Rivers at Risk: the Status of Environmental Flows in Canada

Total Page:16

File Type:pdf, Size:1020Kb

Rivers at Risk: the Status of Environmental Flows in Canada Rivers at Risk: The Status of Environmental Flows in Canada Prepared by: Becky Swainson, MA Research Consultant Prepared for: WWF-Canada Freshwater Program Acknowledgements The authors would like to acknowledge the valuable contributions of the river advocates and professionals from across Canada who lent their time and insights to this assessment. Also, special thanks to Brian Richter, Oliver Brandes, Tim Morris, David Schindler, Tom Le Quesne and Allan Locke for their thoughtful reviews. i Rivers at Risk Acronyms BC British Columbia CBM Coalbed methane CEMA Cumulative Effects Management Association COSEWIC Committee on the Status of Endangered Wildlife in Canada CRI Canadian Rivers Institute DFO Fisheries and Oceans Canada EBF Ecosystem base flow IBA Important Bird Area IFN Instream flow needs IJC International Joint Commission IPP Independent Power Producer GRCA Grand River Conservation Authority LWR Low Water Response MOE Ministry of Environment (Ontario) MNR Ministry of Natural Resources (Ontario) MRBB Mackenzie River Basin Board MW Megawatt NB New Brunswick NGO Non-governmental organization NWT Northwest Territories P2FC Phase 2 Framework Committee PTTW Permit to Take Water QC Quebec RAP Remedial Action Plan SSRB South Saskatchewan River Basin UNESCO United Nations Environmental, Scientific and Cultural Organization US United States WCO Water Conservation Objectives ii Rivers at Risk Contents Rivers at Risk: The Status of Environmental Flows in Canada CONTENTS Acknowledgements ........................................................................................................................................ i Acronyms ...................................................................................................................................................... ii INTRODUCTION ............................................................................................................................................. 5 What are Environmental Flows? ............................................................................................................... 6 Purpose of this Report .............................................................................................................................. 8 THREATS TO ENVIRONMENTAL FLOWS IN CANADA ................................................................................... 10 METHODS .................................................................................................................................................... 13 River Selection ........................................................................................................................................ 13 Status Assessment and Data Collection Framework .............................................................................. 13 Data Collection and Analysis ................................................................................................................... 13 Status and Forecast of Environmental Flows .......................................................................................... 14 STATUS OF ENVIRONMENTAL FLOWS - RIVER ASSESSMENTS .................................................................... 17 Athabasca River ...................................................................................................................................... 17 Fraser River ............................................................................................................................................. 22 Grand River ............................................................................................................................................. 27 Mackenzie River ...................................................................................................................................... 32 Nipigon River ........................................................................................................................................... 37 Ottawa River ........................................................................................................................................... 42 Saint John River ....................................................................................................................................... 47 Skeena River ............................................................................................................................................ 52 South Saskatchewan River ...................................................................................................................... 57 St. Lawrence River ................................................................................................................................... 62 CONCLUSIONS ............................................................................................................................................. 67 APPENDIX 1: Glossary ................................................................................................................................. 69 APPENDIX 2: Data Collection and Status Assessment Framework ............................................................. 72 APPENDIX 3: Generic Key Informant Interview Protocol ............................................................................ 77 APPENDIX 4: South Africa’s River Health Classification System ................................................................. 78 APPENDIX 5: Numerical Scoring of Results Exercise ................................................................................... 