfromthemainrecirculationsystemwascontinuouslypumped(Eheim pumptype1260)tofeedthefoamfractionator.Theflowratewasmanually adjustedbyaballvalveandflowcontrolunit(seeTable1).Ozonecontaining air was supplied to the foam fractionator at a rate of 200L/min (estimate fromproducertable).Thefeedlinecomesfromthecompressed air supply, whichalsosupportstheaerationoftheentirerecirculationsystem,including water storage column. The ozone generator was a product of the Sander Company(UetzeEltze,Germany;modelS500,outputcharacters:ozonepro ductionat500mgh 1,airflowrate501000Lh 1).Airdiffusersmadeoflime woodwereused.

127 Chapter4

Redoxpotentialwasdeterminedintheoutletofthefoamfractionatorbya electrodeandregulatedbyacontrolmodule(modelKM2000,Sensortechnik Meinsberg GmbH, ZiegraKnobelsdorf, Germany) (Fig. 1, C). Foam conden satewascollectedinaseparatecontainer.Wasteairfromfoamfractionation and waste container were treated with activated carbon. Pretreated water wastransferredtoastoragecolumn(Fig.1,E)withaconstantaerationfor outgassingresidualozoneandtostabilizethepH.Sparewaterfromthefoam fractionatorwasdischargedviaanoverflowintothemainwatercircle(Fig.1, F). 4.2.2 Sampling methods Samplingwasdoneatrandomlychosenproductiondays during the entire investigationalperiod(April2004toMarch2006).Different retention times wereadjustedbyaflowmeteratlevelsaccordingtoTable1thedaybefore thesamplingstarted.Thiswastoensurethatredox potential reached the desiredlevel.However,weareawarethatacertainflowrateinagiventime doesnotnecessarilyresultbydefinitionintrueretention times because of impropermixingandturbulences.However,forthepurposeofthisstudythe approximatetimeisconsideredtobeadequate. Tab. 1 Overviewabouttheadjustedflowrates fortherequiredretentiontimewithinthefoam fractionator D Retentiontime Flowrate/h 15min 32Litres C 10min 48Litres A B 5min 96Litres Fig. 1 Foamfractionatorforthepretreatmentof F systemwater. A=Inlet,B=Outflow,C=redoxpotentialprobe, E D=Foamcollector,E=waterstoragecolumnwith aeration,F=overflowbacktothemainsystem

128 A Chapter4

Samplesweretakenattheinlet(Fig.3,A)ofthefoamfractionatorandatthe outflow(B)afterthecalculatedretentiontime.

Chemical analysis of water samples Avolumeof20mlwasusedtodeterminepH(modelmulti340i,WTW,Ger many).Itwasfrozenat20°Cforlateranalysisofdissolvednutrientsbyan Autoanalyser AA3 (BranLübbe, Norderstedt, Germany:Methodno.G016 91forNitrateN,G02992forNitriteN,G10293forAmmoniaN,G10393 forPhosphate). ThecontentofTRO[mgL 1]wasmeasuredinoutflowsamplesusingHACH Permachem ® Reagents (DPD Free Chlorine Reagent, 10ml). Extinction was measuredwithaspectrophotometer(Hach,Germany)andgiveninfreechlo rineconcentrations.Valuesweremultipliedwiththefactor0.6769torecal culate content of free total residual oxidants (from now on referred to as ozone).

Microbiological methods 1)CFUdetermination–viablecells BacterialabundancesweredeterminedusingthepourplatemethodbyKoch (JAHR)withstandardmarineagar(TSB3).Differentdilutionswereusedfor inflowandoutflow samples(1mlto1:1000&1:10.000 for inflow samples; 1:10 & 1:100 for outflow samples). Samples were incubated at room tem peraturefortwoweeksindarknessandcolonyformingunits(CFU)werede tectedafterincubation. 2)EpifluorescenceMicroscopy a)TBNtotalbacterialnumber Differentbacterialspecieshavedifferentgrowthrequirementsandtherefore onlyasmallproportionofthetotalbacterialnumberwillbeabletogrowon standardagar.Todeterminethetotalnumberofbacteria,theAcridineOr angeDirectCount(AODC)methodwasused.AcridineOrangebindstoacidic cellcomponentslikeDNA(orangestain,Jochem,2001)andthestainedcells

129 Chapter4 can be counted using epiflourescence microscopy. Therefore, immediately aftersampling,20mlofthesampleweretransferredintoaglassvial(Perkin Elmer, PLCAP/500), fixed with 0.5ml particle free formaline and stored at roomtemperatureindarknessforlateranalysis. For staining, samples were vacuumfiltrated (<200 mbar) through 0.2m black polycarbonate filters preventing background fluorescence (ø25mm) (WhatmanNucleopore).FiltrationvolumeforAcridinOrangesamplesranged from2ml(inflowsample)to6ml(outflowsample).1mlofacridineorange waspipettedtothesampleandthedyewasincubatedonthefilterfor5min indarkness(STOCKING).AcridineOrangewasthenremovedbyfiltration( 200 mbar); filters were airdried, embedded in oil (Cargille ®) and kept in darknessbeforeanalysisusingaZeissAxioplanepifluorescencemicroscope withafiltersettingKP490,KP500;Teiler510&LT520(450–490nmemis sion). b)Viablestaining Qualitativeanalysisofbacterialabundancesdistinguishinglivinganddead cellswasperformedwithLIVE/DEAD ®BacLight™BacterialViabilityKitsfor microscopy (Molecular Probes). This method includes two different nucleid acid stains differing in their spectral characteristics and in their ability to penetratehealthybacterialcells.SYTO ®9(3.34mM)isgreenfluorescentand labels all bacteria. In contrast, propidium iodide (20 mM) penetrates only bacteriawithdamagedmembranes,causingareductionintheSYTO9stain fluorescence,whenbothdyesarepresent(MolecularProbes,2004).So,dead cells are stained in red, whereas living cells will be stained in green. For staining,2mlofsamplewaterweretransferredtoa2mlEppendorfcupand immediatelystainedwithbothdyes(3l).After15min incubation at room temperature,bacterialsampleswerefixedwith0.07mlformalineandstored indarknessforlateranalysis. Foranalysis,2mlofthesamples(inflowandoutflowsamples)werefiltered inordertoenrichbacteriaonthefilter.Filtersweremountedinoil( Bac Light

130 Chapter4 mountingoil)andstoredinthedarkness.Analysiswasperformedbyepifluo rescencemicroscopyanaloguetotheAODCmethod.

Calculation of TBN and viable staining Totalbacterialnumbersandviablebacteriaweredeterminedbycounting30 gridfields (NewPortonG12;GraticulesLtd.,UK)with1000x magnification. Totalbacterialnumberswerecalculatedusingthefollowingequation:  F ⋅ n  =  grid  N   (Equation1)  V  whereNisthetotalnumberofbacteriaperml,Fistheconversionfactorof 367.455whichreflectstheareaoftheNewPortonG12gridinrelationtothe totalfilterarea(innerdiameterofthefilter),ngrid istheaveragenumberof bacteriapergridandVthefiltratedvolume.Totalnumbersweredividedby 1.000.000toexpresscellconcentrationsinMiocells/ml. Additionally,thesizedistributionofparticlesandtheamountofbacterialiv ingattachedtoparticlesweredeterminedbyviable staining. Therefore, 10 gridcountings(NewPortonG12grid,0.44mmwidth,0.74mm length each, 100xmagnification) weresummarized.Sizeclassesweredeterminedaccord ingtothegrid:lessthan<10m,1050m,50120,120240m,>240m. Duetopatchydistributionofthebacteriaattachedtoparticles,itwasnot alwayspossibletocounteverysinglebacterium.Furthermore,onlythetop side of the particle was visible. Thus, bacteria attached to the back could thereforenotbecountedandintegratedintofurthercalculations.Neverthe less,theamountofvisiblebacteriaattacedtoparticleswasclassifiedinto4 groups:0=none,+=15,++=upto20;+++=>20.

131 Chapter4 4.3 Results 4.3.1 Viable counts Viableplatecountswereusedasfirstindicatorofdisinfectionefficiency.Ta ble 1 shows that application of TRO´s at levels of 500mV and 600mV re sultedinverylownumberofcolonyformingunits(CFU)perml,independent fromtheinitialbacterialloadoftheinflow,whichdiffersduetoconditionsin the recirculation system. For 600mV it was 0.600 ± 0.560 10³ CFU/ml (15min retention time in foam fractionator); 0.144 ± 0.056 10³ CFU/ml (10minretention)and0.093±0.02510³CFUml 1(5minretention),respec tively.Averagenumbersfor500mVwere:0.200±0.14910³CFUml 1(15min retention),0.174±0.18710³CFUml 1(10minretention)and0.039±0.037 10³CFUml 1(5minretention),respectively.15minretentiontimeat400mV gave similar results: 0.796 ± 0.321 10³ CFU ml 1. Less retention time re sultedinarapidincreasetoseveralthousandCFUml 1:6.92±5.3410³CFU ml 1(10minretentiontime)and23.91±14.3410³CFUml 1(5minretention time).

132 Chapter4

Tab. 2 Viablebacterialcounts(pourplatemethod)asdeterminedfrominflowandoutflowsamplesof foamfractionatoratdifferentredoxpotentialandwaterretentiontimes.Datarepresentmeansofthree parallelsubsamples.Totalsamplenumberfor600mV=8,takenovertwooperationaldays.Allother operationalredoxlevels(n=5)aretakenatthesameday.%deadindicatespercentagedecreasefrom inflowsamples.

colonyformingunits(CFU)(10 3perml) retention 15min 10min 5min time

Inflow Outflow %dead Inflow Outflow %dead Inflow Outflow %dead

600mV 17.8 0.19 98.93 37.5 0.13 99.65 273.2 0.09 99.97 13.6 1.72 87.35 26.8 0.14 99.48 475.8 0.12 99.97 18.0 1.36 92.44 41.7 0.25 99.40 95.3 0.07 99.93 1273.3 0.45 99.96 93.5 0.11 99.88 - 14.2 0.38 97.32 27.0 0.09 99.66 - 19.5 0.12 99.38 - - 29.0 0.25 99.14 - -

25.7 0.30 98.83 - -

average 0.6 96.6 0.14 99.6 0.28 99.9

500mV 983.3 0.49 99.95 630.7 0.51 99.92 246.7 0.03 99.99

1246.7 0.13 99.99 696.7 0.23 99.97 368.3 0.005 99.99

1333.3 0.08 99.99 480.0 0.11 99.98 201.7 0.02 99.99 1180.0 0.19 99.98 666.7 0.01 99.99 220.0 0.03 99.99 1046.7 0.11 99.99 583.3 0.01 99.99 171.7 0.11 99.99

average 0.2 99.98 0.17 99.93 0.039 99.99

400mV 85.5 0.48 99.44 113.0 9.15 91.90 691.7 19.65 97.16

283.2 1.37 99.52 534.5 1.91 99.64 619.0 43.44 92.98

69.2 0.74 98.93 102.0 3.60 96.47 453.0 38.02 91.61 90.1 0.87 99.03 700.2 3.54 99.49 372.2 10.12 97.28 120.3 0.52 99.57 290.5 16.4 94.35 238.5 8.32 96.51

average 0.796 99.3 6.92 96.4 23.91 95.11

133 Chapter4

4.3.2 Quantitative and qualitative analysis

Not all bacteria grow on agarplates. Staining samples with acridin orange canprovidetotalbacterianumbers,howeverthismethoddoesnotdifferenti atebetweenlivinganddeadbacterialcells,soanoverestimationofbacteria contamination may occur. Staining with LIVE/DEAD ® allows a qualitative analysistodistinguishbetweenlivinganddeadbacteriacells. Theresultsclearlyindicatethatlivingbacteriawerealmostexclusivelyfound attachedtoparticlesofdifferentsize(Fig.3a).Unattachedbacteriawereal mostexclusivelystainedred,andthereforeidentifiedasdead.Nevertheless aftertheozonetreatmentlivingbacteriawerestill found while attached to particles(Fig.3b),butinmuchsmallernumbers.Boththeamountofparti clesandfreebacteriawasmuchlessthantheinflow. Thus, most of them were removed by the foam fractionation process and were collected in the wastevessel(Fig.3c). a b c

50m m Fig. 3 Occurrenceoflivingbacteria(green)attachedtoparticles(red)(a)intheinflowand(b)inthe outflowofthepretreatedwater.Theparticlesareremovedbythefoamfractionationandcanbefound inthewastecontainer(c). Theexaminationofinflowandoutflowsamplesshowed,thatremovalofun attachedbacteria(Fig.4a)andparticles(Fig.4b)wasveryeffectiveatevery treatmentleveltested,evenatshortretentiontimes. Similar to the results onviablecounts,outflowconcentrationofbacteriaandparticles(greybars, Fig.4a,b)areatconstantlylowlevels,independentoftheinflowconcentra tion(blackbars)(ca.1000particlespermland0.5Mio.bacteriaperml).

