Flight Standardization Board ( FSB ) Report

Total Page:16

File Type:pdf, Size:1020Kb

Flight Standardization Board ( FSB ) Report U.S. Department of Transportation Federal Aviation Administration Washington, DC Flight Standardization Board Report Revision: 17 Date: 11/16/2020 Manufacturer The Boeing Company Type Certificate Data TCDS Identifier Marketing Name Pilot Type Rating Sheet (TCDS) 737-100 A16WE 737-200 Boeing 737 B-737 737-200C 737-300 Boeing 737 A16WE 737-400 B-737 Classic (CL) 737-500 737-600 Boeing 737 737-700 Next Generation (NG), 737-700C A16WE Boeing 737-800BCF, B-737 737-800 Boeing Business Jet 737-900 (BBJ 1, BBJ 2, BBJ 3) 737-900ER 737-8 Boeing 737 MAX, A16WE B-737 737-9 BBJ MAX 8 Approved by the Aircraft Evaluation Division Federal Aviation Administration Transport Aircraft Seattle Aircraft Evaluation Group 2200 S. 216th Street, 2nd Floor, North Wing Des Moines, WA 98198 Office Telephone: (206) 231-3889 Office Email: [email protected] TABLE OF CONTENTS Section Page 1. RECORD OF REVISIONS .................................................................................................. 3 2. INTRODUCTION................................................................................................................. 3 3. HIGHLIGHTS OF CHANGE ............................................................................................. 3 4. BACKGROUND ................................................................................................................... 3 5. ACRONYMS ......................................................................................................................... 4 6. DEFINITIONS ...................................................................................................................... 7 7. PILOT TYPE RATING ....................................................................................................... 8 8. RELATED AIRCRAFT ....................................................................................................... 9 9. PILOT TRAINING ............................................................................................................... 9 10. PILOT CHECKING ........................................................................................................... 15 11. PILOT CURRENCY .......................................................................................................... 16 12. OPERATIONAL SUITABILITY...................................................................................... 17 13. MISCELLANEOUS ........................................................................................................... 17 APPENDIX 1. DIFFERENCES LEGEND ............................................................................... 18 APPENDIX 2. MASTER DIFFERENCES REQUIREMENTS (MDR) TABLE ................. 20 APPENDIX 3. DIFFERENCES TABLES ................................................................................ 21 APPENDIX 4. SUPERVISED LINE FLYING (SLF) TABLE ............................................... 57 APPENDIX 5. HEAD-UP GUIDANCE TRAINING .............................................................. 58 APPENDIX 6. ALTERNATE GO-AROUND FLAPS TRAINING ....................................... 64 APPENDIX 7. BOEING 737 MAX SPECIAL TRAINING FOR FLIGHTCREWS ........... 65 Page 2 of 67 1. RECORD OF REVISIONS Revision Number Section(s) Date 14 All 07/05/2017 15 3, 4, 8–13, Appendices 2–6 01/02/2018 16 3, 4, 5, 8, 9, 10, 12, 13, Appendix 3 10/17/2018 17 3, 4, 5, 8, 9, 10, 11, Appendices 2, 3, 7 11/16/2020 2. INTRODUCTION Aircraft Evaluation Groups (AEG) are responsible for working with aircraft manufacturers and modifiers, during the development and Federal Aviation Administration (FAA) certification of new and modified aircraft to determine: 1) The pilot type rating, 2) Flightcrew member training, checking, and currency requirements, and 3) Operational suitability. This report lists those determinations for use by: 1) FAA employees who approve training programs, 2) FAA employees and designees who certify airmen, and 3) Aircraft operators and training providers, to assist them in developing their flightcrew member training, checking, and currency. 