Ganzhou–Longyan Railway Project
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
中國中鐵股份有限公司 CHINA RAILWAY GROUP LIMITED (A Joint Stock Limited Company Incorporated in the People’S Republic of China with Limited Liability) (Stock Code: 390)
Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. 中國中鐵股份有限公司 CHINA RAILWAY GROUP LIMITED (A joint stock limited company incorporated in the People’s Republic of China with limited liability) (Stock Code: 390) This overseas regulatory announcement is made pursuant to Rule 13.10B of the Rules Governing the Listing of Securities on The Stock Exchange of Hong Kong Limited. Please refer to the attached “Announcement of China Railway Group Limited on Winning of Bids for Material Projects” published by China Railway Group Limited on the Shanghai Stock Exchange website on 24 October 2019 for your information. By Order of the Board China Railway Group Limited Zhang Zongyan Chairman 24 October 2019 As at the date of this announcement, the executive directors of the Company are ZHANG Zongyan (Chairman) and ZHANG Xian; the independent non-executive directors are GUO Peizhang, WEN Baoman, ZHENG Qingzhi and CHUNG Shui Ming Timpson; and the non-executive director is MA Zonglin. A Shares Stock Code: 601390 A Shares Stock Name: China Railway Announcement No.: H Shares Stock Code: 00390 H Shares Stock Name: China Railway Lin 2019-072 Announcement of China Railway Group Limited on Winning of Bids for Material Projects The board of directors of China Railway Group Limited (the “Company”) and all the directors hereby undertake that this announcement does not have any false or misleading statements or any material omissions, and assume the joint and several liabilities for the truthfulness, accuracy and completeness of the contents. -
Competitiveness Analysis of China's Main Coastal Ports
2019 International Conference on Economic Development and Management Science (EDMS 2019) Competitiveness analysis of China's main coastal ports Yu Zhua, * School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210000, China; [email protected] *Corresponding author Keywords: China coastal ports above a certain size, competitive power analysis, factor analysis, cluster analysis Abstract: As a big trading power, China's main mode of transportation of international trade goods is sea transportation. Ports play an important role in China's economic development. Therefore, improving the competitiveness of coastal ports is an urgent problem facing the society at present. This paper selects 12 relevant indexes to establish a relatively comprehensive evaluation index system, and uses factor analysis and cluster analysis to evaluate and rank the competitiveness of China's 30 major coastal ports. 1. Introduction Port is the gathering point and hub of water and land transportation, the distribution center of import and export of industrial and agricultural products and foreign trade products, and the important node of logistics. With the continuous innovation of transportation mode and the rapid development of science and technology, ports play an increasingly important role in driving the economy, with increasingly rich functions and more important status and role. Meanwhile, the competition among ports is also increasingly fierce. In recent years, with the rapid development of China's economy and the promotion of "the Belt and Road Initiative", China's coastal ports have also been greatly developed. China has more than 18,000 kilometers of coastline, with superior natural conditions. With the introduction of the policy of reformation and opening, the human conditions are also excellent. -
MISSION in CENTRAL CHINA