134 Chapter4

4 10000 a 600 mV b 400 mV 500 mV 400 mV 500 mV 600 mV 8000 3

6000 2 4000

bacteria in Mio/ml in bacteria 1 2000 total number of particles per ml per of particles number total 0 0 15 10 5 15 10 5 15 10 5 15 10 5 15 10 5 15 10 5 retention time in foam fractionator treatment inflow outflow Fig. 4 Bacterialandparticlecountsinsamplesfromtheinflowandoutflowofthefoamfractionator. (a)bacteria(resultsfromAOstaining)and(b)totalnumberofparticlesatdifferentredoxpotentials (400mV,500mV,600mV)andretentiontimes(15min,10min,5min).Resultsshowlowoutflowcon centration of both bacteria and particles (grey bars), independent from inflow concentrations (black bars). Ifparticlesplaythedominantroleforbacteriacontamination,wehavetoin vestigatethequestion:whatsizesofparticlescanbefoundandistherea bacteriapreferenceforattachingtocertainparticlesizes? Sizedistributionofparticlesgavefollowingresults: At each treatment, size classesoflessthan10mand1050mwerethemost frequent particle size.Bothclassestogetherrepresentatleast75%,sometimesalmost99%of thetotalnumberofthesample(Fig.5a,b).

100 a inflow 100 b outflow

80 80

60 60

40 40

20 20 relative amount of particles amount relative of particles amount relative

0 0 15 10 5 15 10 5 15 10 5 15 10 5 15 10 5 15 10 5 400mV 500mV 600mV 400mV 500mV 600mV retention time in foam fractionator retention time in foam fractionator Fig. 5 Relativeamountofparticlesofthesize>10mand1050minthe(a)inflowsamplesand(b) outflow samples in relation to total number. Data represent average values of 5 replicates for each treatmentatdifferentredoxpotentials[mV]/retentiontime[min]. 135 Chapter4

Regardingtheofparticleswithbacteriainrelationtototalparti clenumbers(Table3,4),themajorityofparticles<10mwasdetectedtobe freeofbacteria.Thissizeclasswasdominatedbydeadbacteriaformingag glomerations (210 bacteria) and were classified as particles without living bacteria. In the size class 10 to 50m, a variation between of particles withoutbacteriaandparticleswithattachedbacteriawasobserved.Inthis size class very often eukaryotic microalgae were observed and declared as particleswithoutbacteria(seealsoTab.4). Inparticlesizeclasses50mto240mtheproportion of particles with at tached bacteria increased, whereas the proportion of particles free of at tached bacteria decreased (Tab. 3). Particles >240m were dominated by Sphaerotilus natans ,asewagebacteriumforminglongchains.Particlesiden tifiedas Sphaerotilus natans wereassignedtothefraction“particlewithout bacteria” (Tab. 3, column >240m “0”). Sphaerotilus natans chains were mainlyfoundininflowsamples;inoutflowsamplestheywereonlydetected atanredoxpotentialof400mV(Tab.3,>240m“0”).Insummary,increas ingparticlesizescanbecorrelatedwithincreasingabundancesoflivingbac teriaattachedtotheparticles. Accordingtotheresults,particles>50mareofminorimportanceforparti clecontaminationbecauseofthelowabundanceofthesesizeclasses.Parti clessizesof10to50mareofmajorrelevanceforthecontaminationonthe onehandbecauseoftheirhighabundanceandontheotherhandbecauseof thehighabundancesofparticleattachedbacteria(Fig.5).

136 Tab. 3 Summaryofdataforsizedistributionofparticlesandtheamountofattachedbacteriapermlsampleforinflow(in)andoutflow(out)samplesforeachtreat ment(redoxpotential[mV],retentiontime[min],leftcolumn).Particlesweresortedaccordingtosize(firstrowoftable)andbacteriaamount:0=nolivingbacteria,+= 15attachedbacteria,++=upto20bacteria,+++=morethan20bacteria.Average&SDfrom5replicatesforeachtreatment.Total=totalnumbersofparticles Particlesize <10m 1050m 50120m 120240m >240m att.bacteria 0 + ++ +++ 0 + ++ +++ 0 + ++ +++ 0 + ++ +++ 0 + ++ +++ total 400/15 2029 153 56 181 97 28 69 14 14 2640 in ±854 ±205 ±124 ±188 ±116 ±62 ±49 ±31 ±31 1661 400/15 389 139 14 69 83 56 42 14 14 14 834 out ±349 ±203 ±31 ±85 ±76 ±58 ±38 ±31 ±31 ±31 934 400/10 208 69 69 56 153 181 97 14 28 28 14 917 in ±139 ±85 ±155 ±31 ±151 ±293 ±144 ±31 ±38 ±62 ±31 1161 400/10 125 42 111 306 56 28 14 14 14 709 out ±91 ±38 ±105 ±416 ±58 ±31 ±31 ±31 ±31 839

400/5 667 97 14 28 222 111 42 14 14 42 14 28 14 14 14 181 28 14 1556 in ±356 ±79 ±31 ±38 ±151 ±38 ±62 ±31 ±31 ±38 ±31 ±38 ±31 ±31 ±31 ±79 ±38 ±31 1166 400/5 195 28 28 167 56 42 14 42 14 14 42 639 out ±227 ±38 ±38 ±105 ±58 ±38 ±31 ±62 ±31 ±31 ±38 698 500/15 903 42 14 153 42 14 97 42 14 28 28 14 28 28 1445 in ±681 ±38 ±31 ±166 ±93 ±31 ±79 ±62 ±31 ±62 ±62 ±31 ±62 ±38 1468 500/15 514 56 28 14 14 14 639

137 out ±642 ±76 ±38 ±31 ±31 ±31 849 500/10 1792 264 459 125 28 83 167 28 28 14 42 14 3043

in ±1471 ±296 ±305 ±114 ±62 ±31 ±135 ±62 ±62 ±31 ±93 ±31 2695 500/10 452 35 226 35 35 17 799 out ±216 ±40 ±67 ±40 ±69 ±35 467 500/5 264 528 139 111 14 153 56 28 14 28 14 28 14 1389 in ±257 ±373 ±163 ±212 ±31 ±342 ±91 ±62 ±31 ±38 ±31 ±38 ±31 1700 500/5 139 361 14 14 14 14 28 14 14 611 out ±196 ±345 ±31 ±31 ±31 ±31 ±38 ±31 ±31 766 600/15 361 250 69 250 83 97 69 56 14 69 14 14 28 208 1584 in ±134 ±167 ±69 ±126 ±91 ±79 ±98 ±91 ±31 ±98 ±31 ±31 ±62 ±220 1328 600/15 153 56 83 83 14 42 56 28 14 14 542 Redoxpotential[mV]/retention time[min] out ±193 ±91 ±186 ±91 ±31 ±62 ±91 ±38 ±31 ±31 844 600/10 1158 116 69 1297 208 139 69 301 23 93 23 116 3612 in ±1300 ±145 ±69 ±2127 ±69 ±69 ±69 ±343 ±40 ±106 ±40 ±145 4454 600/10 514 56 28 14 14 14 639 out ±642 ±76 ±38 ±31 ±31 ±31 849 600/5 1945 243 556 382 139 243 139 313 69 69 69 14 35 35 69 35 4411 in ±1965 ±344 ±491 ±147 ±0 ±49 ±196 ±49 ±98 ±98 ±0 ±31 ±49 ±49 ±98 ±49 3782 600/5 1112 104 104 382 104 208 35 139 35 69 35 2327 out ±884 ±49 ±147 ±147 ±49 ±98 ±49 ±98 ±49 ±98 ±49 1719 Chapter4

Tab. 4 Percentageofparticleswithout(0)andwithattachedlivingbacteria(#)foreachsizeclassin inflowsamplesatdifferenttreatments(redoxpotential[mV]/retentiontime[min],leftcolumn)inrela tiontototalnumbers(Table5).Datapresentaveragevaluesof5replicatesateachtreatment. Sum1=sumofsizeclass<10m+1050m;sum2=sumofsizeclasses50120m+120240m+ >240m. particlesizeclasses 120 INFLOW <10m 1050m 50120m >240m 240m treatment O # 0 # Sum1 0 # 0 # 0 # Sum2 400/15 76,8 7,9 6,8 7,4 98,3 0,5 0 0 0,5 0 0 1,1 400/10 22,7 15,2 6,1 47,0 90,9 1,5 6,1 1,5 0 0 0 9,1 400/5 42,9 8,9 14,3 10,7 76,8 0,9 5,4 0 2,7 11,6 2,7 23,2 500/15 62,5 3,8 10,6 3,8 80,8 6,7 5,8 1,9 2,9 1,9 0 19,2 500/10 58,9 8,7 15,1 5,0 87,7 2,7 6,4 0,9 0,5 1,4 0,5 12,3 500/5 19,0 0,0 38,0 19,0 76,0 11,0 6,0 1,0 3,0 2,0 1,0 24,0 600/15 22,8 20,2 15,8 15,8 74,6 3,5 5,3 0,9 2,6 13,2 0 25,4 600/10 32,1 41,0 5,8 14,1 92,9 0 3,2 0 0,6 3,2 0 7,1 600/5 44,1 26,8 3,1 15,7 89,9 0 4,7 0 2,4 0 3,1 10,2

4.3.3 Influence of ozone on efficiency of foam fractionation

Highvaluesoffreeozonearenecessaryforsterilization(Sander,1998).Re sultsfromthepresentstudyclearlyshowed,thatbacteriaareabletosurvive treatments of 15min at 600mV redox potential when they live attached to particles. For decontamination of a recirculation system, it is therefore of majorrelevancetoefficientlyremoveparticlesof10–50m. Twoquestionsareimplicatedbasedontheseresults:i)doesthecontentof freeozonehaveanimpactontheremovalefficiencyandii)whichredoxpo tentialvalueisneededtoefficientlyremoveparticles?Thesolutionofthese problems is crucial for practical application, because technical ozone pro ductionisverycostintensive. Unfortunately,theresultsfromthisstudycouldnotbeaffirmedstatistically duetothevaryingconditionsduringthemicroalgaecultivationperiod.When singledatapointsareplottedagainstthecontentoffreeozone,evidencewas obtainedforanredoxpotentialhigherthan400mVappearingtobecrucial for efficient particle removal. Lower retention times (< 15min.) resulted in higher viable counts (Koch method, Fig. 6a), occurrence of Spaerotilus natans (Tab.3,>240m“0”,out)intheoutflowsampleand lower particle

138 Chapter4 removalefficiency(Fig.6b).Thiseffectcouldbealleviatedbyelevatedreten tiontimes.Redoxpotentialvalues>500mVdidnotyieldahigherparticle removal efficiency, even when retention times were varied. However, con cerning this topic, further investigations using a comparable system are needed.

