Inkascore.Org Phosphoproteomics Data Analysis Version 0.2.1 Running
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human RET Kinase Protein (His Tag)
Human RET Kinase Protein (His Tag) Catalog Number: 11997-H08H1 General Information SDS-PAGE: Gene Name Synonym: CDHF12; CDHR16; HSCR1; MEN2A; MEN2B; MTC1; PTC; RET-ELE1; RET51 Protein Construction: A DNA sequence encoding the extracellular domain of human RET (P07949-1) (Met 1-Arg 635) was fused with a polyhistidine tag at the N- terminus. Source: Human Expression Host: HEK293 Cells QC Testing Purity: > 92 % as determined by SDS-PAGE Protein Description Endotoxin: RET proto-oncogene, also known as RET, is a cell-surface molecule that < 1.0 EU per μg of the protein as determined by the LAL method transduce signals for cell growth and differentiation. It contains 1 cadherin domain and 1 protein kinase domain. RET proto-oncogene belongs to the Stability: protein kinase superfamily, tyr protein kinase family. RET proto-oncogene is involved in numerous cellular mechanisms including cell proliferation, ℃ Samples are stable for up to twelve months from date of receipt at -70 neuronal navigation, cell migration, and cell differentiation upon binding with glial cell derived neurotrophic factor family ligands. It phosphorylates Leu 29 Predicted N terminal: PTK2/FAK1 and regulates both cell death/survival balance and positional Molecular Mass: information. RET is required for the molecular mechanisms orchestration during intestine organogenesis; involved in the development of enteric The recombinant human RET consists of 618 amino acids and has a nervous system and renal organogenesis during embryonic life; promotes calculated molecular mass of 69.1 kDa. The apparent molecular mass of the formation of Peyer's patch-like structures; modulates cell adhesion via the protein is approximately 110-120 kDa in SDS-PAGE under reducing its cleavage; involved in the development of the neural crest. -
Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent -
Promoter Janus Kinase 3 Proximal Characterization and Analysis Of
The Journal of Immunology Characterization and Analysis of the Proximal Janus Kinase 3 Promoter1 Martin Aringer,2*† Sigrun R. Hofmann,2* David M. Frucht,* Min Chen,* Michael Centola,* Akio Morinobu,* Roberta Visconti,* Daniel L. Kastner,* Josef S. Smolen,† and John J. O’Shea3* Janus kinase 3 (Jak3) is a nonreceptor tyrosine kinase essential for signaling via cytokine receptors that comprise the common ␥-chain (␥c), i.e., the receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Jak3 is preferentially expressed in hemopoietic cells and is up-regulated upon cell differentiation and activation. Despite the importance of Jak3 in lymphoid development and immune function, the mechanisms that govern its expression have not been defined. To gain insight into this issue, we set out to characterize the Jak3 promoter. The 5-untranslated region of the Jak3 gene is interrupted by a 3515-bp intron. Upstream of this intron and the transcription initiation site, we identified an ϳ1-kb segment that exhibited lymphoid-specific promoter activity and was responsive to TCR signals. Truncation of this fragment revealed that core promoter activity resided in a 267-bp fragment that contains putative Sp-1, AP-1, Ets, Stat, and other binding sites. Mutation of the AP-1 sites significantly diminished, whereas mutation of the Ets sites abolished, the inducibility of the promoter construct. Chromatin immunoprecipitation assays showed that histone acetylation correlates with mRNA expression and that Ets-1/2 binds this region. Thus, transcription factors that bind these sites, especially Ets family members, are likely to be important regulators of Jak3 expression. -
Overexpression of Syk Tyrosine Kinase in Peripheral T-Cell Lymphomas