MISSION in CENTRAL CHINA A SHORT HISTORY of P.I.M.E. INSTITUTE in HENAN and SHAANXI Ticozzi Sergio, Hong Kong 2014 1 (on the cover) The Delegates of the 3rd PIME General Assembly (Hong Kong, 15/2 -7/3, 1934) Standing from left: Sitting from left: Fr. Luigi Chessa, Delegate of Kaifeng Msgr. Domenico Grassi, Superior of Bezwada Fr. Michele Lucci, Delegate of Weihui Bp. Enrico Valtorta, Vicar ap. of Hong Kong Fr. Giuseppe Lombardi, Delegate of Bp. Flaminio Belotti, Vicar ap. of Nanyang Hanzhong Bp. Dionigi Vismara, Bishop of Hyderabad Fr. Ugo Sordo, Delegate of Nanyang Bp. Vittorio E. Sagrada, Vicar ap. of Toungoo Fr. Sperandio Villa, China Superior regional Bp. Giuseppe N. Tacconi, Vicar ap. of Kaifeng Fr. Giovanni Piatti, Procurator general Bp. Martino Chiolino, Vicar ap. of Weihui Fr. Paolo Manna, Superior general Bp. Giovanni B. Anselmo, Bishop of Dinajpur Fr. Isidoro Pagani, Delegate of Italy Bp. Erminio Bonetta, Prefect ap. of Kengtung Fr. Paolo Pastori, Delegate of Italy Fr. Giovanni B. Tragella, assistant general Fr. Luigi Risso, Vicar general Fr. Umberto Colli, superior regional of India Fr. Alfredo Lanfranconi, Delegate of Toungoo Fr. Clemente Vismara, Delegate ofKengtung Fr. Valentino Belgeri, Delegate of Dinajpur Fr. Antonio Riganti, Delegate of Hong Kong 2 INDEX: 1 1. Destination: Henan (1869-1881) 25 2. Division of the Henan Vicariate and the Boxers’ Uprising (1881-1901) 49 3. Henan Missions through revolutions and changes (1902-1924) 79 4. Henan Vicariates and the country’s trials (1924-1946) 125 5. Henan Dioceses under the -
Hong Kong SAR
China Data Supplement November 2006 J People’s Republic of China J Hong Kong SAR J Macau SAR J Taiwan ISSN 0943-7533 China aktuell Data Supplement – PRC, Hong Kong SAR, Macau SAR, Taiwan 1 Contents The Main National Leadership of the PRC 2 LIU Jen-Kai The Main Provincial Leadership of the PRC 30 LIU Jen-Kai Data on Changes in PRC Main Leadership 37 LIU Jen-Kai PRC Agreements with Foreign Countries 47 LIU Jen-Kai PRC Laws and Regulations 50 LIU Jen-Kai Hong Kong SAR 54 Political, Social and Economic Data LIU Jen-Kai Macau SAR 61 Political, Social and Economic Data LIU Jen-Kai Taiwan 65 Political, Social and Economic Data LIU Jen-Kai ISSN 0943-7533 All information given here is derived from generally accessible sources. Publisher/Distributor: GIGA Institute of Asian Affairs Rothenbaumchaussee 32 20148 Hamburg Germany Phone: +49 (0 40) 42 88 74-0 Fax: +49 (040) 4107945 2 November 2006 The Main National Leadership of the PRC LIU Jen-Kai Abbreviations and Explanatory Notes CCP CC Chinese Communist Party Central Committee CCa Central Committee, alternate member CCm Central Committee, member CCSm Central Committee Secretariat, member PBa Politburo, alternate member PBm Politburo, member Cdr. Commander Chp. Chairperson CPPCC Chinese People’s Political Consultative Conference CYL Communist Youth League Dep. P.C. Deputy Political Commissar Dir. Director exec. executive f female Gen.Man. General Manager Gen.Sec. General Secretary Hon.Chp. Honorary Chairperson H.V.-Chp. Honorary Vice-Chairperson MPC Municipal People’s Congress NPC National People’s Congress PCC Political Consultative Conference PLA People’s Liberation Army Pol.Com. -
Analysis of the Characteristics in a Strong Convective Weather Process
Analysis of the characteristics in a strong convective weather process in China Li Zuxian Huang Xiaoyu Deng Zhaoping Xu Lin Hunan Meteorological Observatory, Changsha, China, 410007 ABSTRACT Introduction From the mid-70s, through the double Doppler By using the numerical forecasting product, the weather radar observation to understand thunderstorm convention, the automatic weather station and system's internal structure, especially the system Doppler weather radar materials, it analyzed interior's three dimensional wind field (Ray et al.1975), Hunan strong convective weather process on April 4, discovered particularly the hail storms wind field has 2006. The result indicated: The preliminary weather the cyclone type circulation characteristic, the returns to warmer continually, and accumulate ascendant current located at the weak echo region. massive unstable energies, the vertical wind shear, Chisholm and Renick (1972) and Browning(1977) the power, the thermal energy and the water vapor divides into the multi-monomer storm and the super condition are advantageous to the strong convection monomer storm the storm through using the past storm weather production; During this process, ground and research and the recognition of the storm power and the upper air temperature, the humidity, the kinetic the structure of Micro physics ; The storm has four energy perturbation quantity, the ground temperature stages: initial development period, the beginning of perturbation is bigger than each level upper air of echo characteristic, mature stage, dissipation stage. the temperature perturbation obviously, it explained Klemp(1987) reorganizes many year findings, showing that the ground thermal energy function is bigger that the Mesoscale cyclone in the fierce convection than that of the high level; In the disturbance storm is the horizontal direction scroll which cuts by moisture field, transfers the weather to have the the environment vertical wind forms does after the region each level humidity is smaller than the convection development reverse creates. -
