Systematics of Buddleja (Scrophulariaceae): Phylogenetic Relationships, Historical Biogeography, and Phylogenomics

Total Page:16

File Type:pdf, Size:1020Kb

Systematics of Buddleja (Scrophulariaceae): Phylogenetic Relationships, Historical Biogeography, and Phylogenomics Systematics of Buddleja (Scrophulariaceae): phylogenetic relationships, historical biogeography, and phylogenomics John H. Chau A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2017 Reading Committee: Richard G. Olmstead, Chair Verónica S. Di Stilio Adam D. Leaché Program Authorized to Offer Degree: Department of Biology ©Copyright 2017 John H. Chau University of Washington Abstract Systematics of Buddleja (Scrophulariaceae): phylogenetic relationships, historical biogeography, and phylogenomics John H. Chau Chair of the Supervisory Committee: Professor Richard G. Olmstead Department of Biology Plants display incredible diversity, in morphology and spatial distribution, which can best be understood in an evolutionary context. The reconstruction of how this diversity has evolved can illuminate patterns and trends in the evolution of functionally and ecologically important traits and on how modern plant communities have formed around the globe. Case studies of individual taxa that encompass such diversity allow for thorough taxonomic sampling and detailed analysis of traits and distribution. The tribe Buddlejeae in Scrophulariaceae comprises 108 species of trees and shrubs in five genera: Buddleja, Chilianthus, Emorya, Gomphostigma, and Nicodemia. They are variable in flower color and shape, inflorescence architecture, fruit type, leaf shape and texture, and habitat preference, among other traits. They also have a wide distribution in tropical montane and subtropical regions of Africa, Madagascar, Asia, North America, and South America. Prior phylogenetic studies including the group have had limited taxonomic sampling, and evolutionary relationships between species and genera remained unknown. In Chapter 1, I infer a phylogeny for tribe Buddlejeae with extensive taxonomic sampling from all five genera and all major areas of distribution, using multiple nuclear and plastid markers. Buddleja and Chilianthus were resolved to be non-monophyletic, with Buddleja paraphyletic with respect to the other four genera. A new classification is proposed in which the other four genera are combined with Buddleja and seven sections in Buddleja are erected. Ancestral character state reconstructions show that some traits, including stamen exsertion, corolla shape, and inflorescence type, converged on similar states multiple times. The plesiomorphic trait states in Buddlejeae include capsular fruits, included stamens, white and tube-shaped corollas, and paniculate inflorescences. In Chapter 2, I infer a time-calibrated phylogeny for Buddleja, reconstruct ancestral distributions, and test for shifts in diversification rate dynamics. We found that from an ancestral distribution on continental Africa, Buddleja expanded its range to the New World, Asia, and Madagascar, one time each, in the mid to late Miocene. Long-distance dispersal or migration through northern high-latitude corridors may have allowed for these range expansions. An increase in speciation rate early in the diversification of the New World clade suggests conditions conducive to speciation in the American cordilleras. In Chapter 3, I use phylogenomic methods to infer a better-supported phylogeny for Buddleja, with particular focus on the Asian clade. Four locus sets were identified as targets for sequence capture and high-throughput sequencing. A “taxon-specific” locus set was developed using genomic and transcriptome data from two species of Buddleja. Three “general” locus sets were chosen from previous studies that used genomic data from several distantly related angiosperms. A greater number of loci were developed for the “taxon-specific” set. All sets had a very high proportion