Host Conservatism, Host Shifts and Diversification Across Three Trophic

Total Page:16

File Type:pdf, Size:1020Kb

Host Conservatism, Host Shifts and Diversification Across Three Trophic doi: 10.1111/j.1420-9101.2011.02446.x Host conservatism, host shifts and diversification across three trophic levels in two Neotropical forests J. S. WILSON*, M. L. FORISTER*, L. A. DYER*, J. M. O’CONNOR ,K.BURLS*, C. R. FELDMAN*, M. A. JARAMILLOà,J.S.MILLER§,G.RODRI´GUEZ-CASTAN˜ EDA–, E. J. TEPE** ,J.B.WHITFIELD &B.YOUNG* *Program in Ecology, Evolution and Conservation Biology, Department of Biology, University of Nevada, Reno, NV, USA Department of Entomology, University of Illinois, Urbana, IL, USA àResearch Center for Environmental Management and Development, CIMAD, Jamundı´, Valle, Colombia §American Museum of Natural History, Division of Invertebrate Zoology, New York, NY, USA –Department of Ecology and Environmental Science, University of Umea˚, Umea˚, Sweden **Department of Biology, University of Utah, Salt Lake City, UT, USA Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA Keywords: Abstract coevolution; Host–parasite systems have been models for understanding the connection Eois; between shifts in resource use and diversification. Despite theoretical Parapanteles; expectations, ambiguity remains regarding the frequency and importance of Piper; host switches as drivers of speciation in herbivorous insects and their speciation; parasitoids. We examine phylogenetic patterns with multiple genetic markers tri-trophic. across three trophic levels using a diverse lineage of geometrid moths (Eois), specialist braconid parasitoids (Parapanteles) and plants in the genus Piper. Host–parasite associations are mapped onto phylogenies, and levels of cospeciation are assessed. We find nonrandom patterns of host use within both the moth and wasp phylogenies. The moth–plant associations in particular are characterized by small radiations of moths associated with unique host plants in the same geographic area (i.e. closely related moths using the same host plant species). We suggest a model of diversification that emphasizes an interplay of factors including host shifts, vicariance and adaptation to intraspecific variation within hosts. separate fronts, one focusing on patterns at a deep Introduction temporal and taxonomic scale, and the other focusing on Interactions between trophic levels play a central role in mechanisms driving recent population and species diver- the evolution of biological diversity (Page, 2003; Singer & gence, often with contemporary taxa at an incipient stage Stireman, 2005; Thompson, 2005). In particular, host– of divergence. At the deeper taxonomic level, the parasite relationships have figured prominently in our emphasis has been on major hosts shifts, for example, understanding of diversification by providing a frame- among different families of hosts where lineages of work for investigating the importance of exploitative parasites adapt to novel resources that subsequently adaptations and host defences (e.g. Ehrlich & Raven, drive adaptive radiations (Ehrlich & Raven, 1964; Sch- 1964; Rundle & Nosil, 2005; Becerra, 2007; Matsubay- luter, 2000). Evidence for the importance of major host ashi et al., 2010). Within this area of evolutionary shifts driving diversification comes from a number of ecology, research has advanced along at least two groups, such as the colonization of angiosperms by weevils (McKenna et al., 2009), and shifts to new plant Correspondence: Matthew L. Forister, Program in Ecology, Evolution and families by butterflies (Fordyce, 2010). Along the other Conservation Biology, Department of Biology, University of Nevada, Reno, NV, 89557, USA. major conceptual front in hypotheses of host–parasite Tel.: +1 775 784 6770; fax: +1 775 784 1302; diversification is the emphasis on host-switching at the e-mail: [email protected] lowest taxonomic levels (Berlocher & Feder, 2002; Dre`s ª 2012 THE AUTHORS. J. EVOL. BIOL. JOURNAL OF EVOLUTIONARY BIOLOGY ª 2012 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY 1 2 J. S. WILSON ET AL. & Mallet, 2002; Funk et al., 2006), in which reproductive breadths, with most species feeding on a single or a few isolation between sister species is associated with host- Piper species (Dyer & Palmer, 2004; Connahs et al., specific adaptations (e.g. Funk, 1998; Lu & Bernatchez, 2009); though, recent evidence suggests that at least 1999; Nosil, 2004; Forister, 2005; Stireman et al., 2005). some host shifts away from Piper have occurred (Strut- Considering the phylogenetic