50 120 a b 400mV 40 100 500mV 600mV 30 80

20 60

10 40 CFU in 10-3 per ml ml per 10-3 in CFU relative removement relative 0 20

0 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

free ozone content in mg/l content of free ozone [mg/L] Fig. 6 Freeozonecontentforeachtreatment(5min,10minand15min.retentiontime)attotalresidual oxidantlevels(TRO)inmgL 1.(a)colonyformingunits,(b)relativeamountofremovedparticlesfrom inflow(dataareshownforvalueswithatleast2000particlespermlinflow).

4.4 Discussion Becauseofitsknowndisinfectioncapacity,ozoneisbelievedtobemostef fective to reduce the bacterial load of the water in aquatic applications (Sander,1998).Whilethisistruefordrinkingandprocesswatersterilization wherehighdosagesareemployed,theuseofozoneinaquaculturehasnever beenexclusivelytargetedonthisgoalbecauseoftherisktodamagethecul turedspeciesatthesametime(Brazil et al. ,1998).Thereforetheapplication mostlyaimsatamultiplefunctionwith:(a)primarilyenhancedremovalof fine particles through aggregation (e.g. electrostatic loading) and counter current foam stripping, (b) simultaneous oxidation of organic compounds withmultipledoublebondsthatarenoteasilydegradableinbiofilters(e.g. conversion into biodegradable breakdown products to be returned to the biofilter)andfinally(c)toreducetosomeextent the overall microbial load (Rosenthal,1981;Liltved,2000;Summerfelt et al. ,2002).

139 Chapter4

Theinteresttounderstandthequalitativeandquantitativeeffectsofbypass ozonationonoverallreductioninpathogencountshasrecentlybeenrevived in relation to recirculating aquaculture systems to combate fish diseases suchasSaprolegniasis infreshwatersystems(Forneris et al. ,2003)andma rine halibut rearing facilities (Fraser, 2004) as well as shrimp hatcheries (Meunpol et al. ,2003).Bullock et al. (2002)clearlydemonstratedthatnum berofpathogencountscanbereducedinfreshwaterrecirculationsystems toreducetheriskofdiseaseoutbreakssuchasbacterialgilldiseases(BGD). WhileozonationdidreduceBKDmortalityinfish,itfailedinnearlyallcases toproduceevenaonelog 10 reductioninnumbersofheterotrophicbacteria inthesystemwaterorongilltissue.Failureoftheozonetolowernumbers ofheterotrophicbacteriasignificantlyortopreventthecausativeBGDbacte rium from occurring on gills was attributed to the short exposure time to ozone residual (35 s in contact chamber) and rapid loss of oxidation effi ciency caused by levels of total suspended solids and nitrite. Our study clearlyshowsthatretentiontimeandtherebycontacttime,hascertainlya majorroleineffectivenesstodamageheterotrophicbacteria,duetoincreas inglevelsofTROs.Theamountoftotalresidualoxidantsplaysamajorrole forsurvivalofbacterialfishpathogens.Sugita et al. ,1992,showedthatbac terial counts of Enterococcus seriolicida , Vibrio anguillarum and Pasteurella piscicida decreased by more than 0.040 to 0.060 mg of total residual oxi dantsperlitre,whereasnodecreaseinviablecountswas observedatless than0.018to0.028mgofTROsperlitre.Similarresultshavebeenfoundin thisstudy.Hence,theeffectivenessofozonetreatmentdependsonTROcon centration,lengthofozoneexposure(contacttime),pathogenloadsandlev elsoforganicmatter. However,itseemsnotadvisabletoapplyozonedirectlyinthemainstreamof afishculturerecirculationsystem,becausehighlevelsofozonecanhavea negativeeffectonfishhealth.Ozoneappearstocauseseveredamagetoall externaltissues.Thiscanresultindisruptionofrespiration,osmoregulation and possibly excretion, resulting either in death or in the development of varioussublethalsecondarypathologicaleffects(PallerandHeidinger,1980).

140 Chapter4

Butitispossibletointroduceozoneinabypassstreamwhichreceivesonly aportionofthetotalflow.Whenthisbypassflowisreturnedtothemain stream, the residual total radical oxidant concentration is drastically re duced,therebygreatlyreducingtheriskoftoxicconcentrationsenteringthe fishculturetank.Further,residualozoneintheeffluentofthecountercur rent foam stripping unit will immediately react with organic particles and otherreactantsinthemainstream,therebyquicklyreducingtheremaining TROstosafelevels. Otherwisethisstudyshowedthatuseoffoamfractionationsupportsthedis infecting process, as most of the living bacteria were determined to be at tachedtoparticles.Particlesofthesizelessthan10mandbetween10to 50m turned out to be the major size class because of their major abun danceintotalnumbersofsuspendedsolids.Thishasbeenconcludedalsoin otherstudies(Orellana et al. ,2005).Onethirdofthesolidloadofarecircu lationsystemcanbefoundassuspendedsolids(Waller et al. ,2003a).High numbersofsmallparticlesprovidealargesurfacearearesultinginsufficient substrateforbacteria.Thisfractionneedstoberemoved,astoourknowl edgethisstudydocumentsforthefirsttimebydirectly distinguishing be tweenlifeanddeadbacterialcellsthatbacteriacanevensurvivetreatments athighTROsatretentiontimeof15minutes,whenbeingattachedtoparti cles.Especiallythesurfacesofparticlescanprovidemicrohabitatsforbacte ria(Curds,1982;Acinas,1999).Theparticlescanserveasfoodsource(i.e. inthemarinerealm,particleattachedbacteriaarethoughttoplayanimpor tantroleincarboncycling(CammenandWalker,1982;Irriberry et al. ,1990) but also provide protection from (Curds, 1982). Even suboxic/anoxicconditionsmaydevelopandhenceallowanaerobicbacteria to survive at these surfaces. In marine snow, several bacterial species are knowntoproduceacapsularenvelopeinordertoascertainsuitablecondi tions and to protect themselves against bacterivores (Heissenberger et al. , 1996). ThereisoneadvantageofozoneapplicationoverUVlight use in recircula tionsystems.WhileUVdisinfectiontargetsonDNAdestruction,ozone(total

141 Chapter4 radical oxidants) reacts with the surfaces of microbial membranes. While UVlightmayonlycausepartialdamagetobacterialcellsandmayenhance mutation(e.g.UVresistantstrains),ozoneapplicationisanallornonefunc tion. Either membrane double bonds are broken up by ozonlysis, or the membranestaysintact,partlybeingprotectedbysurfacecontactswithpar ticles,therebypermittingfullsurvivalofthecell. Forapplicationpurposesinaquaculture,atwostep solid separation (sedi mentation,foamfractionation)isneededtoremoveallsizeclassesofsolids andhasbeenrecommendedbeforetoachievesufficienthygienicconditions in farming systems(Waller et al. ,2003a,b).Ozonationimprovesremovalof total suspended solids in foam fractionators due to a decrease in particle stability(RueterandJohnson,1995). 4.5 Conclusion Thepresentstudyindicatesthateffectiveparticle aggregation and removal can be achieved with relatively low ozone levels. At high suspended solid loads it seems not advisable to apply very high dosages as this will not achievenoticeablesimultaneousdisinfectionasmostbacteriawillsurvivein attachment to individual particles and particle aggregates. However, even withoutkillingbacteria,theoverallbacterialcountswillbereducedmainly asaneffectofremovaloflargeamountsoffineparticlestowhichthesebac teriaadhere.The„disinfection“isthereforeindirect. 4.6 Acknowledgements WethankRegineKoppeandHansGeorgHoppe(IFMGEOMAR)forsupport ingthisstudy.

142 Chapter4 4.7 References AcinasSG,AntonJ,andRodriguezValeraF(1999).DiversityofFreeLiving and Attached Bacteria in Offshore Western Mediterranean Waters as De pictedbyAnalysisofGenesencoding16SrRNA.AppliedandEnvironmental Microbiology65(2):514522. AkeyD.H.andWaltonT.E.(1985).Liquidphasestudyofozoneinactivation ofVenezuelanequineencephalomyclitis virus.Appl. Environ. Microbiol. 50 (4):882886. Brazil B.L., Libey G.S., Coale C.W., and Boston, H.L. (1998). Economic analysisofhybridstripedbass(MoronechrysopsxMoronesaxatilis)produc tioninozonatedandnonozonatedpilotscalerecirculatingaquaculturesys tems. Aquaculture '98, (World Aquaculture Society, Book of Abstracts, An nualConference,LasVegas,NV(USA),1519Feb1998,646pp.

BrazilB.L.,SummerfeltS.T.,andLibeyG.S. (2002).ApplicationofOzoneto RecirculatingAquacultureSystems.1.InternationalConferenceonRecircu latingAquaculture, Roanoke,VA(USA), 1921Jul1996, Monograph documentcodeVSGCPC00001,Virginia,USA. BuchanK.A.H.,MartinRobichaudD.J,BenfeyT.J.,MacKinnon A.M., and BostonL.(2004). Theefficacyofozonatedseawaterforsurfacedisinfectionof haddock(Melanogrammusaeglefinus)eggsagainstpiscinenodavirus. Aqua cultureAssociationofCanadaSpecialPublication8:3033. Buchan K.A.H., MartinRobichaud D.J., and Benfey T.J. (2005). Measure ment of dissolved ozone in sea water:A comparison of methods. Aquacul turalEngineering(Aquacult.Eng.)33(3):225231. Bullock G.L., Summerfelt S.T., Noble A.C., Weber A.L., Durant M.D., and HankinsJ.A.(2002).EffectsofOzoneonOutbreaksofBacterialGillDisease andNumbersofHeterotrophicBacteriainaTroutCultureRecycleSystem1. InternationalConferenceonRecirculatingAquaculture,Roanoke,VA(USA), 1921Jul1996.MonographdocumentcodeVSGCPC00001;Virginia,USA. CammenL.M.andWalkerJ.A.(1982).Distributionandactivityofattached andfreelivingsuspendedbacteriaintheBayofFundy.Can.J.Fish.Aquat. Sci.39:16551663. Chen C., Wooster G.A., Getchell R.G., Bowser P.R., and Timmons M.B. (2003). Blood chemistry of healthy, nephrocalcinosisaffected and ozone treated tilapia in a recirculation system, with application of discriminant analysis.Aquaculture 218(14):89102. CrappoC.,HimelbloomB.,VittS.,andPedersenL.(2004). OzoneEfficacyas aBactericideinSeafoodProcessing.JournalofAquaticFoodProductTech nology(J.Aquat.FoodProd.Technol.)13(1):111123.

143 Chapter4

CurdsCR(1982).Theecologyandroleofprotozoainaerobicsewagetreat mentprocessing.Annu.Rev.Microbiol.36:2746. Eichelsdörfer D. and Jandik J. (1985). Long contact time ozonation for swimmingpoolwatertreatment.Ozone:Sci.Eng7(2):93106. FornerisG.,BellardiS.,PalmegianoG.B.,SarogliaM.,SicuroB.,GascoL., andZoccarato,I. (2003). Theuseofozoneintrouthatcherytoreducesapro legniasisincidence.Aquaculture 221(14):157166. Fraser K.B. (2004). Using ozone in a recirculating aquaculture system for Atlantic halibut (Hippoglossus hippoglossus): Water quality, toxicity, and economic considerations. Master thesis , Dalhousie University (Canada); Masters Abstracts International (Masters Abst. Int.) . 43 (2) pp. 511 (ISBN: 0612941132). GongX.,LiuQ.,WangQ.,LiJ.(2002).Studyontheapplicationofozonein incubation of Artemia salina cysts. Marine sciences/Haiyang Kexue (Mar. Sci./HaiyangKexue). 26(6):6871. Heissenberger A., Lepperd G.G., and Herndl G.J. (1996). Ultrastructure of marinesnow.II.Microbiologicalconsiderations.MEPS135:299308. HoigneJ.andBaderH.(1975).Ozonationofwater.Roleofhydroxylradicals asoxidizingintermediates.Science190(4216):782784. Irriberry J., Unanue M., Ayo B., Barcina I., and L. Egea (1990). Bacterial productionandgrowthrateestimationfrom[ 3H]thymidineincorporationfor attachedandfreelivingbacteriainaquaticsystems. Appl. Environ. Micro biol.56:483487. Kötters J., Prahst A., Skura B., Rosenthal H., Black E.A., and Rodigues Lopez J. (1997). Observations and experiments on extending shelflife on 'rockfish'(Sebastesspp.).J.Appl.Ichthyol.13:18. Legeron,J.P.(1984).Ozonedisinfectionofdrinkingwater. In: RiceR.G.,Net zerA.(eds).HandbookofOzonetechnologyandApplications.Vol.2Ozone forDrinkingwatertreatment.Butterworth:Boston,MA,USA,pp.120. Liltved H. (2000). Disinfectionofwater inaquaculture:Factorsinfluencing thephysicalandchemicalinactivationof. 40pp.PhD.The sis,NorwegianCollegeofFisheryScience ,UniversityofTromsoe(Norway).