79 APPENDIX 6: Endnotes ................................................................................................................................ 80 iii Rivers at Risk Contents LIST OF FIGURES Figure 1: Freshwater Living Planet Index (from WWF’s Living Planet Report 2008) .................................... 5 Figure 2 Status of Environmental Flows Classification System .................................................................. 14 Figure 3. Summary of Environmental Flow Classification for the Athabasca River .................................... 21 Figure 4. Summary of Environmental Flow Classification for the Fraser River ........................................... 26 Figure 5. Summary of Environmental Flow Classification for the Grand River ........................................... 31 Figure 6. Summary of Environmental Flow Classification for the Mackenzie River ................................... 36 Figure 7. Summary of Environmental Flow Classification for the Nipigon River ........................................ 41 Figure 8. Summary of Environmental Flow Classification for the Ottawa River ......................................... 46 Figure 9. Summary of Environmental Flow Classification for the Saint John River .................................... 51 Figure 10. Summary of Environmental Flow Classification for the Skeena River ....................................... 56 Figure 11. Summary of Environmental Flow Classification for the South Saskatchewan River ................. 61 Figure 12. Summary of Environmental Flow Classification for the St. Lawrence River .............................. 66 LIST OF BOXES Box 1: Examples of Provisions for Environmental Flows in Canada ............................................................. 7 Box 2: International River Health Classifications ........................................................................................ 15 LIST OF TABLES Table 1: Summary of Results ....................................................................................................................... 67 iv Rivers at Risk Introduction INTRODUCTION Across the Prairies, river flows are declining in an already changing climate, while more water is licensed for irrigation than even exists in the rivers at one time, leaving wetlands high and dry when they need water the most. In the boreal wilderness, the largest river flowing into Lake Superior, the world’s biggest freshwater lake, is the site of an ongoing struggle over how to share water so that there will be enough in the river for brook trout to spawn and survive. In the Maritimes, Atlantic salmon have stopped returning to large rivers that have been blocked and had their flows permanently changed by massive hydroelectric dams. While it is increasingly common to hear of conflict over freshwater in arid nations, it may come as a surprise to many that all across Canada — where we often fall under the misconception that water resources are plentiful and limitless — battles are raging over freshwater. And more often than not, when there are multiple, competing uses of water (and, more often than not, there are multiple competing uses of water), it is the environment — the birds, fish, insects, wetlands, trees, and ecosystems that need water just as much as we do — that ends up last in line. Freshwater systems are home to 40% of all fish species in less than 0.01% of the world’s total surface water, and when freshwater amphibians, reptiles and mammals are added to the fish totals, together they account for as much as one third of global vertebrate biodiversity. It is increasingly evident, regionally and globally, that this amazing freshwater biodiversity is severely endangered ― much more so than in terrestrial or marine environments. Even at a conservative estimate, freshwater invertebrates declined globally by 55% between 1970 and 2000, 1 and the Freshwater Living Planet Index shows that populations of
Recommended publications
  • Long Lake and Ogoki River Water Diversion Projects
    14 Wawatay News NOVEMBER 20, 2020 ᐧᐊᐧᐊᑌ ᐊᒋᒧᐧᐃᓇᐣ Community Regional Assessment in the Ring of Fire Area Engagement Activities and Participant Funding Available November 12, 2020 — The Minister of Environment and Climate Change has determined that a regional assessment will be conducted in an area centred on the Ring of Fire mineral deposits in northern Ontario. The Impact Assessment Agency of Canada (the Agency) is inviting the public, Indigenous communities, and organizations to provide input to support the planning of the Regional Assessment in the Ring of Fire area. Participants may provide their input to the Agency in either official Rick Garrick/Wawatay language until January 21, 2021. Participants are encouraged to refer to The impacts of waterway diversions in the Matawa region were raised during Treaties Recognition Week the Ring of Fire regional assessment planning information sheet for on the Matawa First Nations Facebook page. additional details. Participants can visit the project home page on the Canadian Impact Assessment Registry (reference number 80468) for more options to submit Waterway diversion information. All input received will be published to the Registry as part of the regional assessment file. The Agency recognizes that it is more challenging to undertake meaningful public engagement and Indigenous consultation in light of the education important circumstances arising from COVID-19. The Agency continues to assess the situation with key stakeholders, make adjustments to engagement activities, and is providing flexibility as needed in order to prioritize the health and safety of all Canadians, while maintaining its duty to conduct meaningful for youth engagement with interested groups and individuals.