evidence for the impor- zenberger et al., 2010). Piper is a species-rich genus tance of major host shifts and the importance of diver- composed of predominantly understory shrubs that gent, host-associated selection at low taxonomic levels, reach their highest diversity in the Neotropics, where one might conclude that shifts in diet are the major over 1000 species are found (Jaramillo & Manos, 2001; drivers of diversification in herbivorous insects. This Greig, 2004; Quijano-Abril et al., 2006). Because of the could be true if insect diversification is contemporary high diversity and abundance of Piper in the Neotropics, with host diversification, or temporally lags behind plant as well as the variety of ecological interactions and speciation (Percy et al., 2004). Futuyma & Agrawal chemical defences present in this genus, it has been (2009) have cautioned that this conclusion remains considered a model for studies of phytochemistry, ecol- unjustified and that the importance of other facets of ogy and evolution (Dyer & Palmer, 2004). At the third the parasitic life style, including more complex commu- trophic level, Parapanteles is a potentially large, but still nity interactions, has been insufficiently examined. poorly known genus within the diverse microgastrine Winkler & Mitter (2008) surveyed a large number of braconid wasps, with 16 species described from the published phylogenies for herbivorous insects and sim- Neotropics (Valerio et al., 2009). It is likely that there are ilarly concluded that the importance of both major many undescribed Parapanteles species because the (between families) and minor (between species) host majority of Neotropical microgastrines remain unde- switches has been overestimated. Specifically, fewer than scribed (Smith et al., 2008a; Whitfield et al., 2009). Like half of 145 sister species pairs from 45 phylogenies all microgastrines, Parapanteles are endoparasitoids of included different host species. This suggests that other lepidopteran larvae and although host associations are factors, such as historical vicariance, may also play a role known for only a small proportion of the species, they in parasite diversification. In fact, more general mecha- are expected to be highly host specific because high host nisms of speciation, such as divergence in allopatry, specialization has been found in a number of microgas- might interact with ecological processes in diversification trine genera (Smith et al., 2008a). (Nosil et al., 2005). The possibility of an interaction To investigate the role resource use plays in diversi- between historical and geographical factors and diver- fication, we bring together phylogenetic and ecological gence associated with alternate resource use has often data for Piper, Eois and Parapanteles. For each host– been overlooked in discussions of host–parasite diversi- parasite relationship – Eois feeding on Piper, and fication. Parapanteles feeding on Eois – we ask: what is the Although phylogenetic studies of host–parasite rela- phylogenetic distribution of host use? If diversification tionships are not rare, few studies have targeted highly at one level provides the ecological opportunity for diverse parasite lineages, particularly at appropriate diversification at another, then we expect the phyloge- spatial and temporal scales in which recent divergence netic histories of ecological associates to covary in could potentially be linked to macroevolutionary trends. predictable ways (Page, 2003; Forister & Feldman, Even fewer studies have investigated evolutionary 2011). For free-living (as opposed to symbiotic) parasites, dynamics in a community context across more than such as insect herbivores and parasitic wasps, we do not two trophic levels (but see Lopez-Vaamonde et al., 2005; expect a history of cospeciation to necessarily be man- Noda et al., 2007; Silvieus et al., 2008; reviewed by ifest as perfectly congruent phylogenetic histories. Forister & Feldman, 2011). Tropical communities provide Instead, the prediction based on cospeciation is for a species-rich assemblages in which questions regarding level of constrained or conserved cladogenesis, in which resource use and diversification can be addressed. In this closely related parasites tend to attack more closely study, we examine patterns of diversification in a related hosts (Futuyma & Agrawal, 2009). Alternatively, species-rich tropical moth genus, Eois Hu¨ bner (Lepidop- an absence of association between host and parasite tera: Geometridae: Larentiinae), its major host plant phylogenies would raise the possibility that other genus, Piper L. (Piperales: Piperaceae), and a group of mechanisms (i.e. biogeographic factors) rather than Eois-attacking parasitoid wasps in the genus Parapanteles host-associated ecological divergence have influenced Ashmead (Hymenoptera: Braconidae: Microgastrinae). diversification. We address these issues both with tests Eois is comprised of roughly 250 described species designed specifically to detect patterns of shared history (Scoble, 1999; Herbulot, 2000) as well as numerous in host–parasite phylogenies, and with more general genetically distinct morphospecies