3. HIGHLIGHTS OF CHANGE The purpose of this revision is to add training requirements for Maneuvering Characteristics Augmentation System (MCAS), Autopilot Flight Director System (AFDS) enhancements, and additional Special Emphasis Training. Appendices 2 and 3 reflect applicable table updates from the Boeing 737-800 to the Boeing 737-8 and from the Boeing 737-8 to the Boeing 737-800. Appendix 7 was added to delineate ground and flight training necessary to operate the 737 MAX modified with Flight Control Computer (FCC) software version P12.1.2. NOTE: See Section 8 for specifics of aircraft nomenclature used within this report. 4. BACKGROUND The Transport Aircraft Seattle AEG formed a Flight Standardization Board (FSB) that evaluated the 737-8 aircraft as defined in FAA Type Certificate Data Sheet (TCDS) No. A16WE. The evaluation was conducted during August 2016 using the methods described in the current edition of FAA Advisory Circular (AC) 120-53, Guidance for Conducting and Use of Flight Standardization Board Evaluations. In July and August of 2016, the FSB conducted a T2 and T3 to evaluate the 737-800 to the 737-8 differences training course. In March of 2017, the FSB conducted a T5 for the initial Page 3 of 67 737-8 type rating course. In September of 2017, the FSB conducted a T3 to evaluate the 737-8 to the 737-800 differences training course. These courses were found to be operationally suitable. In September 2017, the FSB conducted a T1 to evaluate the 737-8 to the 737-9 aircraft. The 737-9, as well as the associated Airplane Flight Manual (AFM) change, were found to be operationally suitable. In February 2018, the FSB conducted an analysis of the changes introduced for the 737-800 Boeing Converted Freighter (BCF). The analysis identified that the 737-800BCF is functionally equivalent to the 737-800. The 737-800BCF is incorporated into the Next Generation (NG) family aircraft in the Master Differences Requirements (MDR) Table. The 737-800BCF, as well as the associated AFM change, was found to be operationally suitable. In April 2018, the FSB conducted flight evaluations of the Rockwell Collins right seat Head-Up Display (HUD) installation. The FSB found the right seat HUD and the use of dual HUD operations to be operationally suitable. The Flight Standardization Board Report (FSBR) has been revised to add the optional equipment training requirements where necessary. In April 2018, the FSB conducted an analysis of the changes introduced for the Boeing Business Jet (BBJ) MAX 8. The analysis identified that the BBJ MAX 8 is functionally equivalent to the BBJ 2 aircraft. The BBJ MAX 8 is incorporated into the MAX family aircraft in Appendix 2, Master Differences Requirements (MDR) Table. The BBJ MAX 8, as well as the associated AFM change, was found to be operationally suitable. In March 2019, the FSB conducted a T2 handling qualities evaluation of revised FCC P11.1 software between the 737-800 and the 737-8. The FSB evaluation determined that the handling qualities between the 737-800 and the 737-8 validated the original T2 evaluation results conducted in August 2016. Subsequently in March 2019, the FSB conducted an additional T1 functional equivalence evaluation with the new FCC software version P12.1. This evaluation determined functional equivalence between FCC software versions P11.1 and P12.1 with regards to airplane handling qualities and pilot training. In September 2020, the FSB conducted Operational Evaluations of the updated 737-8 FCC software version P12.1.2, revised non-normal checklists (NNC), and all proposed pilot training in support of 737-8 and 737-9 design changes. The FSB determined the updated FCC software version P12.1.2 is operationally suitable. Boeing 737 MAX Special Training for Flightcrews is specified in Appendix 7 of this FSBR. 5. ACRONYMS • 14 CFR Title 14 of the Code of Federal Regulations • AC Advisory Circular • ACS Airman Certification Standards • ACFT Aircraft Page 4 of 67 • ADV Advanced • AEG Aircraft Evaluation Group • AEW&C Airborne Early Warning and Control • AFDS Autopilot Flight Director System • AFM Airplane Flight Manual • AGL Above Ground Level • ANCDU Alternate Navigation Control Display Unit • ANS Alternate Navigation System • AOA Angle of Attack • AP Autopilot • APU Auxiliary Power Unit • ATC Air Traffic Control • ATP Airline Transport Pilot • AV Audiovisual Presentation • BBJ Boeing Business Jet • BCF Boeing Converted Freighter • CAT Category • CBT Computer-Based Training • CDS Common Display System • CDU Control Display Unit • CPT Cockpit Procedures Trainer • DH Decision Height • DU Display Unit • EDFCS Enhanced Digital Flight Control System • EDS Emergency Descent