LiuQ.,LiJ.,andGongX.(2003). Studyonthetoxicityofozonetodifferent development stage of Penaeus chinensis . Shandong fisheries/Qilu Yuye (ShandongFish./QiluYuye).20(9):1819.

144 Chapter4

Liu Q., Li J., Gong, X., and Wang Q. (2004). Efficiency of ozone on three kinds of bacteria of Vibrio in different media. Marine fisheries re search/Haiyang Shuichan Yanjiu (Mar. Fish. Res./Haiyang Shuichan Yan jiu)25(2):7782. Meunpol O., Lopinyosiri K., and Menasveta P. (2003). The effects of ozone and probiotics on the survival of black tiger shrimp ( Penaeus monodon ). Aquaculture220(14):437448. OrellanaJ.,WeckerB.,SanderM.,andWallerU.(2005).Particulatematter in a modern marine recirculation system: what, where and how much. EuropeanAquacultureSocietySpecialPublication35:354355. PallerM.H.andHeidingerR.C.(1980).Mechanismsofdelayedozonetoxicity to Bluegill Lepomis machrochirus Rafinesque. Environmental Pollution (Se riesA)22:229239. PirtS.J.(1975).Principlesofmicrobeandcellcultivations.BlackwellScien tificpublications.284pp. RichardY.andBrenerL.(1984).Severalarticles In: RiceR.G.andNetzerA. (eds).Handbookofozonetechnologyandapplications.Vol.2Ozonefordrink ingwatertreatment.ButterworthPubl.:BostonMA,USA. Rice R.G. and Netzer A. (eds). Handbook of ozone technology and applica tions.Vol.2Ozonefordrinkingwatertreatment.Butterworth Publ.: Boston MA,USA,378pp. RosenthalH.(1981).Ozonationandsterilization. In: TiewsK.(ed).Aquacul tureinheatedeffluentsandrecirculationsystems.HeenemannVerlag:Ber lin, Germany. Schriften der Bundesforschungsanstalt für Fischerei, vol.16/17. RosenthalH.andWilsonJ.S.(1987).Anupdatedbibliography(18451986) onozone,itsbiologicaleffectsandtechnicalapplications.CanadianTechni calReportofFisheriesandAquaticSciencesNo.1542.249pp. RosenthalH.andBlackE.A.(1993).Recirculationsystems in aquaculture. Pp. 284294 In: Wang J.K. (ed.). Techniques for modern aquaculture. Pro ceedingsofanAquaculturalEngineeringConference,Spokane,Washington, USA,June1993.(AmericanSocietyofAgriculturalEngineers.604pp. RueterJ.AndJohnsonR.(1995).Theuseofozonetoimprovesolidsremoval duringdisinfection.AquaculturalEngineering14:123141. Sander M. (1998). Aquarientechnik in Süß und Seewasser. Ulmer Verlag. 256pp. SchneiderW.andRumpH.H.(1983).Useofozoneinthetechnologyofbot tledwater.Ozone:Sci.Engng5(2):95101.

145 Chapter4

SummerfeltS.T.,HankinsJ.A.,WeberA.L.,andDurantM.D. (2002).Effects of Ozone on Microscreen Filtration and Water Quality in a Recirculating RainbowTroutCultureSystem.1.InternationalConferenceonRecirculating Aquaculture,Roanoke,VA(USA), 1921 Jul 1996. Monograph document codeVSGCPC00001;Virginia,USA. SummerfeltS.T.,SharrerM.J.,HollisJ.,andGleasonL.E.(2004).Dissolved ozone destruction using ultraviolet irradiation in a recirculating salmonid culturesystem.AquaculturalEngineering32(1):209223. SugitaH.,AsaiT.,HayashiK.,MitsuyaT.,AmanumaK.,MaruyamaC.,and DeguchiY.(1992).Applicationofozonedisinfectiontoremove Enterococcus seriolicida , Pasteurella piscicida ,and Vibrio anguillarum fromseawater.Appl. Environ.Microbiol.58(12):4072–4075.

Tango M.S., Gagnon G.A. (2003). Impact of ozonation on water quality in marinerecirculationsystems.AquaculturalEngineering29(34):125137. Waller U., Schiller A., Orellana J.,and Sander M. (2002). The growth of youngseabass (Dicentrarchus labrax) inanewtypeofrecirculationsystem. ICESCM2002/S:06. WallerU.,AttramadalK.,KoppeR.,OrellanaJ.,Sander M., Schmaljohann R.(2003a).Thecontrolofhygienicconditionsinseawaterrecirculationsys tems:theuseoffoamfractionationandozone.EuropeanAquacultureSoci etySpecialPublication33:354355. WallerU.,BischoffA.A.,OrellanaJ.,SanderM.,andWallerU.(2003b).An Advancedtechnologyforclearwateraquaculturerecirculation systems: re sultsfromapilotproductionofseabassandhintstowards„zerodischarge“. EuropeanAquacultureSocietySpecialPublication33:356357. WuhrmannK.andMeyrathJ.(1955).Thebactericidalactionofaqueousso lutionsofozone.Schweiz.J.Path.18:10601069.

146

Chapter 5 MARE–MarineArtificialRecirculated EcosystemII:Influenceofthenitrogencycleina marinerecirculationsystemwithlowwaterdis chargebycultivatingdetritivorousorganismsand phototrophicmicroalgae KubeN.,BischoffA.A.,BlümelM.,WeckerB.andWallerU. (2006)

147 Chapter5 MARE–MarineArtificialRecirculated EcosystemII:Influenceonthenitrogencycle inamarinerecirculationsystemwithlowwa ter discharge by cultivating detritivorous or ganismsandphototrophicmicroalgae KubeN.,BischoffA.A.,BlümelM.,WeckerB.andWallerU.

Abstract Wateraswellasnutrientrecyclinggainedmoreandmoreattentioninrecir culatingaquaculturesystemsduringthelastfewyears.Thenewlydeveloped recirculating system MARE (Marine Artificial Recirculating Ecosystem) showedgreatpotentialtowardstheserequirements.TheexperimentMAREII focusedontheintegrationofaremovingcompartmentusing Nereis diversicolor (Polychaeta)andthedevelopmentandintegrationofamicroalgae bioreactorintothesystem. Solidsderivedfromtheparticulatefishwasteweredrivinggrowthandrepro ductionof Nereis diversicolor .Onecompletelifecycleofthepolychaetewas observedunderartificialconditionswithinaperiodof110days.Continuous cultureofthemicroalgae Nannochloropsis spec.( max =0.025h1)wasdevel opedandintegratedassecondarybypasssystemfortheproductionofvalu ablemicroalgaenutrition. Theconsumptionoforganicsandthebioturbationeffectofthewormskept theorganicloadofthesedimentconstantoveraperiod of about 90 days. Duetothemonotelicreproductionofthewormspecieslargerindividualsof Nereis diversicolor disappearedafterspawning.Thedecreasedfoodconsump tionledtoanaccumulationoforganicmaterialinthefirstsectionofthede tritivorousreactor.Thisincreasedorganiccontentcreatedanoxicconditions leading to enhanced denitrification. Decreasing nitrate concentrations and increasingpHvaluesinthesystemweretheresultofthisdevelopment. Even though bacterial activity at all nitrifying components (biofilter, sedi mentsurface,systemwalls,etc.)couldbemeasured,totalammonianitrogen (TAN)concentrationswereincreasing.TheseelevatedNH 4concentrationsare assumedtobecausedbyanothersourcethanfishmetabolism.Potentialex planationsfortheseelevatedconcentrationsmaybethereducednitrification rateduetoelevateddenitrificationratesortheassimilatorynitratereduction processesbothoccurringwhensuboxic/anoxicconditionsarepresent. Keywords: marine recirculation system, integration, Nereis diversicolor , Sparus aurata , Nannochloropsis spec.,artificialecosystem

148 Chapter5 5.1 Introduction Theintegrationofsecondarybiologicaltreatmentcomponentsinmarinere circulationsystemsisgainingmoreimportanceinordertoreducetheenvi ronmentalimpactofaquaculturesystems(e.g.eutrophication,Chopinetal., 2001). Cultivation of additional organisms within these systems may en hancetheirprofitability(Chopinetal.,2003;von Harlem, 2006). However, the integration of additional organisms requires considerable financial in vestmentduringthesetup. Besides new developments in conventional production units (Neori et al., 2000),thefirstconceptofamarinerecirculationsystemwithwaterandnu trientrecyclingwasrealisedbyintegrationofmacroalgaefiltrationandma rineragworms(MARE,seeChapter2).Itcouldbeshownthatdetritivorous organismslike Nereis diversicolor aresuitablesecondaryorganismsforutili zationofsuspendedsolidwastefromfishtanks(Bischoff,2003). Macroalgael filters are the typical secondary treatment components for mariculture (Neori et al. , 2000; Chopin et al. , 2003). Nevertheless, integra tionofadditionalstepsneedstobeconsideredtoreduceimpactsofmaricul tures on the environment. Potential candidates are bivalves, shrimps, sea cucumbersanddifferentmicroalgae,butonlyfewattemptshavebeencon ductedtoinvestigatetheeffectivenessoftheseorganismsasadditionalsteps inmariculturesystems(Sphigel et al. ,1993;Neorietal.,2000). Themaintaskinmarinerecirculationaquaculturesystems(RAS)isthere movalofdissolvednutrientsfromtherecirculatedwater.Todate,thereare almostnoalternativestobacterialormacroalgaefilters for removal of dis solvednutrients.Theuseofmicroalgaefilterswasnottestedintensivelyex ceptforsomestudiesmainlyfocusedondiatoms(Hussenot,2003;Tandler, 2003). However, suspended microalgae like Nannochloropsis , Rhodomonas , Tetraselmis etc.haveahighvalueforaquaculturefeed,e.g.forshrimps,her bivorous organisms (Rotatoria, Copepods) or larviculture (Sargent et al., 1997;Brown et al. ,1997;Bessonart et al. ,1999).Thepresentstudywasper

149 Chapter5 formedinordertoevaluateanovelcontinuousphotobioreactorsystemwith anautomaticwaterpretreatmentandharvestingprocessforthecultivation ofmicroalgaeaspartofarecirculatingaquaculturesystem. 5.2 Material and Methods 5.2.1 Modifications of the recirculation system The system configuration of the investigated recirculation system is pre sentedinWecker et al. ,2006(Chapter2).Here,thefirstversionofalowwa terdischargemultilooprecirculationsystemMARE(MarineArtificialRecir culationSystem,4.5m³)isdescribed.Amodificationofthissystemwasalso usedinthepresentstudy(Fig.1).Fishbiomasswasincreasedcomparedto MARE I; each fish tank (1) (700L each) was stocked with 35 Gilthead seabream(Sparus aurata )and65additionalanimalswerecultivatedinthe former macroalgae tank (3, 1500L). Average size of fish in all tanks was 354.9±48.8g,resultinginaninitialstockingdensityof9.8 kgperm³system volumeatthestartoftheexperiment. Theremovalofdissolvednutrientswasachievedbymeansofaphotobioreac torsystemforthecontinuouscultivationofmicroalgae(fordetailsseeChap ter3).Thissystemconsistedofadisinfectionunit,aproductionunitanda harvestingunit(seealsoChapter3).Inthedisinfectionunitwaterwaspre treated in a foam fractionator at high redox potential values (500600mV, 0.81.0mg L 1 total residual oxidants, TRO). Water was afterwards trans ferredtoadegassingtowerwithcompressedairaerationtoremoveresidual ozone(B).Furtherdetailsofthe“disinfection”andharvestingunitareout linedinChapter4andChapter3,respectively. Thecultivationunitformicroalgaeconsistedofthreeacryliccolumns(20cm diameter, 1.50 m height) with Yshape airdiffusers and an attached light tubes. Nannochloropsis sp.wascultivatedandcontinuouslyharvestedbya secondfoamfractionator.Thefoamcondensatecarryingthemicroalgaewas collectedinaseparatetank.Watertreatedthisway then flowed back into themainwatercirculationsystemattheoutflowoftank3.