Recommended publications
  • Piperaceae) Revealed by Molecules
    Annals of Botany 99: 1231–1238, 2007 doi:10.1093/aob/mcm063, available online at www.aob.oxfordjournals.org From Forgotten Taxon to a Missing Link? The Position of the Genus Verhuellia (Piperaceae) Revealed by Molecules S. WANKE1 , L. VANDERSCHAEVE2 ,G.MATHIEU2 ,C.NEINHUIS1 , P. GOETGHEBEUR2 and M. S. SAMAIN2,* 1Technische Universita¨t Dresden, Institut fu¨r Botanik, D-01062 Dresden, Germany and 2Ghent University, Department of Biology, Research Group Spermatophytes, B-9000 Ghent, Belgium Downloaded from https://academic.oup.com/aob/article/99/6/1231/2769300 by guest on 28 September 2021 Received: 6 December 2006 Returned for revision: 22 January 2007 Accepted: 12 February 2007 † Background and Aims The species-poor and little-studied genus Verhuellia has often been treated as a synonym of the genus Peperomia, downplaying its significance in the relationships and evolutionary aspects in Piperaceae and Piperales. The lack of knowledge concerning Verhuellia is largely due to its restricted distribution, poorly known collection localities, limited availability in herbaria and absence in botanical gardens and lack of material suitable for molecular phylogenetic studies until recently. Because Verhuellia has some of the most reduced flowers in Piperales, the reconstruction of floral evolution which shows strong trends towards reduction in all lineages needs to be revised. † Methods Verhuellia is included in a molecular phylogenetic analysis of Piperales (trnT-trnL-trnF and trnK/matK), based on nearly 6000 aligned characters and more than 1400 potentially parsimony-informative sites which were partly generated for the present study. Character states for stamen and carpel number are mapped on the combined molecular tree to reconstruct the ancestral states.
    [Show full text]
  • Herbivores on a Dominant Understory Shrub Increase Local Plant Diversity in Rain Forest Communities
    Ecology, 91(12), 2010, pp. 3707–3718 Ó 2010 by the Ecological Society of America Herbivores on a dominant understory shrub increase local plant diversity in rain forest communities 1,4 2 1 3 LEE A. DYER, DEBORAH K. LETOURNEAU, GERARDO VEGA CHAVARRIA, AND DIEGO SALAZAR AMORETTI 1Department of Biology, University of Nevada, Reno, Nevada 89557 USA 2Department of Environmental Studies, University of California, Santa Cruz, California 95064 USA 3Department of Biology, University of Missouri, St. Louis, Missouri 63121 USA Abstract. Indirect effects of trophic interactions on biodiversity can be large and common, even in complex communities. Previous experiments with dominant understory Piper shrubs in a Costa Rican rain forest revealed that increases in herbivore densities on these shrubs caused widespread seedling mortality as a result of herbivores moving from Piper to seedlings of many different plant genera. We tested components of the Janzen-Connell hypothesis by conducting focused studies on the effects of specialist and generalist Piper herbivores on local seedling diversity. Whereas specialist herbivores are predicted to increase mortality to neighboring seedlings that are closely related to the source plant, true generalists moving from source plants may cause density-dependent mortality of many species, and possibly increase richness if new species replace abundant species that have been thinned by herbivores. Therefore, we hypothesized that seedling richness would be greater in understory control plots created in patches of Piper that had normal densities of generalist herbivores compared to plots from which we removed generalist herbivores manually from all Piper shrubs. After 15 months, generalist-herbivore-removal plots had .40% fewer seedlings, .40% fewer species, and 40% greater seedling evenness, on average, than control plots with generalist herbivores intact.
    [Show full text]
  • Epilist 1.0: a Global Checklist of Vascular Epiphytes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.