Building Railways in the People's Republic of China: Changing Lives
Building Railways in the People’s Republic of China Changing Lives Manmohan Parkash EARD Special Studies Building Railways in the People’s Republic of China: Changing Lives Manmohan Parkash © 2008 Asian Development Bank All rights reserved. Published 2008 Printed in the Philippines Publication Stock No. 092007 ISBN No. 978-971-561645-4 The views expressed in this publication are those of the authors and do not necessarily reflect the views and policies of the Asian Development Bank, of its Board of Governors, or of the governments they represent. The Asian Development Bank does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. Use of the term “country” does not imply any judgment by the authors or the Asian Development Bank as to the legal or other status of any territorial entity. ii Building Railways in the People’s Republic of China: Changing Lives Contents Contents .................................................................................. iii List of Tables and Figures .................................................................. iv Abbreviations and Acronyms .............................................................. v Acknowledgement ........................................................................ vi Foreword .................................................................................. vii Executive Summary ....................................................................... viii INTRODUCTION .......................................................................... -
World Bank-Financed Jiangxi Poyang Lake Basin and Ecological
E4011 V4 rev World Bank-financed Jiangxi Poyang Lake Basin and Ecological Economic Zone Small Town Development Demonstration Public Disclosure Authorized Project Environmental Codes of Practice For Public Disclosure Authorized Bridge and Culvert Public Disclosure Authorized Institute of Poyang Lake Eco-economics, Jiangxi University of Finance and Public Disclosure Authorized Economics Beijing Huaqing Lishui Environmental Technology Co., Ltd. Environmental Engineering Technology Development Center, Jiangxi Academy of Sciences September 2012 Jiangxi Environmental Codes of Practice for Bridge and Culvert Table of Contents 1 PREFACE .................................................................................................................. 1 2 MAIN CONTENTS OF THE PROJECT ............................................................... 1 3 KEY POINTS OF DESIGN ..................................................................................... 6 4 ENVIRONMENTAL CODES OF PRACTICE IN CONSTRUCTION PERIOD ........................................................................................................................................ 6 4.1 CONSTRUCTION SITE MANAGEMENT ..................................................................... 7 4.2 MANAGEMENT ON THE QUALITY OF SURFACE WATER ENVIRONMENT ................ 10 4.3 RISK PREVENTION AND CONTROL MEASURES ..................................................... 11 4.4 ADMINISTRATIVE MEASURES OF DANGEROUS WASTES AND FLAMMABLE & EXPLOSIVE ARTICLES ............................................................................................... -
Advances in Geophysical Methods Used for Uranium Exploration and Their Applications in China