of target loci with assembled sequences for Buddleja species, but “general” sets had greater assembly for outgroup taxa. The “taxon-specific” and PPR loci had the highest average percentage of variable sites. A fully resolved and highly supported phylogeny for the Asian Buddleja clade can serve as a framework for future evolutionary studies. ACKNOWLEDGEMENTS I am grateful to my committee for all their support and advice over my time at UW. I especially thank my advisor, Dick Olmstead, for his encouragement of my work, for the independence he has given me, and for being a role model to me as a scholar and person. I also thank Adam Leaché and Verónica Di Stilio for their helpful suggestions and critiques of my work and for their generosity in sharing their lab resources. I am thankful to Sarah Reichard for reminding me to think more broadly about Buddleja’s place in the natural world, and to Eric Turnblom for his openness and interest as I was finishing my dissertation. I thank Eliane Norman for all her work with Buddleja and insights shared through our conversations. My research rests on the foundations she and other plant systematists laid. I thank Nataly O’Leary for her invaluable contributions to this research in procuring specimens and generating plastid sequence data and for her patience. I thank Sun Wei-Bang for facilitating collaborations with his lab in Kunming, which allowed me to have nearly complete sampling of Asian taxa and to experience these plants in the field. I thank the graduate students in the Olmstead lab, past and present, for our conversations about science, for passing on to me ancient lab knowledge, and for being a constant source of humor and support: Valerie Soza, Yuan Yaowu, Ryan Miller, Pat Lu-Irving, Laura Frost, Audrey Ragsac, and Ana Maria Bedoya. I also thank the many undergrads I have had the opportunity to work with, who have helped me generate data for this project: Bailey Craig, Anna O’Brien, Shulamit Harkavy, Ben Meersman, Calvin Lee, and Georgia Seyfried. I give special thanks to Wolf Rahfeldt for his programming expertise and excellent companionship. I thank the herbarium (WTU), especially David Giblin, for facilitating my work with specimens and for their financial and personal support. I also thank the Botany Greenhouse, especially Jeanette Milne and Doug Ewing, and the Medicinal Herb Garden and Keith Possee for allowing me to grow Buddleja in Seattle and see some in flower for the first time, for making teaching about plants immensely more interesting, and for many enjoyable and enlightening hours spent with plants. The staff of the UW Biology department has helped me tremendously in various ways through my years here. I especially thank Karen Bergeron for her guidance when I submitted my proposal for the NSF DDIG and for her affability. I thank the many institutions that have provided sources of plant specimens for my research: CAS, DAV, GH, GRA, K, KUN, LPB, MO, NBG, NY, SI, TEX, UC, WTU, Arnold Arboretum, Hoyt Arboretum, Kunming Botanical Garden, Kirstenbosch Botanical Garden, Los Angeles County Arboretum, Rancho Santa Ana Botanic Garden, San Francisco Botanical Garden, and University of California-Davis Arboretum. I especially thank the University of Washington Botanic Gardens for accepting into their collections the Buddleja specimens I have started and grown. Systematics and biodiversity research would be vastly more difficult without these important collections and records of life on Earth. I thank the many people who have made my fieldwork immeasurably easier and more enjoyable: Segundo Leiva and Mario Zapata Cruz in Peru; Dave Tank and Diego Morales- Briones in Bolivia; the Organization for Tropical Studies and Ricardo Kriebel in Costa Rica; Alistair Barker, Tony Dold, and Nigel Barker in South Africa; Sun Wei-Bang, Xin Zhang, and the other members of Prof. Sun’s lab in China; and especially Simon Uribe-Converse in Peru and Bolivia, who I