    [Show full text]
  • Biodiversity As a Resource: Plant Use and Land Use Among the Shuar, Saraguros, and Mestizos in Tropical Rainforest Areas of Southern Ecuador
    Biodiversity as a resource: Plant use and land use among the Shuar, Saraguros, and Mestizos in tropical rainforest areas of southern Ecuador Die Biodiversität als Ressource: Pflanzennutzung und Landnutzung der Shuar, Saraguros und Mestizos in tropischen Regenwaldgebieten Südecuadors Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Andrés Gerique Zipfel aus Valencia Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 9.12.2010 Vorsitzender der Promotionskommission: Prof. Dr. Rainer Fink Erstberichterstatterin: Prof. Dr. Perdita Pohle Zweitberichterstatter: Prof. Dr. Willibald Haffner To my father “He who seeks finds” (Matthew 7:8) ACKNOWLEDGEMENTS Firstly, I wish to express my gratitude to my supervisor, Prof. Dr. Perdita Pohle, for her trust and support. Without her guidance this study would not have been possible. I am especially indebted to Prof. Dr. Willibald Haffner as well, who recently passed away. His scientific knowledge and enthusiasm set a great example for me. I gratefully acknowledge Prof. Dr. Beck (Universität Bayreuth) and Prof. Dr. Knoke (Technische Universität München), and my colleagues and friends of the Institute of Geography (Friedrich-Alexander Universität Erlangen-Nürnberg) for sharing invaluable comments and motivation. Furthermore, I would like to express my sincere gratitude to those experts who unselfishly shared their knowledge with me, in particular to Dr. David Neill and Dr. Rainer Bussmann (Missouri Botanical Garden), Dr. Roman Krettek (Deutsche Gesellschaft für Mykologie), Dr. Jonathan Armbruster, (Auburn University, Alabama), Dr. Nathan K. Lujan (Texas A&M University), Dr. Jean Guffroy (Institut de Recherche pour le Développement, Orleans), Dr.
    [Show full text]
  • Hymenoptera: Braconidae: Microgastrinae) Comb
    Revista Brasileira de Entomologia 63 (2019) 238–244 REVISTA BRASILEIRA DE Entomologia A Journal on Insect Diversity and Evolution www.rbentomologia.com Systematics, Morphology and Biogeography First record of Cotesia scotti (Valerio and Whitfield, 2009) (Hymenoptera: Braconidae: Microgastrinae) comb. nov. parasitising Spodoptera cosmioides (Walk, 1858) and Spodoptera eridania (Stoll, 1782) (Lepidoptera: Noctuidae) in Brazil a b a a Josiane Garcia de Freitas , Tamara Akemi Takahashi , Lara L. Figueiredo , Paulo M. Fernandes , c d e Luiza Figueiredo Camargo , Isabela Midori Watanabe , Luís Amilton Foerster , f g,∗ José Fernandez-Triana , Eduardo Mitio Shimbori a Universidade Federal de Goiás, Escola de Agronomia, Setor de Entomologia, Programa de Pós-Graduac¸ ão em Agronomia, Goiânia, GO, Brazil b Universidade Federal do Paraná, Setor de Ciências Agrárias, Programa de Pós-Graduac¸ ão em Agronomia – Produc¸ ão Vegetal, Curitiba, PR, Brazil c Universidade Federal de São Carlos, Programa de Pós-Graduac¸ ão em Ecologia e Recursos Naturais, São Carlos, SP, Brazil d Universidade Federal de São Carlos, Departamento de Ecologia e Biologia Evolutiva, São Carlos, SP, Brazil e Universidade Federal do Paraná, Departamento de Zoologia, Curitiba, PR, Brazil f Canadian National Collection of Insects, Ottawa, Canada g Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Entomologia e Acarologia, Piracicaba, SP, Brazil a b s t r a c t a r t i c l e i n f o Article history: This is the first report of Cotesia scotti (Valerio and Whitfield) comb. nov. in Brazil, attacking larvae of the Received 3 December 2018 black armyworm, Spodoptera cosmioides, and the southern armyworm, S.