150 Chapter5

Inthemodifiedsystem(MAREII)atricklingbiofilter(7)wasinstalledtoen hancenitrificationinordertomaintainminimalconcentrationsofammonia andnitrite.Thebioactivesurfaceofthebiofilterwasapprox.35m². SeveralunitswerenotmodifiedforapplicationinMAREII(Fig.1):thedetri tivorousculturetank(2),twofoamfractionators(5)andpump(4)wereused analogoustoMAREI.Surfaceareaofthedetritivorousculturetankwas2.08 m². Two PVC walls were integrated to enhance particle subsidence in the tank (Waller, 2000). The tank was filled with a 10cm thick layer of sand (grain size ≤ 2mm) providing the preferred sediment for the selected worm species.Foamfractionators(ErwinSanderElektroapparate GmbH, Outside Skimmer III) were rinsed automatically with a secondary fresh water loop, whichisnotillustratedinFig.1.Thewatercirculationwasdrivenbyacen trifugalpump(ArgonautG8)supplyingfishtanks(700800Lh 1),foamfrac tionators(1000Lh 1)andbiofilters(5001000Lh 1),respectively.Thedetri tivorousbioreactorwasrestockedwithasecondgenerationof Nereis diversi- color, atapprox.850individualsperm².

2 1 1

7 4

6 3 5

Fig. 1 FlowchartoftheMAREsystemII(MarineArtificialRecirculatingEcosystem).Fishtanks=(1, 3),detritivorousculturetank=(2),pump=(4),foamfractionators=(5),microalgaecultivationsystem =(6)andtricklingbiofilter=(7).Doubletriangle=tap.Dimensionsofthesinglemodulesaregivenin Chapter2and3.

151 Chapter5

5.2.2 Measurements Thedurationoftheexperimentwas5months,lastingfrom5 th ofSeptember 2005to15 th ofFebruary2006. Biomass determination Accordingtotheaveragefishweight,fishwerefedwithpelletsof4.5and6 mm diameter, respectively (Biomar, Aqualife 17). The nutrition type was changedfromtroutfeedtosalmonfeedafter3months. Daily feeding rate (%fishbodyweight)wasadjustedaccordingtobiomassdeterminationofthe fish. Feeding rate was changed from 1.0% to 0.8%, when the fish weight reached500g. Wormbiomasswasdeterminedusingfoursubsamples.Therefore,thedetri tivoroustankwasdividedintofourareasandasedimentcoreof9.5cmdi ameter(800cm 3)wassampledfromeacharea.Sedimentwasremovedusing asieveof1mmmehsizecollectingtheworms.Measuredaverageweightand stockingdensityofcollectedwormswereusedtocalculatebiomassparame ters. Opticaldensitymeasurementswereusedtodeterminealgalbiomassinthe bioreactors.Therefore,atthestartoftheexperiment,acalibrationwases tablishedinordertocorrelatealgalbiomasswithmeasuredopticaldensity. Cellswerecountedusingalightmicroscopeandahaemocytometer(Fuchs Rosenthal).Opticaldensityofthesamplewasdeterminedat665nmusinga HACHSR2010photometer. During the experiment, algae were harvested by foam fractionation. The amountofalgaein theharvestingunit wasrecorded using optical density measurements.12subsamplesoftheharvestweretakenasreplicatesand centrifuged at 5000rpm for 10 minutes. Analysis of these samples is de scribedinthesubsection Solid components (seebelow).

152 Chapter5

Water chemistry Watersamplesforchemicalanalysisofdissolvednutrientsweretakendaily atfourdefinitepointsoftheMAREsystem:outlet fishtanks, outlet Nereis tank,outletfishtank3andoutletbiofilter.

Watersampleswerestoredat–20°Cforlateranalysis.ConcentrationofPO 4

P, NO 3N, NO 2N and TAN were analysed using an Autoanalyzer 3 (Bran Lübbe,Norderstedt,Germany). Flowratesthroughfishtanksandfoamfractionatorswererecordedandad justedto800Lh 1and1000Lh 1,respectively.Flowratesofthemicroalgae reactorswererecordedaswell. Onlinemeasurementsofozonereductionpotential(ORP),pHanddissolved oxygenwererecordedwithanelectroniccontrolmodule (KM 2000, Meins berg)andaportablemeasuringdevice(WTWmulti350). Waterlevelofthesystemwascontrolleddailyandifnecessary,adjustedwith filtered brackish seawater. Salinity of the system water was 24.8±1.0 psu; artificialseasaltwasusedtoincreasesalinityifnecessary.Thefoamcollec tors were cleaned daily and the freshwater for rinsing the foam collectors waschanged.Thedailylossofwaterviathefoamfractionatorswasrecorded bytheincreasedwatervolumeinthesecondaryfreshwaterlooptank.

Solid components Samplesofrinsingwaterofthefoamfractionatorweretakenweeklyinorder to determine the amount of suspended solids removed by the system. 12 tubes of 10ml sample volume were centrifuged and the supernatant was storedat20°Cforlaterwateranalysisofdissolvedinorganicnutrientload. DrymatterandC/Nratioofthecentrifugedpelletsweredeterminedasde scribedbelow.Organicmatterofthesedimentwasanalysedweeklybythe incinerationtechniqueusing5subsamples.

153 Chapter5

Foranalysisofsolidwaste,harvestedmicroalgae,tissuesandsedimentpa rameters the incineration technique was used as well: dry matter content wasdeterminedbydehydrationofthesampleinadrying furnace at 60°C overnight.Organiccontentwasmeasuredbyincinerationoforganicmatter inamufflefurnace.C/Nratiowasdeterminedbygaschromatography(GC) inanelementanalyser(EUROEAelementalanalyser,Milano,Italy).Energy contentwasmeasuredbycompletesamplecombustion using an IKA calo rimeter C4000. Weighing was performed using a Sartorius A 210 P (max. 200g)andaSartoriusU4600P(max.4000g). 5.3 Results TheMAREexperimentalphaseIshowedagoodperformanceofthesystem for the cultivation of Sparus aurata by integration of biological secondary steps ( Nereis diversicolor , Solieria chordalis ). A second experimental phase (MARE II) combining fish, ragworms and microalgae was started on 5 th of September 2005 and was finished on 15 th of February 2006. This period representsexperimentaldays480to643ofthewholeMAREsystem(Chap ter2),butwillherebereferredtoas“experimentaldays1163”. 5.3.1 Module fish Duetotheincreasingindividualsizeoffishitwasexpectedthatfishgrowth switched from exponential to linear growth according to the Bertalanffy growth equation (Bone & Marshall, 1985). This hypothesis could be con firmedbyexperimentaldata;relevantdataarepresentedinFig.3.Therefore, growthcanbedescribedbyalinearregression: = + ⋅ f y0 a x (Equ.1)

154 Chapter5

700

600

500

400 average fishweight [g]fishweight average fishweight[g]

300

0 50 100 150 experimental days Fig. 3 Growthperformanceof Sparus aurata duringthesecondMAREphase.Linearregressiongave a=1,60;y 0=418,r²=0.68. 5.3.2 Module detritivorous tank Within 60 days after stocking, worms achieved a maximum weight of 0.62±0.27g. Total worm biomass within the reactor was approx. 1.7 kg (Tab.1,Fig.5)withastandingstockdensityofapprox.13001400individu als/m².Variationsinstockdensityvaluesareassumedtobecausedbyin accuraciesofthesamplingmethod. Tab. 1 GrowthperformanceandbiomassdataofNereisdiversicolorduringMAREII. aver. worm weight stocking den- total Experimental date ± SD sity ± SD biomass day [g] [ind./m²] [g] 10.10.2005 43 0.160±0.259 895±345 299 01.11.2005 65 0.243±0.236 1011±423 512 24.11.2005 88 0.369±0.146 1371±742 1057 15.12.2005 109 0.617±0.273 1299±120 1674 07.01.2006 132 0.584±0.295 1112±288 1356 26.01.2006 151 0.311±0.329 953±658 618 14.02.2006 170 0.240±0.279 1631±1696 818 Thewormnutritionwassolelybasedontheparticulatematterfromthefish tanksoftherecirculatingsystem.Tab.2givesanestimateofthefoodenergy suppliedtothewormsatdifferenttimeintervalsduringthecourseoftheex 155 Chapter5 periment.Theenergycontentrangedfrom500to630kJd 1.Assumingthat 1400wormindividualsinhabitonesquaremeterofsedimentinthedetritivo rousreactor,approximately162Jd 1 wereavailableforanindividualworm. Tab. 2 CalculatedtotalenergyperdayavailableforNereisdiversicolorinthebioreactoraccordingtothe fishfeedingrateperday.CalculationswereperformedaccordingtoMAREI(Chapter2). Time interval Fish feed daily solid waste Daily total Daily total per day per day ± SD organic load ± energy ± SD [g] [g] SD [kJ] [g] 23.09.–13.10.05 262.4 38.8±9.2 25.0±6.0 567.4±135.1 13.10.–08.11.05 292.0 43.1±10.3 27.8±6.6 631.4±156.4 08.11.–06.12.05 274.6 40.6±9.7 26.2±6.2 593.8±141.6 06.12.–09.01.06 232.6 34.6±8.2 22.2±5.3 503.0±119.9 09.01.–27.01.06 265.0 29.1±9.3 25.3±5.3 573.0±136.4 27.01.–15.02.06 285.2 42.1±10.0 27.2±6.5 616.6±147.0

a 1,5 <0.15 g <0.30 g <0.45 g <0.60 g <0.75 g <0.90 g >0.90 g

1,0 0 1 rel. abundance

b

0,5 average wormweight [g] wormweight average

Verteilung 623 0,0

40 60 80 100 120 140 160 180 experimental day Fig. 5 Growthperformanceof Nereis diversicolor duringMAREII(a)relativesizedistribution(weight classes)ofeverybiomassdetermination.(b)averagewormweight±SDofeachbiomassdetermination (accordingtoTab.1).Thedataindicatethegenerationcyclewithreproductionaroundexp.day109 andoccurrenceofnewgenerationatday132. ThegrowthperformanceofthewormsissummarizedinFig.5.Theaverage individualweightatthebeginningoftheexperimentwas0.160±0.259g.