explored beautiful Peru with on my first field trip and who inspired me to be a better field botanist and scientist. I thank the sources of financial support that have made this research possible: the Graduate Research Fellowship and Doctoral Dissertation Improvement Grant from the National Science Foundation; the Sargent Award, Giles Botanical Field Research Award, Washington Research Foundation and Benjamin Hall Fellowship, and Melinda Denton Writing Fellowship from the UW Department of Biology; and student research grants from the Botanical Society of America, American Society of Plant Taxonomists, and Society of Systematic Biologists. I thank my friends, in Seattle and beyond, who have provided camaraderie and welcome distractions from graduate school. Finally, I am grateful for my education in the public school system of the United States, in the Los Angeles Unified School District, Cornell University, University of California-Davis, and University of Washington, for the opportunities it has given me to engage in the pursuit and sharing of knowledge. CONTENTS CHAPTER 1. Phylogenetic relationships in tribe Buddlejeae (Scrophulariaceae) based on multiple nuclear and plastid markers ………………………………………………………….. 1 CHAPTER 2. Origins and timing of intercontinental disjunctions in the widely-distributed plant genus Buddleja (Scrophulariaceae) …………………………………………………………... 32 CHAPTER 3. Comparison of taxon-specific versus general locus sets for targeted sequence capture for plant phylogenomics ……………………………………………………………... 84 CHAPTER 1: Phylogenetic relationships in tribe Buddlejeae (Scrophulariaceae) based on multiple nuclear and plastid markers Citation: Chau JH, O’Leary N, Sun W-B, & Olmstead RG. 2017. Phylogenetic relationships in tribe Buddlejeae (Scrophulariaceae) based on multiple nuclear and plastid markers. Botanical Journal of the Linnean
Recommended publications
  • Sistema De Clasificación Artificial De Las Magnoliatas Sinántropas De Cuba
    Sistema de clasificación artificial de las magnoliatas sinántropas de Cuba. Pedro Pablo Herrera Oliver Tesis doctoral de la Univerisdad de Alicante. Tesi doctoral de la Universitat d'Alacant. 2007 Sistema de clasificación artificial de las magnoliatas sinántropas de Cuba. Pedro Pablo Herrera Oliver PROGRAMA DE DOCTORADO COOPERADO DESARROLLO SOSTENIBLE: MANEJOS FORESTAL Y TURÍSTICO UNIVERSIDAD DE ALICANTE, ESPAÑA UNIVERSIDAD DE PINAR DEL RÍO, CUBA TESIS EN OPCIÓN AL GRADO CIENTÍFICO DE DOCTOR EN CIENCIAS SISTEMA DE CLASIFICACIÓN ARTIFICIAL DE LAS MAGNOLIATAS SINÁNTROPAS DE CUBA Pedro- Pabfc He.r retira Qltver CUBA 2006 Tesis doctoral de la Univerisdad de Alicante. Tesi doctoral de la Universitat d'Alacant. 2007 Sistema de clasificación artificial de las magnoliatas sinántropas de Cuba. Pedro Pablo Herrera Oliver PROGRAMA DE DOCTORADO COOPERADO DESARROLLO SOSTENIBLE: MANEJOS FORESTAL Y TURÍSTICO UNIVERSIDAD DE ALICANTE, ESPAÑA Y UNIVERSIDAD DE PINAR DEL RÍO, CUBA TESIS EN OPCIÓN AL GRADO CIENTÍFICO DE DOCTOR EN CIENCIAS SISTEMA DE CLASIFICACIÓN ARTIFICIAL DE LAS MAGNOLIATAS SINÁNTROPAS DE CUBA ASPIRANTE: Lie. Pedro Pablo Herrera Oliver Investigador Auxiliar Centro Nacional de Biodiversidad Instituto de Ecología y Sistemática Ministerio de Ciencias, Tecnología y Medio Ambiente DIRECTORES: CUBA Dra. Nancy Esther Ricardo Ñapóles Investigador Titular Centro Nacional de Biodiversidad Instituto de Ecología y Sistemática Ministerio de Ciencias, Tecnología y Medio Ambiente ESPAÑA Dr. Andreu Bonet Jornet Piiofesjar Titular Departamento de EGdfegfe Universidad! dte Mearte CUBA 2006 Tesis doctoral de la Univerisdad de Alicante. Tesi doctoral de la Universitat d'Alacant. 2007 Sistema de clasificación artificial de las magnoliatas sinántropas de Cuba. Pedro Pablo Herrera Oliver I. INTRODUCCIÓN 1 II. ANTECEDENTES 6 2.1 Historia de los esquemas de clasificación de las especies sinántropas (1903-2005) 6 2.2 Historia del conocimiento de las plantas sinantrópicas en Cuba 14 III.