    [Show full text]
  • Host Conservatism, Host Shifts and Diversification Across Three Trophic Levels in Two Neotropical Forests
    doi: 10.1111/j.1420-9101.2011.02446.x Host conservatism, host shifts and diversification across three trophic levels in two Neotropical forests J. S. WILSON*, M. L. FORISTER*, L. A. DYER*, J. M. O’CONNOR ,K.BURLS*, C. R. FELDMAN*, M. A. JARAMILLOà,J.S.MILLER§,G.RODRI´GUEZ-CASTAN˜ EDA–, E. J. TEPE** ,J.B.WHITFIELD &B.YOUNG* *Program in Ecology, Evolution and Conservation Biology, Department of Biology, University of Nevada, Reno, NV, USA Department of Entomology, University of Illinois, Urbana, IL, USA àResearch Center for Environmental Management and Development, CIMAD, Jamundı´, Valle, Colombia §American Museum of Natural History, Division of Invertebrate Zoology, New York, NY, USA –Department of Ecology and Environmental Science, University of Umea˚, Umea˚, Sweden **Department of Biology, University of Utah, Salt Lake City, UT, USA Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA Keywords: Abstract coevolution; Host–parasite systems have been models for understanding the connection Eois; between shifts in resource use and diversification. Despite theoretical Parapanteles; expectations, ambiguity remains regarding the frequency and importance of Piper; host switches as drivers of speciation in herbivorous insects and their speciation; parasitoids. We examine phylogenetic patterns with multiple genetic markers tri-trophic. across three trophic levels using a diverse lineage of geometrid moths (Eois), specialist braconid parasitoids (Parapanteles) and plants in the genus Piper. Host–parasite associations are mapped onto phylogenies, and levels of cospeciation are assessed. We find nonrandom patterns of host use within both the moth and wasp phylogenies. The moth–plant associations in particular are characterized by small radiations of moths associated with unique host plants in the same geographic area (i.e.
    [Show full text]
  • Lepidoptera: Geometridae): Checklist, Biogeography, Diversity, and Description Patterns
    SPECIAL FEATURE Neotropical Eois (Lepidoptera: Geometridae): Checklist, Biogeography, Diversity, and Description Patterns GUNNAR BREHM,1,2 FLORIAN BODNER,3 PATRICK STRUTZENBERGER,3 FRANK HU¨ NEFELD,1 3 AND KONRAD FIEDLER Ann. Entomol. Soc. Am. 104(6): 1091Ð1107 (2011); DOI: http://dx.doi.org/10.1603/AN10050 Downloaded from https://academic.oup.com/aesa/article/104/6/1091/2758594 by guest on 04 October 2021 ABSTRACT The moth genus Eois Hu¨ bner (Lepidoptera: Geometridae: Larentiinae) comprises 254 validly described species, 211 of them (83%) occurring in the Neotropical region, 12% in the Asian-Australian region, and 5% in Africa. A checklist of Neotropical Eois is provided and some taxonomic changes are made. Aplogompha noctilaria (Schaus) is excluded from the genus, and Eois bermellada (Dognin) and Eois fragilis (Warren) are transferred to the genus. Further changes include Eois cellulata (Prout) stat. rev., Eois ambarilla (Dognin) stat. rev., and Eois telegraphica Prout stat. rev. By far, the majority of Eois species (82%) were described between 1891 and 1920; approximately half of all species by just two authors. Within the Neotropical region, the majority of species (55%) were described from the tropical Andes (Colombia, Ecuador, Peru, and Bolivia), followed by Central America and the Caribbean (28%), and the rest of South America (17%). Large regions such as the Amazon basin, eastern South America, but also northern Peru are heavily underrepresented. Regional diversity studies provide evidence that the wet tropical Andes are the diversity hotspot of Eois. From a forested elevational gradient (1,020Ð2,670 m above sea level) in southeastern Ecuador, 154 mor- phospecies are currently known, with only Ϸ12% of them described.