    [Show full text]
  • Public Comments Received for the Wolfden Zoning Petition
    PUBLIC COMMENTS RECEIVED FOR THE WOLFDEN ZONING PETITION ZP 779, Pickett Mountain Mine, T6 R6 WELS 02/04/2021 through 06/22/2021 Maine Land Use Planning Commission Maine Department of Agriculture, Conservation and Forestry The Maine Land Use Planning Commission is accepting public comment on the zoning petition filed by Wolfden Mt. Chase, LLC. to allow for development of the Pickett Mountain Mine in T6 R6 WELS. Public comments will be accepted until 10 days following the close of the public hearing for the petition. The public hearing has not yet been scheduled. A public notice for the hearing will be issued later this year in accordance with the Commission’s Rules of Practice, 01-672 CMR 4. Written comments received on the Wolfden Zoning Petition for the Pickett Mountain Mine will be posted periodically on the LUPC webpage. Information on changes to the webpage and other notifications to interested persons will be distributed through the Maine GovDelivery system. For more information on the review process, filing public comments, and signing-up for notifications, visit the LUPC webpage at: https://www.maine.gov/dacf/lupc/projects/wolfden/wolfden_rezoning.html. From: Anne Winchester To: LUPC, Wolfden Rezoning Subject: Rezoning request Date: Friday, February 05, 2021 11:55:11 AM EXTERNAL: This email originated from outside of the State of Maine Mail System. Do not click links or open attachments unless you recognize the sender and know the content is safe. Dear LUPC, Please deny Wolfden’s request to rezone the territory around Pickett Mtn. Wolfden is woefully lacking in resources, experience, and reserves to mine here or anywhere else.
    [Show full text]
  • KENNEBEC SALMON RESTORATION: Innovation to Improve the Odds
    FALL/ WINTER 2015 THE NEWSLETTER OF MAINE RIVERS KENNEBEC SALMON RESTORATION: Innovation to Improve the Odds Walking thigh-deep into a cold stream in January in Maine? The idea takes a little getting used to, but Paul Christman doesn’t have a hard time finding volunteers to do just that to help with salmon egg planting. Christman is a scientist with Maine Department of Marine Resource. His work, patterned on similar efforts in Alaska, involves taking fertilized salmon eggs from a hatchery and planting them directly into the cold gravel of the best stream habitat throughout the Sandy River, a Kennebec tributary northwest of Waterville. Yes, egg planting takes place in the winter. For Maine Rivers board member Sam Day plants salmon eggs in a tributary of the Sandy River more than a decade Paul has brought staff and water, Paul and crews mimic what female salmon volunteers out on snowshoes and ATVs, and with do: Create a nest or “redd” in the gravel of a river waders and neoprene gloves for this remarkable or stream where she plants her eggs in the fall, undertaking. Finding stretches of open stream continued on page 2 PROGRESS TO UNDERSTAND THE HEALTH OF THE ST. JOHN RIVER The waters of the St. John River flow from their headwaters in Maine to the Bay of Fundy, and for many miles serve as the boundary between Maine and Quebec. Waters of the St. John also flow over the Mactaquac Dam, erected in 1968, which currently produces a substantial amount of power for New Brunswick. Efforts are underway now to evaluate the future of the Mactaquac Dam because its mechanical structure is expected to reach the end of its service life by 2030 due to problems with the concrete portions of the dam’s station.
    [Show full text]
  • Webequie Supply Road DETAILED PROJECT DESCRIPTION
    Webequie Supply Road DETAILED PROJECT DESCRIPTION Webequie First Nation The Picture is a Placeholder Only Prepared by: Prepared for: Submitted to: SNC-Lavalin Inc. Webequie First Nation Impact Assessment Agency of Canada 195 The West Mall Toronto, Ontario, M9C 5K1 www.snclavalin.com November 2019 661910 Webequie Supply Road Detailed Project Description PREFACE This Detailed Project Description for the Webequie Supply Road Project (“the Project”) has been prepared in accordance with subsection 15(1) of the Impact Assessment Act (“IAA”) and Schedule 2 of the Act’s Information and Management of Time Limits Regulations (“the Regulations”) of the Impact Assessment Act - Information Required in Detailed Description of Designated Project. In addition, the Detailed Project Description reflects the Webequie Supply Road Project Team’s recognition of issues identified in the Summary of Issues prepared by the Impact Assessment Agency of Canada (the Agency) as a result of the Agency’s invitation to Indigenous groups, federal and provincial authorities, the public and other participants to provide their perspective on any issues that they consider relevant in relation to the Project. Information provided by the Agency (posted on the Canadian Impact Assessment Registry) for this purpose included the Initial Project Description. The document that was accepted by the Agency to serve as the Initial Project Description was prepared to comply with the requirements of the Canadian Environmental Assessment Act, 2012 and was initially released for public review under the CEAA, 2012 process in July 2019, during the period when the Government of Canada was preparing to bring into force and transition to the new Impact Assessment Act.