    [Show full text]
  • Voorraad 25-2-2020
    Voorraad 25 Voorraad boskoop.nl - boskoop.nl boskoop.nl - - - 2 - 2020 Rijneveld Rijneveld 115 2771 XV Boskoop www.bulk info@bulk anne@bulk Fax.: +31 (0) 172 213 402 Prijzen onder voorbehoud van fouten Prices subject to errors Handelvoorwaarden op onze website - conditions of sale on our website - Handelsbedingungen auf unsere Website ------------------------------------------------------------------------------------- - Planten kunnen worden besteld en opgahald. We kunnen helaas geen postpaketten meer versturen - Plants can be preordered and picked up. Unfortunately we cannot send any postparcels anymore Aantal Naam MvL Maat cm Prijs Quantety Name Rootball/pot. Hight cm kluit/pot 22 Abelia triflora 25-30 C2 € 19,70 124 Abies koreana 20/+ C2 € 11,25 13 Abies numidica 30-40 C3 € 22,50 5 Acaena magellanica plgd P9 € 5,00 1 Acer aff. davidii 50-60 C2 € 16,50 1 Acer aff. palmatum 60-80 KL € 21,85 1 Acer 'Ample Surprise' PBR 100-125 C25 € 75,00 2 Acer 'Ample Surprise' PBR 20-30 C3 € 27,50 1 Acer 'Ample Surprise' PBR 20-30 C3 € 27,50 3 Acer amplum 225-250 KL € 59,50 1 Acer campestre 'Huiber's Elegant' 160-180 C5 € 39,50 1 Acer cappadocicum 'Aureum' 140-160 C12 € 49,50 21 Acer cappadocicum 'Aureum' 40-60 P11 € 10,95 1 Acer carpinifolium SOL C100 € 412,50 2 Acer conspicuum 'Red Flamingo' 150-175 C7.5 € 52,00 1 Acer davidii 100-125 C3 € 18,75 1 Acer davidii 80-100 C10 € 19,95 2 Acer davidii 120-150 C5 € 30,00 30 Acer davidii ('Serpentine'-seedling) 80-120 C2 € 17,50 2 Acer davidii 'George Forrest' 100-125 C2 € 26,90 5 Acer davidii 'George Forrest'
    [Show full text]
  • Wood Anatomy of Buddlejaceae Sherwin Carlquist Santa Barbara Botanic Garden
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 15 | Issue 1 Article 5 1996 Wood Anatomy of Buddlejaceae Sherwin Carlquist Santa Barbara Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1996) "Wood Anatomy of Buddlejaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 15: Iss. 1, Article 5. Available at: http://scholarship.claremont.edu/aliso/vol15/iss1/5 Aliso, 15(1), pp. 41-56 © 1997, by The Rancho Santa Ana Botanic Garden, Claremont, CA 91711-3157 WOOD ANATOMY OF BUDDLEJACEAE SHERWIN CARLQUIST' Santa Barbara Botanic Garden 1212 Mission Canyon Road Santa Barbara, California 93110-2323 ABSTRACT Quantitative and qualitative data are presented for 23 species of Buddleja and one species each of Emorya, Nuxia, and Peltanthera. Although crystal distribution is likely a systematic feature of some species of Buddleja, other wood features relate closely to ecology. Features correlated with xeromorphy in Buddleja include strongly marked growth rings (terminating with vascular tracheids), narrower mean vessel diameter, shorter vessel elements, greater vessel density, and helical thickenings in vessels. Old World species of Buddleja cannot be differentiated from New World species on the basis of wood features. Emorya wood is like that of xeromorphic species of Buddleja. Lateral wall vessel pits of Nuxia are small (2.5 ILm) compared to those of Buddleja (mostly 5-7 ILm) . Peltanthera wood features can also be found in Buddleja or Nuxia; Dickison's transfer of Sanango from Buddlejaceae to Ges­ neriaceae is justified. All wood features of Buddlejaceae can be found in families of subclass Asteridae such as Acanthaceae, Asteraceae, Lamiaceae, Myoporaceae, Scrophulariaceae, and Verbenaceae.