Speedbrakes • EEC Electronic Engine Control • EFIS Electronic Flight Instrument System • EFVS Enhanced Flight Vision System • EGT Exhaust Gas Temperature • ER Extended Range • ETOPS Extended Operations • EVS Enhanced Vision System • FAA Federal Aviation Administration • FAF Final Approach Fix • FANS Future Air Navigation System • FCC Flight Control Computer • FD Flight Director • FFS Full Flight Simulator • FMA Flight Mode Annunciator • FMC Flight Management Computer • FMS Flight Management System • FSB Flight Standardization Board • FSBR Flight Standardization Board Report • FSTD Flight Simulation Training Device Page 5 of 67 • FTD Flight Training Device • GLS Global Positioning System Landing System • GS Glideslope • HGS Head-Up Guidance System • HUD Head-Up Display • ICBI Interactive
Recommended publications
  • AVIATION INVESTIGATION REPORT A15Q0075 Runway Overrun
    AVIATION INVESTIGATION REPORT A15Q0075 Runway overrun WestJet Boeing 737-6CT, C-GWCT Montréal/Pierre Elliott Trudeau International Airport, Quebec 05 June 2015 Transportation Safety Board of Canada Place du Centre 200 Promenade du Portage, 4th floor Gatineau QC K1A 1K8 819-994-3741 1-800-387-3557 www.tsb.gc.ca [email protected] © Her Majesty the Queen in Right of Canada, as represented by the Transportation Safety Board of Canada, 2017 Aviation Investigation Report A15Q0075 Cat. No. TU3-5/15-0075E-PDF ISBN 978-0-660-08454-1 This report is available on the website of the Transportation Safety Board of Canada at www.tsb.gc.ca Le présent rapport est également disponible en français. The Transportation Safety Board of Canada (TSB) investigated this occurrence for the purpose of advancing transportation safety. It is not the function of the Board to assign fault or determine civil or criminal liability. Aviation Investigation Report A15Q0075 Runway overrun WestJet Boeing 737-6CT, C-GWCT Montréal/Pierre Elliott Trudeau International Airport, Quebec 05 June 2015 Summary On 05 June 2015, a WestJet Boeing 737-6CT (registration C-GWCT, serial number 35112) was operating as flight 588 on a scheduled flight from Toronto/Lester B. Pearson International Airport, Ontario, to Montréal/Pierre Elliott Trudeau International Airport, Quebec. At 1457 Eastern Daylight Time, the aircraft touched down in heavy rain showers about 2550 feet beyond the threshold of Runway 24L and did not stop before reaching the end of the runway. The aircraft departed the paved surface at a ground speed of approximately 39 knots and came to rest on the grass, approximately 200 feet past the end of the runway.
    [Show full text]
  • Runway Excursion During Landing, Delta Air Lines Flight 1086, Boeing MD-88, N909DL, New York, New York, March 5, 2015
    Runway Excursion During Landing Delta Air Lines Flight 1086 Boeing MD-88, N909DL New York, New York March 5, 2015 Accident Report NTSB/AAR-16/02 National PB2016-104166 Transportation Safety Board NTSB/AAR-16/02 PB2016-104166 Notation 8780 Adopted September 13, 2016 Aircraft Accident Report Runway Excursion During Landing Delta Air Lines Flight 1086 Boeing MD-88, N909DL New York, New York March 5, 2015 National Transportation Safety Board 490 L’Enfant Plaza, S.W. Washington, D.C. 20594 National Transportation Safety Board. 2016. Runway Excursion During Landing, Delta Air Lines Flight 1086, Boeing MD-88, N909DL, New York, New York, March 5, 2015. Aircraft Accident Report NTSB/AAR-16/02. Washington, DC. Abstract: This report discusses the March 5, 2015, accident in which Delta Air Lines flight 1086, a Boeing MD-88 airplane, N909DL, was landing on runway 13 at LaGuardia Airport, New York, New York, when it departed the left side of the runway, contacted the airport perimeter fence, and came to rest with the airplane’s nose on an embankment next to Flushing Bay. The 2 pilots, 3 flight attendants, and 98 of the 127 passengers were not injured; the other 29 passengers received minor injuries. The airplane was substantially damaged. Safety issues discussed in the report relate to the use of excessive engine reverse thrust and rudder blanking on MD-80 series airplanes, the subjective nature of braking action reports, the lack of procedures for crew communications during an emergency or a non-normal event without operative communication systems, inaccurate passenger counts provided to emergency responders following an accident, and unclear policies regarding runway friction measurements and runway condition reporting.