156 Chapter5

Average individual worm weight increased until day 109 and slightly de creasedatday132asshowninFig5b).Maximumworm weight was be tween0.617±0.273gand0.584±0.295g.Theaverage individualweight decreasedsubstantiallyatday151and170to0.311±0.329gand0.240± 0.279g,respectively.Fig.5a)showsthesizedistribution for the collected worms. A dramatical population decrease could be observed between day 120andday150. Sexualmaturityofthewormsisindicatedbyacolourchangefromredtoa greenish colour (HartmannSchröder, 1996), a colour change of the worms wasobservedforthefirsttimeonexperimentalday60.Currently,nodata are published concerning spawning weight of Nereis diversicolor. Data ob tainedduringthisstudyshow,thatwormbodyweightattimeofmaturation wasapproximately0.8g.Duetothemonotelicreproductionmode(deathaf terspawning),largeindividualsdisappearedafterspawning from the detri tivorous culture tank. After the reproduction event, a biomass decrease couldbeobservedwithinthesystem.Reproductionwasobservedforaperiod ofapprox.20daysoftheexperiment.Individualsofthenewgenerationwere capturedatday100forthefirsttime,thestartofthenew“growing”genera tioncanbeassumedforday120. Reproductioncouldnotbecontrolledbuthadanenormousinfluenceonthe systemstability.Duetogrowthoffishlargeramountsofsuspendedparticles weretransferredintothedetritivoroustank.Thisincreasedparticleloadap parentlywasnotcompletelyusedbythedecreasedwormbiomassafterday 132leadingtoanincreaseoforganicmatteronthesedimentinthefirstsec tion of the wormtank at the water inlet. An increase of organic load was found at the first sampling point in the reactor. Further sampling points withinthe Nereis tankdidnotshowsuchanincrease(Fig.6). Theincreasedamountoforganicmatterinthisreactorprobablyledtoacas cadeofeffectswithinashorttimeintervalfromday100on:oxygencondi tions in the first section of the detritivorous reactor changed from oxic to

157 Chapter5 suboxic/anoxic. Under these specific conditions, the process of denitrifica tionisfavoured,indicatedbyarapiddecreaseofnitrateconcentrations(Fig. 6b). Denitrification is a process releasing hydroxyl ions and consequently, pH increases. This could be experimentally confirmed by the pH measure ments.Thus,tomaintainsystemstability,aconstantacidadditiontoregu late pH was required (Fig. 6d). Concurrently, TAN concentrations rapidly roseupto10mgL 1(Fig.6c).Flowratethroughthebiofilterwasincreased to1000Lh 1fortheremainingexperimentalperiodand1000litresofwater wereexchangedinordertostabilizeTANconcentrations.DuringMAREII,no lossoffishduetoammoniatoxicationcouldbeobserved.

10 100 a b 8 80

6 60 -N [mg/l] -N 4 3 40 NO organic content [%] content organic 2 20

0 0 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 experimental days experimental days

9,0 10 d c 8,5 8 8,0 6 7,5

4 values pH 7,0

TAN[mg/L] 2 6,5 0 6,0 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 experimental days experimental days Fig. 6 (a)organiccontentofthesedimentwithinthedetritivorousculturetank:Amountoforganicmat teratsamplingpoint1(closedcircles)increased significantlyduringtheexperimentalperiod(ANOVA, p<0.001).Opencirclesareallothersamplingpointinthedetritivorousreactor.(b)NO 3Nconcentrations inthesystemwaterduringMAREIIaccumulationofnitrateoccurreduntilday100.Afterwardsconcen trationsofNO 3Ndecreasedtolessthan10mg/L 1duetodenitrification;(c)TANconcentrationsofthe systemwater.d)pHchanges.

158 Chapter5

5.3.3 Module microalgae bioreactors PhotobioreactorsforthecontinuouscultivationofNannochloropsis sp.were includedintotheMAREsystem.ItwaspossibletocultivateNannochloropsis inacontinuousculturebasedondissolvednutrientsderivedfromtherecir culationsystem.Thedailyharvestedyieldofalgaebiomasswas2.49 ±1.34g DW d 1 in average. Harvest was very efficient: daily harvest volume was 0.184 ±0.053Ld 1athighcelldensitiesof227.9x10 8±6.7x10 8cellsml 1. 99.68 ± 0.38% of the water coming from the photobioreactors were trans ferredbacktothemainrecirculationsystem.Nutritionalvalueofthealgae washigh:organicproportionreachedmorethan80%ofthealgaedryweight, measuredenergyvaluewas21.09 ±4.6KJg 1DW algae .Totalamountoffatty acidsvariedfrom5.5ngfattyacids(FA)/gPOC algae to16.72ngFA/gPOC al gae accordingtoirradianceofeachphotobioreactor.Relative amount of un saturated fatty acids (arachidonic acidARA, eicosapentaenoic acid EPA) to totalamountoffattyacidsrangedfrom4.0–8.27%and9.1–18.9%,respec tively.ForfurtherdetailsseeChapter3. The nutrient uptake rates have been determined in 1 hour growth experi mentsgivingaveragevaluesof0.190–0.294mgh 1PO 4Pperlitreculture volumeand0.129–0.186mgh 1NO 3Nperlitreculturevolumeaccordingto lightintensity(seeChapter3).

Thebiofilterefficiencyof Nannochloropsis sp.weredeterminedwithtwodif ferentmethods:resultsfromonehourgrowthexperimentsgave(depending onlightintensity)averagevaluesforPO 4Puptakeof0.190–0.294mgh 1 perlitreculturevolumeandforNO 3Nuptake0.129–0.186mgh 1perlitre culturevolume,respectively(seeChapter3,Tab.6).

Byusingthesevalues(average)amountofdailyremovednutrientsfromthe recirculationsystemcanbecalculated,assumingatotalvolumeofphotobio reactorsof3x50litresand24hourscultivationtime.Accordingtothiscal culationthephotobioreactorsystemofthepresenteddimensioncanremove atotalamountof0.87gofPO 4Pand0.57gofNO 3Nperday.

159 Chapter5

Thesecondmethodusedtocalculatethebiofilterefficacyofthephotobiore actors was the estimation of the daily removal of nutrients by water ex changeduetocontinuousculturemode.Accordingtotheadjustedflowrate nutrientrichwaterfromtherecirculationsystemwillbeintroducedatacer tain volume to the photobioreactors. According to the laws of continuous culture (Pirt, 1975) an equal volume of treated water will flow out of the photobioreactorsandbackintothemainrecirculation system at the same time.Thedifferencebetweenthemeasureddissolvednutrientconcentration oftheinflow(nutrientrichwater)anddissolvednutrientconcentrationofthe outflow(treatedwater)weredeterminedforeachexperimentalday.Dataare showninTab.3.Valuesvaryfrom2.1mgto28.1mgPO 4Pperlitresdis charge and 0.6 mg to 20.4 mg NO 3N, because of the variation of the dis solvednutrientconcentrationswithinthephotobioreactorsduringtheentire experimentaltime.However,dailyvaluesweremultipliedwiththetotalvol umeofrecirculationwater,passingthephotobioreactorsystemateachex perimentaldayaccordingtotheadjustedflowrate.Valuesfortotalamount ofremovedPO 4PandNO 3Nperdayvaryduetochangingconditionswithin therecirculationsystem.Surprisingly,takingtheaveragevaluesofalldata overtheentireexperimentalperiod,similarvaluesincomparisontothefirst calculation were determined: in average 0.88g PO 4P and 0.57g NO 3N per daywereremovedfromtherecirculationsystembythephotobioreactorsys tem.

160 Chapter5

Tab. 3 Differencesoftheinflowandoutflowconcentrationofthephotobioreactorsystemanddaily amountofremovednutrientsandflowratesduringtheexperimentalperiod.Opticaldensity(OD 665 )of theoutflowfromtheharvestingunit. ∆ Date Flow OD 665 inflow–outflowconc. amountofremovednutrients rateper after 1 perday day[L] [mgL ] harvest [gd1]

PO 4P NO 3N TAN NO 2N PO 4P NO 3N TAN NO 2N 14.10.05 108.0 2.1 3.8 0.23 0.41 15.10.05 108.0 0.062 3.6 5.1 0.39 0.55 19.10.05 108.0 0.138 8.2 18.0 1.14 0.00 0.89 1.94 0.12 0.00 20.10.05 108.0 0.026 4.8 12.5 0.58 0.16 0.52 1.35 0.06 0.02 27.10.05 73.4 0.136 14.5 20.4 1.04 0.02 1.06 1.50 0.08 0.00 28.10.05 73.4 0.102 11.0 26.0 1.38 0.17 0.81 1.9 0.1 0.01 29.10.05 73.4 0.020 14.3 19.5 1.7 0.08 1.05 1.43 0.13 0.01 31.10.05 73.4 0.172 13.8 13.6 0.68 0.08 1.01 1.0 0.05 0.01 01.11.05 73.4 0.002 14.1 5.3 0.1 0.3 1.03 0.39 0.01 0.02 02.11.05 73.4 0.000 15.7 14.0 0.2 0.2 1.15 1.03 0.02 0.02 18.11.05 108.0 0.001 13.9 2.5 0.0 0.1 1.5 0.27 0.00 0.01 23.11.05 86.4 0.001 5.6 1.6 0.1 0.04 0.48 0.14 0.01 0.00 24.11.05 86.4 0.000 14.6 2.8 0.0 0.03 1.26 0.24 0.00 0.00 25.11.05 86.4 0.003 19.7 9.6 0.7 0.01 1.7 0.83 0.06 0.00 27.11.05 86.4 0.002 25.2 2.3 0.0 0.0 2.19 0.20 0.00 0.00 28.11.05 86.4 0.000 25.4 2.2 0.0 0.0 2.19 0.19 0.00 0.00 18.1.06 60.5 0.009 28.1 0.6 1.31 0.02 1.7 0.04 0.08 0.00 19.1.06 14.4 0.013 23.6 2.9 3.19 0.00 0.34 0.04 0.05 0.00 20.1.06 21.6 0.013 23.9 2.9 3.2 0.00 0.52 0.06 0.07 0.00 21.1.06 21.6 0.011 17.6 3.7 2.13 0.06 0.38 0.08 0.05 0.00 22.1.06 21.6 0.012 11.3 3.8 1.94 0.03 0.24 0.08 0.04 0.00 23.1.06 21.6 0.017 12.0 1.7 1.62 0.00 0.26 0.04 0.04 0.00 24.1.06 21.6 0.008 11.0 3.5 0.22 0.07 0.24 0.08 0.01 0.00 4.2.06 14.4 0.025 3.9 0.6 3.8 0.02 0.06 0.01 0.06 0.00 Average 0.88 0.57 0.05 0.00 SD 0.63 0.63 0.04 0.01 5.4 Discussion 5.4.1 Module fish tank ThelaboratoryconditionsinMAREIIweresimilarto MARE. However, fish tanks1and2becametoosmallfortheconstantlygrowingfish.Inorderto analyzethesystemstabilitywithrespecttohightotalfishbiomass,tank3 (macroalgaetankinMARE)wasstockedwithadditionalfish.Theloadofdis solvednutrientswasenhancedfortestsofmicroalgaeperformance.Dueto thechangesinthestockingofthetankssuspendedsolidsweretransferred mainlytothefoamfractionators.Attheendoftheexperimentalperiodthe

161 Chapter5 functionality of foam fractionation was restricted due tolarge quantities of suspended solids caused by the incomplete first step for removal of sus pendedsolids. 5.4.2 Module detritivorous tank Theperformanceofthedetritivorousreactorasasinkforsolidparticlespro ducedbythefishwassufficientduringthegrowthperiodoftheworms.But, as soon as worm reproduction (monotelic, Nereis diversicolor dies after spawning) started, organic matter was accumulating in the detritivorous tank,resultinginanoxicconditionsinturnendangeringthesuccessfulcul tivationofthefish.Thenaturallifecycleofan organism of critical impor tanceforsystemstabilitythereforemayleadtothebreakdownofthesystem. Theseresultsnecessarilyledtothequestionofthesuitabilityof Nereis diver- sicolor forintegrationinaquaculturesystemsandthesearchforpossibleal ternatives. The applicability of sea cucumbers ( Parastichopus californicus, Stychopus japonicus, Ahlgren1998,Bregman1994)isdiscussedasapossi ble alternative organism for Nereis diversicolor in integrated aquacultural systems. The performance of sea cucumbers for removal of settable solids appeared to be good (Ahlgren 1998, Bregman 1994), but the commercial valueoftheseorganismsisquestionable.ParalleltoMARE,theperformance ofshrimps( Crangon crangon )fortheremovalofsettablesolidswasexamined (data not shown). This experiment showed that the performance of Nereis diversicolor canbe consideredassuperiortotheshrimpsconcerning their capacityofsettablesolidremoval.Therefore,currentlythereseemstobeno alternativeto Nereis diversicolor asasecondaryorganisminintegratedaqua culture systems. Another possibility of avoiding the problems observed in MAREIIistheintegrationofseveraldetritivoroustanksequippedwith Nereis diversicolor indifferentlifecyclestagesandtheircontrolledconnectiontothe mainsystem,dependingonthestagesoflife. 5.4.3 Module microalgae bioreactors Although ammonia is the preferred chemical form of nitrogen and readily takenupbyphytoplankton(CollosandSlawyk1981,Levasseur et al. ,1993),