    [Show full text]
  • Part Iv the Phytogeographical Subdivision of Cuba (With the Contribution of O
    PART IV THE PHYTOGEOGRAPHICAL SUBDIVISION OF CUBA (WITH THE CONTRIBUTION OF O. MUÑIZ) CONTENTS PART IV The phytogeographical subdivision of Cuba (With the contribution of O. Muñiz) 21 The phytogeographical status of Cuba . 283 21.1 Good's phytogeographic regionalization ofthe Caribbean . 283 21.2 A new proposal for the phytogeographic regionalization of the Caribbean area 283 21.3 Relationships within the flora of the West Indies . 284 21. 4 Toe phytogeographical subdivision of Cuba . 29(J Sub-province A. Western Cuba . .. .. 290 Sub-province B. Central Cuba . 321 Sub-province C. Eastern Cuba .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 349 8 21 The phytogeographical status of Cuba 21.1 Good's phytogeographic regionalization of the Caribbean Cuba belongs to the Neotropical floristic kingdom whose phytogeographic subdivision has been defined by Good (1954) and, later by Takhtadjan (1970). According to these authors, the Neotropical kingdom is divided into seven floristic regions and is characterized by 32 endemic plant families, 10 of which occur in Cuba. These are: Marcgraviaceae, Bixaceae, Cochlospermaceae, Brunelliaceae, Picrodendraceae, Calyceraceae, Bromeliaceae, Cyclanthaceae, Heliconiaceae and Cannaceae. The Caribbean floristic region has been divided into four provinces: l. Southern California-Mexico, 2. Caribbean, 3. Guatemala-Panama, and 4. North Colombia-North Venezuela, Cuba, as a separate sub-province, belongs to the Caribbean province. 21.2 A new proposal far the phytogeographic regionalization of the Caribbean area In the author's opinion the above-mentioned phytogeographic classification does not reflect correctly the evolutionary history and the present floristic conditions of the Caribbean. In addition, the early isolation of the Antilles and the rich endemic flora of the archipelago are not considered satisfactorily.
    [Show full text]
  • Dysdercus Cingulatus
    Prelims (F) Page i Monday, August 25, 2003 9:52 AM Biological Control of Insect Pests: Southeast Asian Prospects D.F. Waterhouse (ACIAR Consultant in Plant Protection) Australian Centre for International Agricultural Research Canberra 1998 Prelims (F) Page ii Monday, August 25, 2003 9:52 AM The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World ©Australian Centre for International Agricultural Research GPO Box 1571, Canberra, ACT 2601. Waterhouse, D.F. 1998, Biological Control of Insect Pests: Southeast Asian Prospects. ACIAR Monograph No. 51, 548 pp + viii, 1 fig. 16 maps. ISBN 1 86320 221 8 Design and layout by Arawang Communication Group, Canberra Cover: Nezara viridula adult, egg rafts and hatching nymphs. Printed by Brown Prior Anderson, Melbourne ii Prelims (F) Page iii Monday, August 25, 2003 9:52 AM Contents Foreword vii 1 Abstract 1 2 Estimation of biological control
    [Show full text]
  • Flora Digital De La Selva Explicación Etimológica De Las Plantas De La
    Flora Digital De la Selva Organización para Estudios Tropicales Explicación Etimológica de las Plantas de La Selva J. González A Abarema: El nombre del género tiene su origen probablemente en el nombre vernáculo de Abarema filamentosa (Benth) Pittier, en América del Sur. Fam. Fabaceae. Abbreviata: Pequeña (Stemmadenia abbreviata/Apocynaceae). Abelmoschus: El nombre del género tiene su origen en la palabra árabe “abu-l-mosk”, que significa “padre del almizcle”, debido al olor característico de sus semillas. Fam. Malvaceae. Abruptum: Abrupto, que termina de manera brusca (Hymenophyllum abruptum/Hymenophyllaceae). Abscissum: Cortado o aserrado abruptamente, aludiendo en éste caso a los márgenes de las frondes (Asplenium abscissum/Aspleniaceae). Abuta: El nombre del género tiene su origen en el nombre vernáculo de Abuta rufescens Aubl., en La Guayana Francesa. Fam. Menispermaceae. Acacia: El nombre del género se deriva de la palabra griega acacie, de ace o acis, que significa “punta aguda”, aludiendo a las espinas que son típicas en las plantas del género. Fam. Fabaceae. Acalypha: El nombre del género se deriva de la palabra griega akalephes, un nombre antiguo usado para un tipo de ortiga, y que Carlos Linneo utilizó por la semejanza que poseen el follaje de ambas plantas. Fam. Euphorbiaceae. Acanthaceae: El nombre de la familia tiene su origen en el género Acanthus L., que en griego (acantho) significa espina. Acapulcensis: El nombre del epíteto alude a que la planta es originaria, o se publicó con material procedente de Acapulco, México (Eugenia acapulcensis/Myrtaceae). Achariaceae: El nombre de la familia tiene su origen en el género Acharia Thunb., que a su vez se deriva de las palabras griegas a- (negación), charis (gracia); “que no tiene gracia, desagradable”.