    [Show full text]
  • What Was the Iroquois Confederacy?
    04 AB6 Ch 4.11 4/2/08 11:22 AM Page 82 What was the 4 Iroquois Confederacy? Chapter Focus Questions •What was the social structure of Iroquois society? •What opportunities did people have to participate in decision making? •What were the ideas behind the government of the Iroquois Confederacy? The last chapter explored the government of ancient Athens. This chapter explores another government with deep roots in history: the Iroquois Confederacy. The Iroquois Confederacy formed hundreds of years ago in North America — long before Europeans first arrived here. The structure and principles of its government influenced the government that the United States eventually established. The Confederacy united five, and later six, separate nations. It had clear rules and procedures for making decisions through representatives and consensus. It reflected respect for diversity and a belief in the equality of people. Pause The image on the side of this page represents the Iroquois Confederacy and its five original member nations. It is a symbol as old as the Confederacy itself. Why do you think this symbol is still honoured in Iroquois society? 82 04 AB6 Ch 4.11 4/2/08 11:22 AM Page 83 What are we learning in this chapter? Iroquois versus Haudenosaunee This chapter explores the social structure of Iroquois There are two names for society, which showed particular respect for women and the Iroquois people today: for people of other cultures. Iroquois (ear-o-kwa) and Haudenosaunee It also explores the structure and processes of Iroquois (how-den-o-show-nee). government. Think back to Chapter 3, where you saw how Iroquois is a name that the social structure of ancient Athens determined the way dates from the fur trade people participated in its government.
    [Show full text]
  • Nipigon Bay Area of Concern Status of Beneficial Use Impairments September 2010
    Nipigon Bay Area of Concern Status of Beneficial Use Impairments September 2010 Nipigon Bay is in the most northerly area of Lake Superior. The Area of Concern takes in a large portion of Nipigon Bay and the Nipigon River, the largest tributary to Lake Superior, and the communities of Red Rock and Nipigon. There are Ontario Power Generation dams on the Nipigon River for the generation of hydroelectricity. The area supports a variety of wetlands and bird populations, including one of four known pelican colonies in Ontario. The watershed forests on both sides of the Nipigon River have been allocated for forest harvesting. Environmental concerns in the Nipigon Bay Area of Concern are related to water level and flow fluctuations in Lake Nipigon and the Nipigon River from the generation of hydroelectricity. These fluctuations affect stream bank stability, sediment load and fish and wildlife habitat. Other concerns include the accumulation of wood fibre, bark and other organic material from past log drives, and effluent discharges from a linerboard mill (which closed in 2006) and the municipal sewage treatment plants in Nipigon and Red Rock. PARTNERSHIPS IN ENVIRONMENTAL PROTECTION Nipigon Bay was designated an Area of Concern in 1987 under the Canada–United States Great Lakes Water Quality Agreement. Areas of Concern are sites on the Great Lakes system where environmental quality is significantly degraded and beneficial uses are impaired. Currently, there are 9 such designated areas on the Canadian side of the Great Lakes, 25 in the United States, and 5 that are shared by both countries. In each Area of Concern, government, community and industry partners are undertaking a coordinated effort to restore environmental quality and beneficial uses through a remedial action plan.