162 Chapter5 cultivated Nannochloropsis sp.mainlytookupnitrateduetothelackofsuf ficientammoniaconcentrationsintheinflow. Nannochloropsis wasnotsufficientlyprovidedbythisnutrientduetothelow flowratesthroughthephotobioreactorsystem.Flowratesarelimitedbythe maximumspecificgrowthrateandmaynotexceed0.025h 1dilutionrateto avoidbiomasswashout(seeChapter3).Maximumtotalwaterflowperday throughthephotobioreactorswasrecordedat108Lperday,whichisstilla negligiblevolumeregardingtotalnutrientbudgetoftheMAREsystem. Hence,thephotobioreactorsystemcannotfulfiltherequirementsofabiofil terforremovaloftoxicammoniaandnitritefromrecirculationwater.How ever,hintsaregiventhatthesimultaneousintegrationwithmacroalgaefilter maybepossible,becausemacroalgaefilterarenotcompetingfornitratedue totheirpreferenceforammonia(seeChapter2). Theconceptionaldesignofthephotobioreactorsystemwasfeasibleregarding pretreatment of the water and harvesting process. Cultivated microalgae canbeusedasvaluablefeedforfeedingorganisms ( Brachionus and cope pods), bivalves, Nereis diversicolor or fish larvae (Støttrup and McEvoy, 2002). 5.4.4 Nitrogen cycle Although not primarily intended, this experiment showed substantial in sightsintothenitrogencyclewithinthesystem: Overthreemonths,TANandnitriteconcentrationswereatlowlevels.Nitrate concentrationwasaccumulatingorremainedstabletill day 100 indicating nitrificationprocesses. Thesystemstartedtoshowinstabilitieswhentheonsetofwormreproduc tion was observed. The high amount of organic load produced by the fish couldnotbeefficientlydegradedbythewormsdue to their decreased bio mass.Consequently,anaerobicconditionsdevelopedinthefirstsectorofthe

163 Chapter5

Nereis-tank, favouring denitrification (Rheinheimer, 1988). Indications for anaerobic conditions were approved during sampling (dark colour of sedi ment,noworms,increasedoccurrenceofgasbubbles).Increasingphosphate valuescanalsobeanindicationforanaerobicconditions,butinthesystem, thisincreasecanalsobeduetothesubsequentaddition of phosphate via thefeed.Thisadditionofphosphatecanbeconsideredasthemajorcontri butiontotheincreasingphosphatevalues.Evidenceforanenhanceddenitri ficationactivitywasobtainedbyi)therapiddecreaseofnitrateandii)the subsequent increase of pH (Rheinheimer, 1988). Additionally, iii) bacterial matsidentifiedas sp.wereobserved. Beggiatoa sp.isknownasa sulphuroxidisingbacterium(Madigan,2001).Theobservedblackcolourof thesedimentindicatesthepresenceofH 2S,explainingthepresenceof Beg- giatoa sp.asanH 2Soxidisingbacterium.Furthermore,theabilityfordeni trification is also described for Beggiatoa sp. on freshwater sediments (Sweertsetal.,1990)andindicationswerefoundfordenitrificationabilityof thisspeciesinmarineaswell(McHattonetal.,1996). Thereisanothernitrateconsumingprocessofpossiblerelevancewithinthe system.Thereversecourseofthenitrificationprocessiscalledassimilatory nitratereduction.Manybacterialspeciesareabletoreducenitrateinorder to obtain ammonia for biomass synthesis (Madigan, 2001). This process wouldalsoleadtoanitrateconsumptionandthetwoprocessescanbecon sideredasmajorprocessescontributingtotheobserved decreasing nitrate values.Additionally,nitrateammonificationisperformedbyseveralbacteria in order to obtain reduction equivalents for fermentation. However, this processisinhibitedbyelevatedconcentrationsofammoniaandmaythere forebeofminorrelevancefortheexplanationoftheobservedeffects. Anotherprocesswasobservedtocoincidewithdecreasingnitrateconcentra tions. The TAN concentrations showed strongly increasing values (Fig. 6b andc).MeasuredTANvalues(measureddaily)exceededtheTANconcentra tionsexplicablebyfishmetabolism(3.35±0.33mgL1)only.Therearetwo microbialprocessesremovingammonia:nitrificationandANAMMOX(Madi gan, 2001). Nitrification is an oxic process and ammonia is thereby con

164 Chapter5 vertedtonitrate.AspecialtricklingbiofilterwasintegratedintotheMAREII experimentinordertoensureaconstantnitrification process. All surfaces (sediment,tankwallsandtubes)arealsoconsideredtoprovidehabitatsfor nitrifyingbacteria.LosordoandWethers(1997)estimatedtheTANremoval bynitrificationoutsidethebiofilterintherangeof30to50%.Thiscouldnot beprovedbySchneider(2000)whoshowedlittlecontribution of other sys temcomponents(water,pipes,tanks,sedimentation unit) compared to the aerobic biofilter unit. However during the experiments of Schneider (2000) highvaluesforFCRforAfricancatfish( Clarias gariepinus )occurred(experi mental FCR = 2.5). This resulted in high organic waste loads, which Bov endeur (1989) showed will inhibit nitrification processes. Rydl (2005) ob servedduringheranalysisofbacterialactivitiesofarecirculatingaquacul turesystemthatturnoverratesofbacteriaonwallmaterialandbiofilterfill ingmaterialarecomparable.Turnoverratesofwatersamplesfromthesys temwerelowercomparedtotheratesofthewallmaterialandthebiofilter fillingmaterial. A part of the previously “nitrifying surface” was lost (considering the total nitrificationbudget)whenapartofthesedimentsurfacewithin theworm tankbecameanoxic.Inthispartofthesystem,ammoniawasnolongerre moved by nitrification, but nitrate was removed due to denitrification and possibleassimilatorynitratereduction. Theincreasingnitriteconcentrationsmayalsobeexplainedbythisprocess. Nitrite concentrations are supposed to increase, when nitrification is par tially inhibited due to unfavourable environmental conditions (e.g. suboxic/anoxic). ANAMMOXisananaerobicprocessconvertingammoniaandnitriteresulting intheformationofelementarynitrogen.Anoxicconditions were present in the Nereis tankbutammoniaaswellasnitriteconcentrationsincreasedin dicatingthattheANAMMOXprocesswasnotofmajorimportanceinthesys tem.

165 Chapter5

Alltheseprocessesarestronglydependingontheprevailingoxygenconcen trations.Unfortunately,nooxygenconcentrationsweremeasuredwithinthe different system units, therefore the processes assumed to have happened within the system after the onset of worm reproduction only can rely on measuredconcentrationchangesof TAN,NO 2,NO 3. Thus, the crosslinking and interactions of these nitrogenconverting proc esses,especiallynitrificationanddenitrificationstronglydependingoneach othermayexplaintheobservedchangesinthesystemconcerningthediffer entnitrogencompounds. Thedifferentinteractionswithinthenitrogencyclehaddifferentimpactson theothersystemmodules:i)duetotheincreasedpH,thefractionofdissoci atedammonia(NH 3)wasclosetotoxiclevels(observed=0.035mgL 1,litera ture data = 0.05 mg L 1,Losordoetal.,1998).Despitetheseunfavourable conditions,nomortalityandunusualbehaviouramongthefishcouldbede tected.Fisheventolerated10mgL 1TANforashortwhileatpH7.96.,al thoughreducedfeedingactivityoccasionallyoccured.Itcanthereforebeas sumed,thatfishisabletoadapttohigherammonialevels,whenthewater qualityisgood. ii)theanoxicconditionsinthesedimentofthewormtankmayhaveledto elevatedwormmobilitytowardstheoxicareaswithinthesediment,inturn increasingtheorganicloadinthefirstsectionofthetankandthereforefur therenhancingdenitrification. iii) the foam fractionating process was not efficient enough to successfully removebacteriaattachedtoparticlesandmicroalgaedidnotshowacompa rableperformancetothemacroalgaefortheremovalofnitratealsofavouring denitrification.

166 Chapter5

5.4.5 General recommendations Theexperimentsinthisstudyconfirmed,thattheaccurateadaptationofall componentsofasystemiscrucial(Losordo et al. ,1999;Waller et al. ,2003). Inthefirstthreemonthsoftheexperiment,MAREIIprovedtobeastable system,butattheonsetofwormreproductionthesystemstartedtobecome instable. Basedontheresultsfromthisstudy,thesimultaneoususeofseveralbiore actorswithdifferentwormgenerationsisrecommendedtoallowyearround productionwithoutanydisturbancespossiblyduetothewormlifecycle.Itis alsorecommended,thatsedimentremovedbythewormharvestingprocess is brought back to the system (assuming aerobic conditions of the Nereis tank). Earlylifestagesof Nereis diversicolor arerathersmall(<1mmdiame ter) and cannot be easily detected using macroscopic methods. Therefore theyareeasilylostusingthesievingmethodforharvesting.Ameshsizere ductionofthesievewouldsolvethisproblem,butanefficientsedimentre movalisnotguaranteedbyusingsmallermeshsizes,alsoleadingtoincor rectwormbiomassestimates. Theimportanceofacautiousmonitoringofthedifferentnitrogenconverting processesisalsostronglyrecommendedasaresultofthisstudy.Therefore, inpossiblefutureexperimentsitisalsocrucialtoobtainoxygenconcentra tionsindifferentcompartmentsofthesystemandindifferentregionsofthe compartments(water,differentsedimentlayers)inordertobeabletoreact beforeanoxicconditionscandevelop.

5.5 Acknowledgements ThisstudywasfundedbyDeutscheBundesstiftungUmwelt(DBU)andthe EU(InterregIIIA).WethankKerstinNachtigallformeasuringPOCandPON.

167 Chapter5 5.6 References AhlgrenM.O.(1998).Consumptionandassimilationofsalmonnetpenfoul ingdebrisbytheRed Sea cucumber Parastichopus californicus :implications forpolyculture.JournaloftheWorldAquacultureSociety29(2):133–139. BischoffA.A.(2003).Growthandmortalityofthepolychaete Nereis diversi- color underexperimentalrearingconditions.M.Sc.thesis,InstituteofMarine Research&DepartmentofAnimalSciences,ChairgroupofFishCultureand Fisheries, ChristianAlbrechtsUniversität Kiel, Germany/Wageningen Uni versity,TheNetherlands;103pp. Bessonart M., Izquierdo M.S., Salhi M., HernándezCruz C.M., Gonzáles M.M., and FernándezPalacios H. (1999). Effect of dietary arachidonic acid levelsongrowthandsurvivalofGiltheadseabream.Aquaculture179:265 275. BoneQ.andMarshallN.B.(eds.).BiologiederFische,GustavFischerVer lag,Stuttgart,NewYork,1985. Bovendeur,(1989).FixedBiofilmReactorsappliedtoWasteWaterTreatment andAquaculturalWaterRecirculatingSystems.DepartmentofWaterPollu tionControl.Wageningen,TheNetherlands,Landbouwuniversiteit:171. Bregman Yu Eh (1994). of the filter feeding molluscdetritus feeding holothurian food chain under biculture conditions. TINRO, VLADI VOSTOK(Russia). BrownJ.A.,WisemanD.,andKeanP.(1997).Theuseofbehaviouralobser vationsinthelarvicultureofcoldwatermarinefish.Aquaculture155:301– 310. Chopin T., Buschmann A. H., Halling C., Troell M., Kautsky N., Neori A., KraemerG.P.,ZertucheGonzalezJ.A.,YarishC.,andNeefusC.(2001).In tegratingseaweedsintomarineaquaculturesystems:Akeytowardsustain ability.JournalofPhycology37(6):975–986. Chopin T., Bastarache S., Beleyea E., Haya K., Sephton, D., Martin J. L. EddyS.,andStewartI.(2003).DevelopmentofthecultivationofLaminaria saccharina as the extractive inorganic component of an integrated aqucul ture system and monitoring of therapeutants and phycotoxins. Journal of Phycology39(S1):10. CollosY.andSlawykG.(1980).Uptakeandassimilation by marine phyto plankton. In: FalkowskiP.G.Uptakeandassimilationbymarinephytoplank ton.PlenumPress,NewYork,pp.195211. HartmannSchröder G. (ed.). Annelida,Borstenwürmer, Polychaeta. Gustav FischerVerlag,Jena,1996.