    [Show full text]
  • Our New, Bolder Newsletter President's Report
    Hamuli The Newsletter of the International Society of Hymenopterists volume 1, issue 1 2 August 2010 Our new, bolder newsletter In this issue... By: Andy Deans, North Carolina State University President’s report (Woolley) 1 Well, here it is—the inaugural issue of our new Soci- Webmaster/Archivist report (Seltmann) 3 ety newsletter, Hamuli. Before I dive too deeply into the Publishing on Hymenoptera (Agosti et al.) 4 details I want to acknowledge my associate editor, Trish Reflections on the future (Masner) 4 Mullins, who helped organize the newsletter, and especial- Report on the 7th ICH (Melika) 5 ly the talented contributors, who provided content. Thanks A student’s impression of 7th ICH (Talamas) 5 for helping make this enterprise happen! Australian checklist (Austin & Jennings) 5 Hamuli is an effort to revive the spirit of newsletters Sawfly research in China (Wei) 6 past—e.g., Sphecos, IchNews, Proctos, and Melissa— Sweeping Shrinkies (Heraty & Mottern) 7 an enthusiasm for communication that, if you’ve had Hints on scaning to PDF (Noyes) 8 the good fortune to read recent project newsletters, like Evaniid oviposition behaviors (Mullins & Bertone) 10 Skaphion and TIGER, still permeates through our com- Collecting in Măcin Mountains (Mitroiu) 11 munity. We anticipate publishing two issues per year, one Collecting in Kauai (Carpenter) 12 in January, and another in July, and we’re always accept- Collecting in China (Niu & Wei) 13 ing submissions that are relevant to ISH and Hymenoptera Jesus Santiago Moure (Dal Molin) 15 research more broadly, including member news (updates Member News 16 on projects, student opportunities, recent collecting ef- 7th ICH photos 18 forts), opinion and methods pieces, notes and photos from Membership information 19 the field, from museum visits, and from meetings, and just about any other content you can think of.
    [Show full text]
  • Piperaceae) in Roraima State, Brazil1
    Hoehnea 43(1): 119-134, 5 fig., 2016 http://dx.doi.org/10.1590/2236-8906-75/2015 Synopsis of the genus Peperomia Ruiz & Pav. (Piperaceae) in Roraima State, Brazil1 Aline Melo2,4, Elsie F. Guimarães3 and Marccus Alves2 Received: 5.10.2015; accepted: 27.01.2016 ABSTRACT - (Synopsis of the genus Peperomia Ruiz & Pav. (Piperaceae) in Roraima State, Brazil). Peperomia is the second most diverse genus of Piperaceae, with an estimated 1,600 species and a pantropical distribution. This work aims to present a taxonomic synopsis of the genus in the State of Roraima, in the extreme north of the Brazilian Amazon forest and belonging to the central-south portion of the Guayana Shield. Based on collecting expeditions and analysis of specimens in various herbaria, 23 taxa were recognized, with two new records for the State and one of them, a new record for Brazil. The taxa are differentiated mainly by phyllotaxis, shape and size of their leaves, in addition to habit and fruits. They have been found in areas of lowland, submontane, montane, tepui and floodplain (várzea) forests and mostly show a distribution restricted to the Neotropics. Some species in the state are presently known exclusively from Mount Roraima, and restricted to a few specimens. Keywords: Amazon Forest, Guayana Shield, new records, Piperales, Tepui RESUMO - (Sinopse do gênero Peperomia Ruiz & Pav. (Piperaceae) no Estado de Roraima, Brasil). Peperomia Ruiz & Pav. é o segundo gênero mais diverso de Piperaceae, com aproximadamente 1.600 especies que estão distribuídas na região pantropical. Este trabalho tem o objetivo de apresentar uma sinopse taxonômica do gênero no Estado de Roraima, extremo norte da Floresta Amazônica brasileira, pertencente ao centro-sul do Escudo da Guiana.
    [Show full text]