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • WO 2007/098873 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 7 September 2007 (07.09.2007) WO 2007/098873 Al (51) International Patent Classification: (74) Agent: LINHART, Angela; c/o Bayer Healthcare AG, A61Q 19/02 (2006.01) A61K 8/97 (2006.01) Law and Patents, Patents and Licensing, 51368 Leverkusen A61K 8/49 (2006.01) A61K 35/00 (2006.01) (DE). A61K 8/60 (2006.01) A61K 36/00 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/EP2007/001459 AT,AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FT, (22) International Filing Date: GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, 2 1 February 2007 (21.02.2007) JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV,LY,MA, MD, MG, MK, MN, MW, MX, MY, (25) Filing Language: English MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (30) Priority Data: 06290343.0 28 February 2006 (28.02.2006) EP (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): BAYER GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, CONSUMER CARE AG [CWCH]; Peter Merian-Str.
    [Show full text]
  • Butterfly Bush Buddleja Davidii Franch
    Weed of the Week Butterfly Bush Buddleja davidii Franch. Common Names: butterfly bush, orange-eye butterfly bush, summer lilac Native Origin: China Description: A perennial woody shrub with a weeping form that can grow 3-12 feet in height and has a spread of 4-15 feet. Opposite, lance-shaped leaves (6- 10 inches) with margins finely toothed grow on long arching stems. Leaves are gray-green above with lower surface white-tomentose. Small fragrant flowers are borne in long, erect or nodding spikes that are 8-18 inch with cone-shaped clusters that droop in a profusion of color. The flower clusters can be so profuse that they cause the branches to arch even more. Flower colors may be purple, white, pink, or red, and they usually have an orange throat in the center. It spreads by seeds that are produced in abundance and dispersed by the wind. Habitat: Butterfly bush likes well drained, average soil. They thrive in fairly dry conditions once established. Roots may perish in wet soil. Distribution: In the United States, it is recorded in states shaded on the map. Ecological Impacts: It has been planted in landscapes to attract butterflies, bees, moths and birds. It can escape from plantings and become invasive in a variety of habitats such as surface mined lands, coastal forest edges, roadsides, abandoned railroads, rural dumps, stream and river banks to displace native plants. Control and Management: • Manual- Hand pick seedlings or dig out where possible. Big plants may be difficult to dig out. • Chemical- Cut plants and treat stumps with any of several readily available general use herbicides such as triclopyr or glyphosate .
    [Show full text]
  • An Ethnobotanical Survey of Medicinal Plants Commercialized in the Markets of La Paz and El Alto, Bolivia
    Journal of Ethnopharmacology 97 (2005) 337–350 An ethnobotanical survey of medicinal plants commercialized in the markets of La Paz and El Alto, Bolivia Manuel J. Mac´ıaa,∗, Emilia Garc´ıab, Prem Jai Vidaurreb a Real Jard´ın Bot´anico de Madrid (CSIC), Plaza de Murillo 2, E-28014Madrid, Spain b Herbario Nacional de Bolivia, Universidad Mayor de San Andr´es (UMSA), Casilla 10077, Correo Central, Calle 27, Cota Cota, Campus Universitario, La Paz, Bolivia Received 22 September 2004; received in revised form 18 November 2004; accepted 18 November 2004 Abstract An ethnobotanical study of medicinal plants marketed in La Paz and El Alto cities in the Bolivian Andes, reported medicinal information for about 129 species, belonging to 55 vascular plant families and one uncertain lichen family. The most important family was Asteraceae with 22 species, followed by Fabaceae s.l. with 11, and Solanaceae with eight. More than 90 general medicinal indications were recorded to treat a wide range of illnesses and ailments. The highest number of species and applications were reported for digestive system disorders (stomach ailments and liver problems), musculoskeletal body system (rheumatism and the complex of contusions, luxations, sprains, and swellings), kidney and other urological problems, and gynecological disorders. Some medicinal species had magic connotations, e.g. for cleaning and protection against ailments, to bring good luck, or for Andean offerings to Pachamama, ‘Mother Nature’. In some indications, the separation between medicinal and magic plants was very narrow. Most remedies were prepared from a single species, however some applications were always prepared with a mixture of plants, e.g.