Leukemia (2008) 22, 1139–1143 & 2008 Nature Publishing Group All rights reserved 0887-6924/08 $30.00 www.nature.com/leu ORIGINAL ARTICLE Overexpression of Syk tyrosine kinase in peripheral T-cell lymphomas AL Feldman1, DX Sun1, ME Law1, AJ Novak2, AD Attygalle3, EC Thorland1, SR Fink1, JA Vrana1, BL Caron1, WG Morice1, ED Remstein1, KL Grogg1, PJ Kurtin1, WR Macon1 and A Dogan1 1Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; 2Department of Hematology, Mayo Clinic, Rochester, MN, USA and 3Department of Histopathology, Royal Marsden Hospital, London, UK Peripheral T-cell lymphomas (PTCLs) are fatal in the majority of Materials and methods patients and novel treatments, such as protein tyrosine kinase (PTK) inhibition, are needed. The recent finding of SYK/ITK translocations in rare PTCLs led us to examine the expression Cases of Syk PTK in 141 PTCLs. Syk was positive by immuno- We studied specimens from 141 patients with PTCL diagnosed 15 histochemistry (IHC) in 133 PTCLs (94%), whereas normal by WHO criteria. There were 86 men and 55 women of a T cells were negative. Western blot on frozen tissue (n ¼ 6) mean age of 59 years (range, 5–88 years). The study was and flow cytometry on cell suspensions (n ¼ 4) correlated with approved by the Institutional Review Board and the Biospeci- IHC results in paraffin. Additionally, western blot demonstrated mens Committee of Mayo Clinic. All patients provided informed that Syk-positive PTCLs show tyrosine (525/526) phosphory- lation, known to be required for Syk activation. Fluorescence consent for the use of their tissues for research purposes. -
Stem Cell Factor Is Selectively Secreted by Arterial Endothelial Cells in Bone Marrow
ARTICLE DOI: 10.1038/s41467-018-04726-3 OPEN Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow Chunliang Xu1,2, Xin Gao1,2, Qiaozhi Wei1,2, Fumio Nakahara 1,2, Samuel E. Zimmerman3,4, Jessica Mar3,4 & Paul S. Frenette 1,2,5 Endothelial cells (ECs) contribute to haematopoietic stem cell (HSC) maintenance in bone marrow, but the differential contributions of EC subtypes remain unknown, owing to the lack 1234567890():,; of methods to separate with high purity arterial endothelial cells (AECs) from sinusoidal endothelial cells (SECs). Here we show that the combination of podoplanin (PDPN) and Sca-1 expression distinguishes AECs (CD45− Ter119− Sca-1bright PDPN−) from SECs (CD45− Ter119− Sca-1dim PDPN+). PDPN can be substituted for antibodies against the adhesion molecules ICAM1 or E-selectin. Unexpectedly, prospective isolation reveals that AECs secrete nearly all detectable EC-derived stem cell factors (SCF). Genetic deletion of Scf in AECs, but not SECs, significantly reduced functional HSCs. Lineage-tracing analyses suggest that AECs and SECs self-regenerate independently after severe genotoxic insults, indicating the per- sistence of, and recovery from, radio-resistant pre-specified EC precursors. AEC-derived SCF also promotes HSC recovery after myeloablation. These results thus uncover heterogeneity in the contribution of ECs in stem cell niches. 1 The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA. 2 Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA. 3 Department of Systems and Computational Biology, Albert Einstein College of Medicine, New York, NY 10461, USA. -
Recombinant MAP2K2 Protein
Recombinant MAP2K2 protein Catalog No: 81332, 81632 Quantity: 20, 1000 µg Expressed In: Baculovirus Concentration: 0.3 µg/µl Source: Human Buffer Contents: Recombinant MAP2K2 protein is supplied in 25 mM HEPES-NaOH pH 7.5, 300 mM NaCl, 10% glycerol, 0.04% Triton X-100, and 0.5 mM TCEP. Background: MAP2K2 (Mitogen-Activated Protein Kinase Kinase Kinase 2) is a dual specificity protein kinase that belongs to the MAP kinase kinase family. This kinase plays a critical role in mitogen growth factor signal transduction. It phosphorylates and activates MAPK1/ERK2 and MAPK2/ERK3. The activation of this kinase itself is dependent on the Ser/Thr phosphorylation by MAP kinase kinase kinases. Mutations in this gene cause cardiofaciocutaneous syndrome (CFC syndrome), a disease characterized by heart defects, cognitive disability, and distinctive facial features similar to those found in Noonan syndrome. Protein Details: Recombinant MAP2K2 protein was expressed in baculovirus expression system as the full length protein (accession number NP_109587.1) with a N-terminal FLAG Tag. The molecular weight of the protein is 45.7 kDa. Application Notes: This product was manufactured as described in Protein Details. Where possible, Active Motif has developed functional or activity assays for Recombinant MAP2K2 protein gel recombinant proteins. Additional characterization such as enzyme kinetic activity 10% SDS-PAGE with Coomassie blue assays, inhibitor screening or other biological activity assays may not have been staining MW: 45.7 kDa performed for every product. All available data for a given product is shown on the lot- Purity: >90% specific Technical Data Sheet. Storage and Guarantee: Recombinant proteins in solution are temperature sensitive and must be stored at -80°C to prevent degradation. -