    [Show full text]
  • The Boeing Company 2004 Annual Report the Boeing Company 2004 Annual Report
    BC112_Final Cover0302 3/6/05 10:49 PM Page fc1 The Boeing Company The Boeing Company The Boeing Company 2004 Annual Report 100 North Riverside Plaza Chicago, IL 60606-1596 U.S.A. 2004 Annual Report 0707-AR-050707-AR-05 Boeing ifc_ibc_0304 03.04.05 4:06 PM Page ifc1 Vision 2016: People working Shareholder Information The Boeing Company Electronic Proxy Receipt and Voting Duplicate Shareholder Accounts World Headquarters Shareholders have the option of voting their Registered shareholders with duplicate together as a global enterprise The Boeing Company proxies by Internet or telephone, instead of accounts may contact EquiServe for 100 North Riverside Plaza returning their proxy cards through the mail. instructions regarding the consolidation of Chicago, IL 60606-1596 Instructions are in the proxy statement and those accounts. The Company recom- for aerospace leadership. U.S.A. attached to the proxy card for the annual mends that registered shareholders always 312-544-2000 meeting. use the same form of their names in all Registered shareholders can go to stock transactions to be handled in the Strategies Values Transfer Agent, Registrar, Dividend www.econsent.com/ba to sign up to same account. Registered shareholders Run healthy core businesses Leadership Paying Agent and Plan Administrator receive their annual report and proxy state- may also ask EquiServe to eliminate excess The transfer agent is responsible for ment in an electronic format in the future. mailings of annual reports going to share- Leverage strengths into new products and services Integrity shareholder records, issuance of stock, Beneficial owners may contact the brokers holders in the same household.
    [Show full text]
  • MAY 2020 $10.00 Aviationweek.Com/BCA
    BUSINESS & COMMERCIAL AVIATION PILOT REPORT: EMBRAER 300E ENHANCED OPS IN TURK MAY 2020 $10.00 AviationWeek.com/BCA Business & Commercial Aviation PILOT REPORT Embraer 300E Enhanced Third-generation offers upgraded performance, convenience and technology EY TACKLING TURBULENCE ALSO IN THIS ISSUE Fatal Photo Shoot Operating Into Turkey Tackling Turbulence MAY 2020 VOL. 116 NO. 5 The Organization Failed . Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe
    [Show full text]
  • Boeing 737-300, 9H-ABT
    Boeing 737-300, 9H-ABT AAIB Bulletin No: 5/98 Ref: EW/C97/8/3Category: 1.1 Aircraft Type and Registration: Boeing 737-300, 9H-ABT No & Type of Engines: 2 CFM56 turbofan engines Year of Manufacture: 1993 Date & Time (UTC): 1 August 1997 at 0943 hrs Location: On approach to Manchester Airport Type of Flight: Public Transport Persons on Board: Crew - 7 - Passengers - 93 Injuries: Crew - None - Passengers - None Nature of Damage: Nil Commander's Licence: Airline Transport Pilot's Licence Commander's Age: 49 years Commander's Flying Experience: 11,765 hours (of which 7,500 hours were on type) Last 90 days - 255 hours Last 28 days - 96 hours Information Source: AAIB Field Investigation History of flight The crew were operating a scheduled flight, as AMC 202, from Maltato Manchester. For the first part of the flight, the first officerwas the handling pilot. However, the forecast weather at Manchesterindicated that Low Visibility Procedures (LVP) would be requiredand, in accordance with company procedures, this would requirethe commander in the left seat to be the handling pilot. Therefore,towards the end of the cruise, the commander took over the handlingduties and the first officer assumed the normal non-handling dutiesincluding the radio monitoring and response. Prior to flight,the commander had confirmed the serviceability of the aircraftand noted that there were no 'Carried Forward Defects' in theTechnical Log; additionally, he had also confirmed that both thefirst officer and himself were qualified to carry out the expectedLVP approach. Throughout the flight, the aircraft was fully serviceable. Before descent, the crew obtained the airport weather informationand the commander briefed for the expected approach to Runway24 at Manchester.