    [Show full text]
  • More Than Just a Lake! TOPIC Great Lake Drainage Basins AUDIENCE Grades 1-6; 10-30 Students
    More Than Just a Lake! TOPIC Great Lake drainage basins AUDIENCE Grades 1-6; 10-30 students SETTING By creating a map of the rivers flowing into your Great Lake, Large, open indoor space is learn how rivers form a watershed. required GOAL To understand the concept of a drainage basin or watershed, and how that concept relates to the BACKGROUND around the lake as gravity pulls water local Great Lake watershed. All lakes and rivers have a set area to the lowest point. Water draining of land that water drains into them to the lowest common point is the OBJECTIVES • Students will understand the from, called the “watershed” or simplest definition of a watershed. defining role that rivers have “drainage basin.” Drainage basins are in watershed activity important environmentally because 2. Introduction to the model • Students will be able to state whether they live inside or whatever happens within the basin of watershed outside the drainage basin of the lake can happen to the lake itself. Students gather around the “shore” their Great Lake Toxic substances spilled or placed of the lake. Explain that the blue • Older students will be able to identify the river drainage on the land or in watershed rivers yarn represents rivers. With younger basin in which they live can end up in the lake. See the Great students, demonstrate how one river Lakes Watershed Fact Sheets for ad- might look on the map as it flows MATERIALS ditional information about your local into your Great Lake. • Large floor map of your Great Lake (or an outline on the watershed.
    [Show full text]
  • Danahub 2021 – Reference Library E & O E Overview the Great Lakes Region Is the Living Hub of North America, Where It
    Overview The Great Lakes region is the living hub of North America, where it supplies drinking water to tens of millions of people living on both sides of the Canada-US border. The five main lakes are: Lake Superior, Lake Michigan, Lake Huron, Lake Ontario and Lake Erie. Combined, the Great Lakes contain approximately 22% of the world’s fresh surface water supply. Geography and Stats The Great Lakes do not only comprise the five major lakes. Indeed, the region contains numerous rivers and an estimated 35,000 islands. The total surface area of the Great Lakes is 244,100 km2 – nearly the same size as the United Kingdom, and larger than the US states of New York, New Jersey, Connecticut, Rhode Island, Massachusetts, Vermont and New Hampshire combined! The total volume of the Great Lakes is 6x1015 Gallons. This amount is enough to cover the 48 neighboring American States to a uniform depth of 9.5 feet (2.9 meters)! The largest and deepest of the Great Lakes is Lake Superior. Its volume is 12,100 Km3 and its maximum depth is 1,332 ft (406 m). Its elevation is 183 m above sea level. The smallest of the Great Lakes is Lake Erie, with a maximum depth of 64 m and a volume of 484 Km3. Lake Ontario has the lowest elevation of all the Great Lakes, standing at 74 m above sea level. The majestic Niagara Falls lie between Lakes Erie and Ontario, where there is almost 100 m difference in elevation. Other Rivers and Water Bodies The Great Lakes contain many smaller lakes such as Lake St.
    [Show full text]
  • N Shore L. Superior: Geology, Scenery
    THESE TERMS GOVERN YOUR USE OF THIS DOCUMENT Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use. Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever. Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”).
    [Show full text]
  • Kemano Hydroelectric Development, BC
    Canadian Geotechnical Society Canadian Geotechnical Achievements 2017 Kemano Hydroelectric Development Kenney Dam; Kemano Tunnel and Powerhouse Geographical location Key References Lawton FL. 1953. The Kemano-Kitimat Hydro- South of Kitimat, British Columbia Electric Power Development. Journal of the Royal Society of Arts, Vol 101, pp 887-909. Reports for Aluminum Company of Canada When it began or was completed Ltd: Dolmage V. 1951. Geology of the Kemano- Began in 1951; completed in 1954 Tahtsa Tunnel. Dolmage V and Campbell DD. 1961. Kemano Tunnel Inspection and Repair Why a Canadian geotechnical achievement? 1961 – Geology. See also: When initiated in 1951, this project was the largest hydroelectric http://www.kitimatmuseum.ca/node/3 power development ever financed with private capital. Its completion in 1954 coincided with the completion of the aluminum smelter in Kitimat. The short construction period is Photographs (permission pending) just one of many feats of this project that was built in the remote coastal mountains of BC with no road access. When completed, the associated Kenney Dam (97 m high and 457 m wide along the top) across the Nechako River was the 3rd highest rock fill dam in the world. The 16 km long Kemano tunnel provided almost 800 m of head to the underground powerhouse. The tunnel and underground powerhouse required excavation of 13.3 million m3 of rock. Tunneling advance-rate records were set and the underground powerhouse was the largest underground development in the world, at that time. This massive engineering project had unprecedented logistical Kenney Dam construction, October 1952. Kitimat challenges and costs, which required a very large workforce and Museum photo #00016.