Survival Pathways That Regulate Macrophage Tec and Btk in M-CSF
Essential Roles for the Tec Family Kinases Tec and Btk in M-CSF Receptor Signaling Pathways That Regulate Macrophage Survival This information is current as of September 26, 2021. Martin Melcher, Bernd Unger, Uwe Schmidt, Iiro A. Rajantie, Kari Alitalo and Wilfried Ellmeier J Immunol 2008; 180:8048-8056; ; doi: 10.4049/jimmunol.180.12.8048 http://www.jimmunol.org/content/180/12/8048 Downloaded from References This article cites 36 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/180/12/8048.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Essential Roles for the Tec Family Kinases Tec and Btk in M-CSF Receptor Signaling Pathways That Regulate Macrophage Survival1 Martin Melcher,2* Bernd Unger,2† Uwe Schmidt,3* Iiro A. -
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
ITK Inhibitors for the Treatment of T-Cell Lymphoproliferative Disorders John C
ITK Inhibitors for the Treatment of T-Cell Lymphoproliferative Disorders John C. Reneau, MD, PhD1, Steven R. Hwang, MD2, Carlos A. Murga-Zamalloa, MD1, Joseph J. Buggy, PhD3, James W. Janc, PhD3 and Ryan A. Wilcox, MD, PhD1 1University of Michigan, Ann Arbor, MI; 2Mayo Clinic, Rochester, MN; 3Corvus Pharmaceuticals, Inc., Burlingame, CA Introduction Results and Methods Conclusions • T-cell lymphomas (TCL) comprise a rare, aggressive, and Table 1: CPI-818 specifically inhibits ITK Figure 2: CPI-818 has minimal effect on normal T cells • CPI-818 is a potent ITK specific inhibitor, while CPI-893 inhibits both heterogeneous subtype of non-Hodgkin lymphoma B IC50 (nM) A ITK and RLK • Outcomes for patients with TCL remain poor and novel therapies are ITK RLK • Normal T cells express both ITK and RLK which can compensate for needed CPI-818 (ITKi) 2.3 260 inhibition of ITK function CPI-893 (ITK/RLKi) 0.36 0.4 • Engagement of the T-cell receptor (TCR) in malignant T-cells leads to • Malignant T cells almost exclusively express ITK, or express RLK at Kinome screening was performed for CPI-818 (ITKi) and CPI-893 (ITK/RLKi). CPI-818 (ITKi) had high interleukin-2-inudcible T-cell kinase (ITK) dependent activation of NF- specificity for ITK over RLK (IC50 2.3 nM and 260 nM, respectively). In contrast CPI-893 (ITK/RLKi) had a very low levels high affinity for both ITK and RLK (IC50 0.36 nM and 0.4 nM, respectively) 1 κB and GATA3, and promotes chemotherapy resistance . (A) Peripheral blood T cells from healthy donors were isolated by negative selection. -
Redox-Mediated Regulation of the Tyrosine Kinase Zap70
Redox-mediated regulation of the tyrosine kinase Zap70 DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) genehmigt durch die Fakultät für Naturwissenschaften der Otto-von-Guericke-Universität von M.Sc. Christoph Thurm geb. am 27.06.1988 in Borna Gutachter: apl. Prof. Dr. Luca Simeoni PD Dr. rer. nat. Marcus Lettau eingereicht am: 02.02.2018 verteidigt am: 06.06.2018 Eigenständigkeitserklärung I. Eigenständigkeitserklärung Christoph Thurm Halberstädter Straße 29 39112 Magdeburg Hiermit erkläre ich, dass ich die von mir eingereichte Dissertation zu dem Thema Redox-mediated regulation of the tyrosine kinase Zap70 selbständig verfasst, nicht schon als Dissertation verwendet habe und die benutzten Hilfsmittel und Quellen vollständig angegeben wurden. Weiterhin erkläre ich, dass ich weder diese noch eine andere Arbeit zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an anderen Einrichtungen eingereicht habe. Magdeburg, den 02.02.2018 ____________________________________ M.Sc. Christoph Thurm II ACKNOWLEDGEMENTS II. Acknowledgements Firstly, I would like to express my sincere gratitude to my supervisor Prof. Dr. Luca Simeoni. His extraordinary support during my PhD thesis together with his motivation and knowledge enabled me to pursue my dream. I could not have imagined having a better mentor. Furthermore, I would like to thank Prof. Dr. Burkhart Schraven for giving me the opportunity to work in his institute. His support, ideas, and the lively discussions promoted me to develop as a scientist. Special thanks go also to the whole AG Simeoni/Schraven - Ines, Camilla, Matthias, and Andreas - for the help with experiments, the discussions, and the fun we had. This helped to sustain also the longest days. -