168 Chapter5

HussenotJ.M.(2003).Emergingeffluentmanagementstrategiesinmarine fishculturefarmslocatedinEuropeancoastalwetlands. Aquaculture 226: 113–128. LevasseurM.,ThompsonP.A.andHarrisonP.J.(1993).Physiologicalaccli mation of marine phytoplankton to different nitrogen sources. Journal of Phycology29:587595. Losordo,T.M.andWesters,H.(1997).SystemCarryingCapacityandFlow Estimations. Aquaculture Water Reuse Systems: Engineering Design and Management.M.B.Timmonsand T.M.Losordo.Amsterdam, The Nether lands,Elsevier.27:9–60. LosordoT.M.,MasserM.P.,andRakocyJ.E.(1999).Recirculatingaquacul turetankproductionsystems:Areviewofcomponentoptions.SRACPubli cation453. Madigan M. T., Martinko J. M., and Parker J. (eds) Brock Mikrobiologie. SpektrumAkademischerVerlagBerlinHeidelberg,(2001).

McHattonS . C.,Barry J. P.,JannaschH . W., andNelsonD . C. (1996). High Nitrate Concentrations in Vacuolate, Autotrophic Marine Beggiatoa spp.. Appl.Environ.Microbiol.62(3):954958. NeoriA.,ShpigelM.,andBenEzraD.(2000).Asustainableintegratedsys temforcultureoffish,seaweedandabalone.Aquaculture186:279–291. RheinheimerG.,HegemannW.andSekoulovR.J.(eds.).Stickstoffkreislauf imWasser:StickstoffumsetzunginnatürlichenGewässern,inderAbwasser reinigungundWasserversorgung.OldenburgVerlag,München,1988. Rydl,A.(2005).SukzessionundAnalysedesbakteriellenBewuchsesanFi schen und Materialoberflächen in einer geschlossenen Fischzuchtanlage. Diplomarbeit,LeibnizInstituteofMarineSciences,Kiel.,103pp. SargentJ.R.,McEvoyL.A.,andBellJ.G.(1997).Requirements,presentation andsourcesofpolyunsaturatedfattyacidsinmarinefishlarvalfeeds.Aqua culture155:117127. Schneider,O.(2000).ModellingAquacultureSystems:Energyflowandnu trientflowsincommercialcatfishfarms,usingrecirculationsystems.M.Sc. thesis, Fish Culture and Fisheries Group, Wageningen University and the InstituteforMarineResearch,UniversityofKiel,123pp. ShpigelM.,NeoriA.,PopperD.M.,andGordinH.(1993).Aproposedmodel for “environmentally clean” landbased culture of fish, bivalves and sea weeds.Aquaculture117:115–128. StøttrupJ.G.andMcEvoyL.A.(eds.)(2002).Livefeeds in marine aquacul ture.Blackwellpublishing336pp.

169 Chapter5

SweertsJ. P. R. A., De BeerD., NielsenL.P., VerdouwH., Van denHeuvelJ.C.,CohenY.,andCappenbergT.E.(1990). Denitrification by sulphuroxidizingBeggiatoaspp.matsonfreshwatersediments. Nature,Vol ume344,Issue6268:762763. TandlerA.,MozesN.,andUckoM.(2003).Theassimilationofdissolvedfish waste by microalgae. Annual report 2003 of the EUproject ZAFIRA (Zero discharge Aquaculture by Farming in Integrated Recirculation Systems in Asia),http://zafira.wau.nl:4269. WallerU.(2000).Tankculture–includingracewaysandrecirculatingsys tems. In:Environmentalimpactsofaquaculture. Edited by K.D.Black.Shef fieldAcademicPress. WallerU.,SanderM.,andPikerL.(2001).Lowenergy and low water con sumptionrecirculationsystemformarinefish:firstresultsfromatestrun with Dicentrarchus labrax inanimprovedrecirculatingsystemandsugges tionsonanintegrationintosecondaryproductionlines.EuropeanAquacul tureSocietySpecialPublications29:265266. WallerU.,BischoffA.A.,OrellanaJ.,SanderM.,andWeckerB.(2003).An advancedtechnologyforclearwateraquaculturerecirculationsystems:Re sults from a pilot production of Sea bass and hints towards "Zero Dis charge".EuropeanAquacultureSocietySpecialPublications33:356357.

170

Danksagung IchdankeFrauProf.Dr.KarinLochtefürihreBereitschaft,dieseArbeitzu betreuen.IhrVertrauen,EinsatzundihreDiskussionsbereitschaftwarendie GrundlagedieserArbeit. HerrnProf.Dr.SchnackdankeichfürdieUnterstützungwährendderPro motionszeit und Herrn Prof. Dr. Dr. h.c. Harald Rosenthal für seine Hilfe undseinenEinsatzbeiderFertigstellungdieserArbeit. MeinenKollegenAdrianundBertdankeichfürdiegemeinsameZeit,fürihre FreundschaftundfürjedeeinzelneStunde,diewiranunserenAnlagenund imLaborverbrachthaben!UweWallerhatalsLeiterderGruppefürdienöti geFinanzierungundtechnischenVoraussetzungengesorgt.ErwaralsDis kussionspartner,RatundIdeengeberimmereinegroßeHilfe. GroßenAnteilamGelingendieserArbeithabenMichael,Ralfundalleande renvomAquarium.IhrwartdiefesteBasisdieserArbeit,eureIdeenunddas besonderepersönlicheVerhältniswarensehrwichtig. BesonderswohlhabeichmichimmerbeidenMikrobiologengefühlt.Beider Gruppe von Herrn Prof. HansGeorg Hoppe in der Hohenbergstr. habe ich sehrvielZeitverbrachtundgenossdieangenehmeAtmosphäre.ImBeson derenmöchteichmichbeiRegineKoppebedanken,ohne ihre Hilfe wären die mikrobiologischen Untersuchungen nicht möglich gewesen. Aber auch dieGruppeimHaupthaus(JuttaWiese,VeraThielundalldieanderen)hieß michimmerwillkommenundstandmitRatundTat(und Autoklaven) zur Seite. Line Christensen und Jens Jorgen Lonsman Iversen waren wertvolle Pro jektpartner, die mit ihrem Wissen über Bioreaktorentechnik dieses Projekt erstmöglichgemachthaben. Dr.PatrickFinkvomMPIPlöndankeichfürdieunkomplizierteZusammen arbeitbeiderAnalysederFettsäureprofile. BesondererDankgiltdemtechnischenPersonaldesIFMGEOMAR:Kerstin Nachtigall,PeterFritscheundThomasHansenhaben durch ihre Analysen einen wichtigen Beitrag zu dieser Arbeit geleistet. Ganz besonders möchte ich Helge Mempel danken, der immer geholfen hat, wenn der Laboralltag seine Tücken hatte. Hans Langmaack und Dirk Wehrend von der Zentral werkstattwarenimmerverfügbarundhabensomancheSonderanfertigung realisiert.GüntherPeterswareinegroßeUnterstützungbeikleinenundgro ßenProblemeninderelektrischenVersorgungderKreislaufanlagen.Danke analle,diehiernichtnamentlichaufgeführtwerdenkonnten! Die Abteilung Fischereibiologie mit all ihren Doktoranden, Postdocs und technischen Mitarbeitern hat während der gesamten Zeit eine schöne und angenehmeArbeitsatmosphäregeschaffen.Eshatmichgefreut,einTeilda vongewesenzusein.Jan,dankefürDeineHilfeinOzonfragenundJörnfür

dieUnterstützungbeiComputerproblemen.Helmutistwährenddergesam tenZeiteinewichtigeUnterstützunggewesenundhatsehrvielGeduldbei denteilweisebelagerungsartigenZuständenimBürobewiesen. IchdankemeinenEltern,dasssiemirermöglichthaben,meinenTraumzu erfüllenundimmerhintermirgestandenhaben;meinenVerwandtenfürdas VerständnisobderknappenZeitfürgemeinsameStunden. Marco,DirdankeichfürDeineHilfe,DeinVerständnis und die Fähigkeit, michimmerwiederaufzurichten. AuchmeinenFreunden,allenvoranElke,Flo,Lenard,KatjaundSteffihabe icheszuverdanken,dassichdieseArbeitbeendenkonnte. Tini,DirgebührtmeinallergrößterDankfürdeinenspontanen,selbstlosen und ermüdlichen Einsatz in der doch sehr turbulenten Endphase meiner Arbeit. Deine Anregungen und Korrekturen haben der Arbeit den nötigen SchliffgegebenunddeinOptimismushabennocheinmalalleKräfteinmir mobilisiert. Ich werde Dir und Adrian nie vergessen, dass Ihr mich in der schwerstenZeitnichtalleingelassenhabt.

Lebenslauf

Persönliche Daten Name: Kube Vorname: Nicole Geburtsdatum: 30.September1976 Geburtsort: Burg(beiMagdeburg) Staatsangehörigkeit: deutsch Schulische Ausbildung 1983–1991 BesuchderPolytechnischenOberschulen„Pestalozzi“und „W.I.Lenin“,Burg 1991–1995 GymnasiumBurg,AbschlussmitAbitur

Studium

19952001 Studium der Biologie an der ChristianAlbrechts UniversitätzuKiel,mitdenSchwerpunktenZoologie und Fischereibiologie,Nebenfächer:Meereschemie Berufliche Tätigkeiten 20002003 Journalistische Ausbildung und freie Mitarbeitertätigkeit bei der Filmproduktionsfirma BLUE PLANET FILM in 2003 ErstellungderStudie„MarineNaturstoffeinder Blauen Biotechnologie: Stand und Perspektiven“ im Auftrag der InnovationsstiftungSchleswigHolstein

Aug.2003–Mai2006 Wissenschaftliche Mitarbeiterin am LeibnizInstitut für MeereswissenschaftenKiel Promotionsthema:“Theintegrationofmicroalgaephotobio reactorsinarecirculationsystemforlowwaterdischarge mariculture“

Erklärung

Hiermiterkläreich,dassdievorliegendeArbeitnachInhaltundFormund dieihrzugrundeliegendenVersuchemeineeigeneArbeitsind.Eswurden– abgesehenvonderBeratungdurchmeineakademischenLehrer–keinean derenalsdieangegebenenHilfsmittelundQuellenverwendet.Wörtlichund inhaltlich aus anderen Quellen entnommene Textstellen sind als solche kenntlichgemacht. DieseArbeitwurdewederganznochinAuszügenaneineranderenStelleim RahmeneinesPrüfungsverfahrensvorgelegt.Fernererkläreichhiermit,dass ichnochkeinefrüherenPromotionsversucheunternommenhabe. FürdiePrüfungwirddieFormderDisputationgewählt.DerZulassungvon Zuhörern/ZuhörerinnenbeidermündlichenPrüfungwird nichtwiderspro chen. Kiel,den ______ NicoleKube