    [Show full text]
  • Lake Ontario Lakewide Management Plan Status
    LAKE ONTARIO LAKEWIDE MANAGEMENT PLAN STATUS APRIL 22, 2004 TAB L E O F CO NTEN TS EXECUTIVE SUMMARY ........................................................................................................... ES-1 CHAPTER 1 STATE OF LAKE ONTARIO 1.1 Summary........................................................................................................................... 1-1 CHAPTER 2 BACKGROUND 2.1 Summary........................................................................................................................... 2-1 2.2 Introduction to Lake Ontario............................................................................................... 2-1 2.2.1 Climate.................................................................................................................. 2-2 2.2.2 Physical Characteristics and Lake Processes ............................................................ 2-2 2.2.3 Aquatic Communities............................................................................................. 2-4 2.2.4 Demographics and Economy of the Basin................................................................ 2-6 2.3 LaMP Background.............................................................................................................. 2-8 2.4 LaMP Structure and Processes............................................................................................. 2-9 2.5 Actions and Progress..........................................................................................................2-10 2.6
    [Show full text]
  • Sander Vitreus) ⁎ Ursula Strandberga, , Satyendra P
    Environment International 112 (2018) 251–260 Contents lists available at ScienceDirect Environment International journal homepage: www.elsevier.com/locate/envint Spatial and length-dependent variation of the risks and benefits of T consuming Walleye (Sander vitreus) ⁎ Ursula Strandberga, , Satyendra P. Bhavsarb, Tarn Preet Parmara, Michael T. Artsa a Ryerson University, Department of Chemistry and Biology, 350 Victoria St., Toronto, ON M5B 2K3, Canada b Ontario Ministry of the Environment and Climate Change, Sport Fish Contaminant Monitoring Program, Environmental Monitoring and Reporting Branch, 125 Resources Road, Toronto, ON M9P 3V6, Canada ARTICLE INFO ABSTRACT Handling Editor: Yong Guan Zhu Restricted fish consumption due to elevated contaminant levels may limit the intake of essential omega-3 fatty − − Keywords: acids, such as eicosapentaenoic (EPA; 20:5n 3) and docosahexaenoic (DHA; 22:6n 3) acids. We analyzed Risk-benefit lake- and length-specific mercury and EPA + DHA contents in Walleye (Sander vitreus; Mitchell 1818) from 20 Mercury waterbodies in Ontario, Canada, and used this information to calculate the theoretical intake of EPA + DHA Eicosapentaenoic acid when the consumption advisories are followed. The stringent consumption advisory resulted in decreased Docosahexaenoic acid EPA + DHA intake regardless of the EPA + DHA content in Walleye. Walleye length had a strong impact on the Sander vitreus EPA + DHA intake mainly because it was positively correlated with the mercury content and thereby con- Walleye sumption advisories. The highest EPA + DHA intake was achieved when smaller Walleye (30–40 cm) were consumed. The strong relationship between the consumption advisory and EPA + DHA intake enabled us to develop a more generic regression equation to estimate EPA + DHA intake from the consumption advisories, which we then applied to an additional 1322 waterbodies across Ontario, and 28 lakes from northern USA for which Walleye contaminant data are available but fatty acid data are missing.
    [Show full text]