    [Show full text]
  • Using an Autothrottle to Compare Techniques for Saving Fuel on A
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft Rebecca Marie Johnson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Electrical and Computer Engineering Commons Recommended Citation Johnson, Rebecca Marie, "Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft" (2010). Graduate Theses and Dissertations. 11358. https://lib.dr.iastate.edu/etd/11358 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Using an autothrottle to compare techniques for saving fuel on A regional jet aircraft by Rebecca Marie Johnson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Umesh Vaidya, Major Professor Qingze Zou Baskar Ganapathayasubramanian Iowa State University Ames, Iowa 2010 Copyright c Rebecca Marie Johnson, 2010. All rights reserved. ii DEDICATION I gratefully acknowledge everyone who contributed to the successful completion of this research. Bill Piche, my supervisor at Rockwell Collins, was supportive from day one, as were many of my colleagues. I also appreciate the efforts of my thesis committee, Drs. Umesh Vaidya, Qingze Zou, and Baskar Ganapathayasubramanian. I would also like to thank Dr.
    [Show full text]
  • A Fond Farewell to Ve Fantastic Eets
    NEWS RELEASE A fond farewell to ve fantastic eets 4/30/2020 Last month, American Airlines announced plans to accelerate the retirement of some older, less fuel-ecient aircraft from its eet sooner than originally planned. As ying schedules and aircraft needs are ne-tuned during this period of record low demand, American will take the unique step of retiring a total of ve aircraft types. American has ocially retired the Embraer E190 and Boeing 767 eets, which were originally scheduled to retire by the end of 2020. The airline has also accelerated the retirement of its Boeing 757s and Airbus A330-300s. Additionally, American is retiring 19 Bombardier CRJ200 aircraft operated by PSA Airlines. These changes remove operating complexity and will bring forward cost savings and eciencies associated with operating fewer aircraft types. It will also help American focus on ying more advanced aircraft as we continue receiving new deliveries of the Airbus A321neo and the Boeing 737 MAX and 787 family. American’s narrowbody eet also becomes more simplied with just two cockpit types – the Airbus A320 and the Boeing 737 families. This benets American’s operational performance through training eciency and streamlined maintenance. American continues to evaluate its schedule and remains committed to caring for customers on life’s journey. These changes will help American continue to provide a reliable travel experience around the world, even during these uncertain times. Here’s a snapshot of the aircraft exiting American’s eet: Airbus A330-300 — Blue Sky News/Pittsburgh International AirportAirbus A330-300 1 Joined the US Airways eet in 2000 prior to joining American’s eet in 2013.
    [Show full text]
  • For Improved Airplane Performance
    BLENDED WINGLETS FORFOR IMPROVEDIMPROVED AIRPLANEAIRPLANE PERFORMANCEPERFORMANCE New blended winglets on the Boeing Business Jet and the 737-800 commercial airplane offer operational benefits to customers. Besides giving the airplanes a distinctive appear- ance, the winglets create more efficient flight characteristics in cruise and during takeoff and climbout, which translate into additional range with the same fuel and payload. ROBERT FAYE ROBERT LAPRETE MICHAEL WINTER TECHNICAL DIRECTOR ASSOCIATE TECHNICAL FELLOW PRINCIPAL ENGINEER BOEING BUSINESS JETS AERODYNAMICS TECHNOLOGY STATIC AEROELASTIC LOADS BOEING COMMERCIAL AIRPLANES BOEING COMMERCIAL AIRPLANES BOEING COMMERCIAL AIRPLANES TECHNOLOGY/PRODUCT DEVELOPMENT AERO 16 vertical height of the lifting system (i.e., increasing the length of the TE that sheds the vortices). The winglets increase the spread of the vortices along the TE, creating more lift at the wingtips (figs. 2 and 3). The result is a reduction in induced drag (fig. 4). The maximum benefit of the induced drag reduction depends on the spanwise lift distribution on the wing. Theoretically, for a planar wing, induced drag is opti- mized with an elliptical lift distribution that minimizes the change in vorticity along the span. For the same amount of structural material, nonplanar wingtip 737-800 TECHNICAL CHARACTERISTICS devices can achieve a similar induced drag benefit as a planar span increase; however, new Boeing airplane designs Passengers focus on minimizing induced drag with 3-class configuration Not applicable The 737-800 commercial airplane wingspan influenced by additional 2-class configuration 162 is one of four 737s introduced BBJ TECHNICAL CHARACTERISTICS The Boeing Business Jet design benefits. 1-class configuration 189 in the late 1990s for short- to (BBJ) was launched in 1996 On derivative airplanes, performance Cargo 1,555 ft3 (44 m3) medium-range commercial air- Passengers Not applicable as a joint venture between can be improved by using wingtip Boeing and General Electric.