ADVANCES IN GEOPHYSICAL METHODS USED FOR URANIUM EXPLORATION AND THEIR APPLICATIONS IN CHINA J. DENG, H. CHEN, Y. WANG, H. LI, H. YANG, Z. ZHANG East China University of Technology, Nanchang, China 1. INTRODUCTION Geophysics is one of the most useful techniques for uranium exploration. It supports the development of geological models through the definition of lithological, structural and alteration characteristics of metallogenic environments under evaluation. With exploration at increasing depths, the traditional radiometric method is no longer effective for uranium exploration. Uranium mineralization is not closely related with observable gravity, magnetic and impedance anomalies. Gravity, magnetic and electromagnetic techniques can be used to survey the subsurface geological background of an area and can be efficient in detecting deeper uranium deposits [1]. The progression and development of geophysical methods, measurement techniques, data processing, computer modelling and inversion have permitted improvements in the field of uranium exploration [1, 2]. It is well known that progress in geophysical methods has contributed to successful field investigations in the exploration for deeper deposits (including uranium). Xu et al. [2] have reviewed the latest advances and developing trends in geophysical and geochemical methods and techniques applied to uranium resources exploration in China [2]. Following this work, this paper summarizes the research carried out by the East China University of Technology during the past decade. This includes 3-D inversion of magnetic data and 3-D electromagnetic methods tested in the Xiazhuang area over granite type uranium deposits [3, 4] and in the Xiangshan area over volcanic type uranium deposits [5]. Results indicate that some of the objectives, including mapping of basement structures, rock interface and lithology recognition, can be achieved. -
Supplemental Information
Supplemental information Table S1 Sample information for the 36 Bactrocera minax populations and 8 Bactrocera tsuneonis populations used in this study Species Collection site Code Latitude Longitude Accession number B. minax Shimen County, Changde SM 29.6536°N 111.0646°E MK121987 - City, Hunan Province MK122016 Hongjiang County, HJ 27.2104°N 109.7884°E MK122052 - Huaihua City, Hunan MK122111 Province 27.2208°N 109.7694°E MK122112 - MK122144 Jingzhou Miao and Dong JZ 26.6774°N 109.7341°E MK122145 - Autonomous County, MK122174 Huaihua City, Hunan Province Mayang Miao MY 27.8036°N 109.8247°E MK122175 - Autonomous County, MK122204 Huaihua City, Hunan Province Luodian county, Qiannan LD 25.3426°N 106.6638°E MK124218 - Buyi and Miao MK124245 Autonomous Prefecture, Guizhou Province Dongkou County, DK 27.0806°N 110.7209°E MK122205 - Shaoyang City, Hunan MK122234 Province Shaodong County, SD 27.2478°N 111.8964°E MK122235 - Shaoyang City, Hunan MK122264 Province 27.2056°N 111.8245°E MK122265 - MK122284 Xinning County, XN 26.4652°N 110.7256°E MK122022 - Shaoyang City,Hunan MK122051 Province 26.5387°N 110.7586°E MK122285 - MK122298 Baojing County, Xiangxi BJ 28.6154°N 109.4081°E MK122299 - Tujia and Miao MK122328 Autonomous Prefecture, Hunan Province 28.2802°N 109.4581°E MK122329 - MK122358 Guzhang County, GZ 28.6171°N 109.9508°E MK122359 - Xiangxi Tujia and Miao MK122388 Autonomous Prefecture, Hunan Province Luxi County, Xiangxi LX 28.2341°N 110.0571°E MK122389 - Tujia and Miao MK122407 Autonomous Prefecture, Hunan Province Yongshun County, YS 29.0023°N -
(AHP)-Based Assessment of the Value of Non-World Heritage Tulou
Tourism Management Perspectives 26 (2018) 67–77 Contents lists available at ScienceDirect Tourism Management Perspectives journal homepage: www.elsevier.com/locate/tmp Analytic Hierarchy Process (AHP)-based assessment of the value of non- T World Heritage Tulou: A case study of Pinghe County, Fujian Province ⁎ Hang Maa, Shanting Lib, Chung-Shing Chanc, a Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen 518050, China b Shanghai W&R Group, Shanghai 200052, China c Department of Geography and Resource Management, The Chinese University of Hong Kong, Sha Tin, N.T, Hong Kong ARTICLE INFO ABSTRACT Keywords: China's Fujian Tulou (earthen buildings constructed dating to the 12th century) represent a valuable source of Analytic Hierarchy Process (AHP) human cultural heritage. As the Tulou have not been classified as World Heritage Sites by UNESCO, they lack Conservation and reuse financial support, receive minimal attention and face structural deterioration. The purpose of this study is to Cultural heritage explore a methodological approach to assess the value of non-World Heritage Tulou (NWHT) and provide Evaluation system grounds for the reuse of Tulou accordingly. First, building-type, planar layout and other characteristics of Pinghe Tulou NWHTs in Pinghe are reviewed. Next, an Analytic Hierarchy Process (AHP) is applied to the value evaluation of Pinghe Tulou. Then, policy recommendations for reuse and redevelopment are put forward. The findings suggest that focusing on the reuse of Tulou alone is not justifiable. Rather, funding, public participation and the con- tinuity of community life are important factors relating to the reuse of NWHTs. 1. Introduction Educational, Scientific and Cultural Organization (UNESCO) in 2008 (and are thus referred to here as ‘World Heritage Tulous’ (Fig. -