Map2k1 and Map2k2 Genes Contribute to the Normal Development of Syncytiotrophoblasts During Placentation
RESEARCH ARTICLE 1363 Development 136, 1363-1374 (2009) doi:10.1242/dev.031872 Map2k1 and Map2k2 genes contribute to the normal development of syncytiotrophoblasts during placentation Valérie Nadeau*, Stéphanie Guillemette*, Louis-François Bélanger, Olivier Jacob, Sophie Roy and Jean Charron† The mammalian genome contains two ERK/MAP kinase kinase genes, Map2k1 and Map2k2, which encode dual-specificity kinases responsible for ERK/MAP kinase activation. In the mouse, loss of Map2k1 function causes embryonic lethality, whereas Map2k2 mutants survive with a normal lifespan, suggesting that Map2k1 masks the phenotype due to the Map2k2 mutation. To uncover the specific function of MAP2K2 and the threshold requirement of MAP2K proteins during embryo formation, we have successively ablated the Map2k gene functions. We report here that Map2k2 haploinsufficiency affects the normal development of placenta in the absence of one Map2k1 allele. Most Map2k1+/–Map2k2+/– embryos die during gestation because of placenta defects restricted to extra-embryonic tissues. The impaired viability of Map2k1+/–Map2k2+/– embryos can be rescued when the Map2k1 deletion is restricted to the embryonic tissues. The severity of the placenta phenotype is dependent on the number of Map2k mutant alleles, the deletion of the Map2k1 allele being more deleterious. Moreover, the deletion of one or both Map2k2 alleles in the context of one null Map2k1 allele leads to the formation of multinucleated trophoblast giant (MTG) cells. Genetic experiments indicate that these structures are derived from Gcm1-expressing syncytiotrophoblasts (SynT), which are affected in their ability to form the uniform SynT layer II lining the maternal sinuses. Thus, even though Map2k1 plays a predominant role, these results enlighten the function of Map2k2 in placenta development. -
Review Tec Kinases: a Family with Multiple Roles in Immunity
Immunity, Vol. 12, 373±382, April, 2000, Copyright 2000 by Cell Press Tec Kinases: A Family Review with Multiple Roles in Immunity Wen-Chin Yang,*³§ Yves Collette,*³ inositol phosphates, but they are thought to be relevant Jacques A. NuneÁ s,*³ and Daniel Olive*² for binding of PtdIns lipids to the same sites. In most *INSERM U119 cases, PH domains bind preferentially to PtdIns (4,5)P2 Universite de la Me diterrane e and inositol (1,4,5) P3 (Ins (1,4,5) P3). However, the Btk 13009 Marseille PH domain binds PtdIns (3,4,5)P3 and Ins (1, 3, 4, 5)P4 France the tightest. PtdIns (3, 4, 5)P3, one of the products of the action of PI3K, is thought to act as a second messen- ger to recruit regulatory proteins to the plasma mem- brane via their PH domains (see below). Many of the Antigen receptors on T, B, and mast cells are multimo- mutations in Btk that lead to XLA are point mutations lecular complexes that are activated by interactions with that cluster at one end of the PH domain and could be external signals. These signals are then transmitted to predicted to impair binding to Ins (3,4,5)P (for review regulate gene expression and posttranscriptional modi- 3 see Satterthwaite et al., 1998a) (Figure 1b). Similarly, fications. Nonreceptor tyrosine kinases (NRTK) are key CBA/N xid mice carry an R28C mutation in the Btk PH players that relay and integrate these signals. NRTK are domain. The recent structure of the PH domain from divided into distinct families defined by a prototypic Btk complexed with Ins (1,3,4,5)P4 provides an explana- member: Src, Tec, Syk, Csk, Fes, Abl, Jak, Fak, Ack, tion for several mutations associated with XLA: mis- Brk, and Srm (Bolen and Brugge, 1997).