    [Show full text]
  • ICCT Aircraft Efficiency Design Public Draft
    TRENDS IN AIRCRAFT EFFICIENCY AND DESIGN PARAMETERS Mazyar Zeinali, Ph.D. Daniel Rutherford, Ph.D. International Council on Clean Transportation (ICCT) ABSTRACT Developing an aircraft CO2 candidate metric and subsequent compliance assessment requires an understanding of practices and trends in aircraft design. Historically, fuel burn has been an important consideration for airlines, and manufacturers have responded by developing technologies to improve the efficiency of new aircraft designs. However, market forces also demand improvements in aircraft performance beyond reduced fuel burn. As a consequence, some portion of efficiency gained through improved technology has been devoted to increasing other aircraft design parameters such as range, maximum payload, and speed rather than to reducing emissions on a constant mission. In this paper, we discuss some initial ICCT work on sales‐weighted historical trends in new aircraft design attributes and their influence on aircraft efficiency, using design range as a first area of inquiry. We show that aircraft design parameters that influence fuel efficiency have changed over time, both in aggregate and for specific replacement designs, and therefore need to be taken into account when developing a CO2 certification requirement and stringency scenarios for further consideration. We also present evidence that commercial aircraft are not typically operated near their maximum performance points (i.e. design range and max payload), and therefore setting a CO2 certification requirement and standard at those points may overestimate improvements in future designs. 1. INTRODUCTION Developing an aircraft CO2 candidate metric and stringency scenarios will require knowledge and understanding of a complex system. Proper design choices will not only result in a policy that underscores environmental performance accurately, but also one that minimizes costs, undesirable impacts on competitiveness, and potential standard gaming.
    [Show full text]
  • Rock Solid Performance WHY Caterpillar?
    2012 YEAR IN REVIEW ROCK SOLID Potential | Position | Plan | People | Performance In a global marketplace filled with shifting dynamics, our customers count on Caterpillar as a dependable source of products, services and solutions to meet their needs. This strategy is the stabilizing force behind our business. Today, we’re as confident of our rock solid strength as at any time in our history. ROCK SOLID 2012 Year in Review Forward-Looking Statements Certain statements in this 2012 Year in Review relate to future events and expectations and are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Words such as “believe,” “estimate,” “will be,” “will,” “would,” “expect,” “anticipate,” “plan,” “project,” “intend,” “could,” “should” or other similar words or expressions often identify forward-looking statements. All statements other than statements of historical fact are forward-looking statements, including, without limitation, statements regarding our outlook, projections, forecasts or trend descriptions. These statements do not guarantee future performance, and we do not undertake to update our forward-looking statements. Caterpillar’s actual results may differ materially from those described or implied in our forward-looking statements based on a number of factors, including, but not limited to: (i) global economic conditions and economic conditions in the industries and markets we serve; (ii) government monetary or fiscal policies and infrastructure spending; (iii) commodity or component