Deciphering the Spatial Structures of City Networks in the Economic Zone of the West Side of the Taiwan Strait Through the Lens of Functional and Innovation Networks
sustainability Article Deciphering the Spatial Structures of City Networks in the Economic Zone of the West Side of the Taiwan Strait through the Lens of Functional and Innovation Networks Yan Ma * and Feng Xue School of Architecture and Urban-Rural Planning, Fuzhou University, Fuzhou 350108, Fujian, China; [email protected] * Correspondence: [email protected] Received: 17 April 2019; Accepted: 21 May 2019; Published: 24 May 2019 Abstract: Globalization and the spread of information have made city networks more complex. The existing research on city network structures has usually focused on discussions of regional integration. With the development of interconnections among cities, however, the characterization of city network structures on a regional scale is limited in the ability to capture a network’s complexity. To improve this characterization, this study focused on network structures at both regional and local scales. Through the lens of function and innovation, we characterized the city network structure of the Economic Zone of the West Side of the Taiwan Strait through a social network analysis and a Fast Unfolding Community Detection algorithm. We found a significant imbalance in the innovation cooperation among cities in the region. When considering people flow, a multilevel spatial network structure had taken shape. Among cities with strong centrality, Xiamen, Fuzhou, and Whenzhou had a significant spillover effect, which meant the region was depolarizing. Quanzhou and Ganzhou had a significant siphon effect, which was unsustainable. Generally, urbanization in small and midsize cities was common. These findings provide support for government policy making. Keywords: city network; spatial organization; people flows; innovation network 1. -
2016Annual Report
2016 6030 Annual Report www.cs.ecitic.com 2016 Annual Report This annual report is printed on environmental friendly paper. IMPORTANT NOTICE The Board and the Supervisory Committee and the Directors, Supervisors and Senior Management warrant the truthfulness, accuracy and completeness of contents of this report and that there is no false representation, misleading statement contained herein or material omission from this report, for which they will assume joint and several liabilities. This report was considered and approved at the 11th Meeting of the Sixth Session of the Board. All Directors attended this meeting of the Board. No Director raised any objection to this report. The Company’s domestic and international financial statements for the year were audited by PricewaterhouseCoopers Zhong Tian LLP and PricewaterhouseCoopers Hong Kong, respectively. Auditor’s reports with standard unqualified audit opinions were issued accordingly. Mr. ZHANG Youjun, head of the Company, Mr. GE Xiaobo, the Chief Financial Officer, and Ms. KANG Jiang, head of the Company’s accounting department, warrant that the financial statements set out in this report are true, accurate and complete. The Company’s 2016 profit distribution plan considered and approved by the Board is to distribute a cash dividend of RMB3.5 for every 10 shares (tax inclusive). This proposal is subject to the approval of the general meeting of the Company. Forward looking statements, including future plans and development strategies, contained in this report do not constitute a substantive commitment to investors by the Company. Investors should be aware of investment risks. There was no appropriation of funds of the Company by controlling shareholder(s) or its/their related parties for non-operating purposes.