    [Show full text]
  • Production of Verbascoside, Isoverbascoside and Phenolic
    molecules Article Production of Verbascoside, Isoverbascoside and Phenolic Acids in Callus, Suspension, and Bioreactor Cultures of Verbena officinalis and Biological Properties of Biomass Extracts Paweł Kubica 1 , Agnieszka Szopa 1,* , Adam Kokotkiewicz 2 , Natalizia Miceli 3 , Maria Fernanda Taviano 3 , Alessandro Maugeri 3 , Santa Cirmi 3 , Alicja Synowiec 4 , Małgorzata Gniewosz 4 , Hosam O. Elansary 5,6,7 , Eman A. Mahmoud 8, Diaa O. El-Ansary 9, Omaima Nasif 10, Maria Luczkiewicz 2 and Halina Ekiert 1,* 1 Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; [email protected] 2 Chair and Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416 Gda´nsk,Poland; [email protected] (A.K.); [email protected] (M.L.) 3 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; [email protected] (N.M.); [email protected] (M.F.T.); [email protected] (A.M.); [email protected] (S.C.) 4 Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, ul. Nowoursynowska 159c, 02-776 Warsaw, Poland; [email protected] (A.S.); [email protected] (M.G.) 5 Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; [email protected] 6 Floriculture, Ornamental Horticulture,
    [Show full text]
  • Orchids of Suspa-Kshamawoti, Dolakha -An Annotated Checklist
    Banko Janakari, Vol 29 No. 2, 2019 Pp 28‒41 Karki & Ghimire https://doi.org:10.3126/banko.v29i2.28097 Orchids of Suspa-Kshamawoti, Dolakha -An annotated checklist S. Karki1* and S. K. Ghimire1 Suspa-Kshamawoti area of Dolakha district covers diverse vegetation types and harbors many interesting species of orchids. This paper documents 69 species of orchids covering 33 genera based on repeated field surveys and herbarium collections. Of them, 50 species are epiphytic (including lithophytes) and 19 species are terrestrial. Information regarding habit and habitat, phenology, host species and elevational range of distribution of each species are provided in the checklist. Keywords : Bulbophyllum, Nepal, Orchidaceae rchids are one of the most diverse and contributions on documentation of orchid flora are highly evolved groups of flowering made by Bajracharya (2001; 2004); Rajbhandari Oplants, and orchidaceae is the largest and Bhattrai (2001); Bajracharya and Shrestha family comprising 29,199 species and are (2003); Rajbhandari and Dahal (2004); Milleville globally distributed (Govaerts et al., 2017). Out and Shrestha (2004); Subedi et al. (2011); of them, two-third belong to epiphytes (Zotz and Rajbhandari (2015); Raskoti (2015); Raskoti and Winkler, 2013). In Nepal, orchidaceae is one of Ale (2009; 2011; 2012; 2019) and Bhandari et al. the major families amongst the higher flowering (2016 b; 2019). Suspa-Kshamawoti, the northern plants and comprises 502 taxa belonging to 108 part of the Dolakha district covers diverse genera, which forms around 8 percent of our flora vegetation and harbors some interesting species (Raskoti and Ale, 2019). The number of species of orchids. Bhandari et al.
    [Show full text]
  • Trees, Shrubs, and Perennials That Intrigue Me (Gymnosperms First
    Big-picture, evolutionary view of trees and shrubs (and a few of my favorite herbaceous perennials), ver. 2007-11-04 Descriptions of the trees and shrubs taken (stolen!!!) from online sources, from my own observations in and around Greenwood Lake, NY, and from these books: • Dirr’s Hardy Trees and Shrubs, Michael A. Dirr, Timber Press, © 1997 • Trees of North America (Golden field guide), C. Frank Brockman, St. Martin’s Press, © 2001 • Smithsonian Handbooks, Trees, Allen J. Coombes, Dorling Kindersley, © 2002 • Native Trees for North American Landscapes, Guy Sternberg with Jim Wilson, Timber Press, © 2004 • Complete Trees, Shrubs, and Hedges, Jacqueline Hériteau, © 2006 They are generally listed from most ancient to most recently evolved. (I’m not sure if this is true for the rosids and asterids, starting on page 30. I just listed them in the same order as Angiosperm Phylogeny Group II.) This document started out as my personal landscaping plan and morphed into something almost unwieldy and phantasmagorical. Key to symbols and colored text: Checkboxes indicate species and/or cultivars that I want. Checkmarks indicate those that I have (or that one of my neighbors has). Text in blue indicates shrub or hedge. (Unfinished task – there is no text in blue other than this text right here.) Text in red indicates that the species or cultivar is undesirable: • Out of range climatically (either wrong zone, or won’t do well because of differences in moisture or seasons, even though it is in the “right” zone). • Will grow too tall or wide and simply won’t fit well on my property.