    [Show full text]
  • Introducing the 787 - Effect on Major Investigations - and Interesting Tidbits
    Introducing the 787 - Effect on Major Investigations - And Interesting Tidbits Tom Dodt Chief Engineer – Air Safety Investigation ISASI September, 2011 COPYRIGHT © 2010 THE BOEING COMPANY Smith, 7-April-2011, ESASI-Lisbon | 1 787 Size Comparison 767-400 787-8 777-300 ~Pax 3-Class 245 250 368 ~Span 170 ft 197 ft 200 ft ~Length 201 ft 186 ft 242 ft ~MTGW 450,000 lbs 500,000 lbs 660,000 lbs ~Range 5,600 NM 7,650 NM 6,000 NM Cruise Mach 0.80 0.85 0.84 COPYRIGHT © 2010 THE BOEING COMPANY Smith, 7-April-2011, ESASI-Lisbon | 2 By weight 787 777 - Composites 50% 12% Composite Structure - Aluminum 20% 50% Other Carbon laminate Steel 5% Carbon sandwich 10% Fiberglass Titanium 15% Composites Aluminum 50% Aluminum/steel/titanium pylons Aluminum 20% COPYRIGHT © 2010 THE BOEING COMPANY Smith, 7-April-2011, ESASI-Lisbon | 3 COPYRIGHT © 2010 THE BOEING COMPANY Smith, 7-April-2011, ESASI-Lisbon | 4 787 Wing Flex - On-Ground On-Ground 0 ft COPYRIGHT © 2010 THE BOEING COMPANY Smith, 7-April-2011, ESASI-Lisbon | 5 787 Wing Flex - 1G Flight 1G Flight ~12 ft On-Ground 0 ft 1G Flight COPYRIGHT © 2010 THE BOEING COMPANY Smith, 7-April-2011, ESASI-Lisbon | 6 787 Wing Flex Ultimate-Load ~26 ft 1G Flight ~12 ft On-Ground 0 ft Max-Load COPYRIGHT © 2010 THE BOEING COMPANY Smith, 7-April-2011, ESASI-Lisbon | 7 787 Static Load Test @ Ultimate Load COPYRIGHT © 2010 THE BOEING COMPANY Smith, 7-April-2011, ESASI-Lisbon | 8 Investigations with Composite Materials • Terms: Composites Aluminum disbond fatigue delaminate beach marks inter-laminar shear striation counts water absorbsion corrosion fiber architecture metallurgical prop.
    [Show full text]
  • Boeing Reports Second-Quarter Results
    Boeing Reports Second-Quarter Results ▪ Continued progress on global safe return to service of 737 MAX ▪ Revenue of $17.0 billion, GAAP earnings per share of $1.00 and core (non-GAAP)* earnings per share of $0.40 ▪ Operating cash flow of ($0.5) billion; cash and marketable securities of $21.3 billion ▪ Commercial Airplanes backlog grew to $285 billion and added 180 net orders Table 1. Summary Financial Results Second Quarter First Half (Dollars in Millions, except per share data) 2021 2020 Change 2021 2020 Change Revenues $16,998 $11,807 44% $32,215 $28,715 12% GAAP Earnings/(Loss) From Operations $1,023 ($2,964) NM $940 ($4,317) NM Operating Margin 6.0 % (25.1) % NM 2.9 % (15.0) % NM Net Earnings/(Loss) $567 ($2,395) NM $6 ($3,036) NM Earnings/(Loss) Per Share $1.00 ($4.20) NM $0.09 ($5.31) NM Operating Cash Flow ($483) ($5,280) NM ($3,870) ($9,582) NM Non-GAAP* Core Operating Earnings/(Loss) $755 ($3,319) NM $402 ($5,019) NM Core Operating Margin 4.4 % (28.1) % NM 1.2 % (17.5) % NM Core Earnings/(Loss) Per Share $0.40 ($4.79) NM ($1.12) ($6.49) NM *Non-GAAP measure; complete definitions of Boeing’s non-GAAP measures are on page 6, “Non-GAAP Measures Disclosures." CHICAGO, July 28, 2021 – The Boeing Company [NYSE: BA] reported second-quarter revenue of $17.0 billion, driven by higher commercial airplanes and services volume. GAAP earnings per share of $1.00 and core earnings per share (non-GAAP)* of $0.40 primarily reflects higher commercial volume and lower period costs (Table 1).
    [Show full text]