    [Show full text]
  • Biodiversity in Karnali Province: Current Status and Conservation
    Biodiversity in Karnali Province: Current Status and Conservation Karnali Province Government Ministry of Industry, Tourism, Forest and Environment Surkhet, Nepal Biodiversity in Karnali Province: Current Status and Conservation Karnali Province Government Ministry of Industry, Tourism, Forest and Environment Surkhet, Nepal Copyright: © 2020 Ministry of Industry, Tourism, Forest and Environment, Karnali Province Government, Surkhet, Nepal The views expressed in this publication do not necessarily reflect those of Ministry of Tourism, Forest and Environment, Karnali Province Government, Surkhet, Nepal Editors: Krishna Prasad Acharya, PhD and Prakash K. Paudel, PhD Technical Team: Achyut Tiwari, PhD, Jiban Poudel, PhD, Kiran Thapa Magar, Yogendra Poudel, Sher Bahadur Shrestha, Rajendra Basukala, Sher Bahadur Rokaya, Himalaya Saud, Niraj Shrestha, Tejendra Rawal Production Editors: Prakash Basnet and Anju Chaudhary Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Acharya, K. P., Paudel, P. K. (2020). Biodiversity in Karnali Province: Current Status and Conservation. Ministry of Industry, Tourism, Forest and Environment, Karnali Province Government, Surkhet, Nepal Cover photograph: Tibetan wild ass in Limi valley © Tashi R. Ghale Keywords: biodiversity, conservation, Karnali province, people-wildlife nexus, biodiversity profile Editors’ Note Gyau Khola Valley, Upper Humla © Geraldine Werhahn This book “Biodiversity in Karnali Province: Current Status and Conservation”, is prepared to consolidate existing knowledge about the state of biodiversity in Karnali province. The book presents interrelated dynamics of society, physical environment, flora and fauna that have implications for biodiversity conservation.
    [Show full text]
  • Gardens and Stewardship
    GARDENS AND STEWARDSHIP Thaddeus Zagorski (Bachelor of Theology; Diploma of Education; Certificate 111 in Amenity Horticulture; Graduate Diploma in Environmental Studies with Honours) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy October 2007 School of Geography and Environmental Studies University of Tasmania STATEMENT OF AUTHENTICITY This thesis contains no material which has been accepted for any other degree or graduate diploma by the University of Tasmania or in any other tertiary institution and, to the best of my knowledge and belief, this thesis contains no copy or paraphrase of material previously published or written by other persons, except where due acknowledgement is made in the text of the thesis or in footnotes. Thaddeus Zagorski University of Tasmania Date: This thesis may be made available for loan or limited copying in accordance with the Australian Copyright Act of 1968. Thaddeus Zagorski University of Tasmania Date: ACKNOWLEDGEMENTS This thesis is not merely the achievement of a personal goal, but a culmination of a journey that started many, many years ago. As culmination it is also an impetus to continue to that journey. In achieving this personal goal many people, supervisors, friends, family and University colleagues have been instrumental in contributing to the final product. The initial motivation and inspiration for me to start this study was given by Professor Jamie Kirkpatrick, Dr. Elaine Stratford, and my friend Alison Howman. For that challenge I thank you. I am deeply indebted to my three supervisors Professor Jamie Kirkpatrick, Dr. Elaine Stratford and Dr. Aidan Davison. Each in their individual, concerted and special way guided me to this omega point.
    [Show full text]