1326.Full-Text.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

1326.Full-Text.Pdf 1326 Diabetes Volume 63, April 2014 Richard A. Zuellig,1 Thorsten Hornemann,2,3,4 Alaa Othman,2,4 Adrian B. Hehl,5 Heiko Bode,2,3 Tanja Güntert,3,6 Omolara O. Ogunshola,6 Enrica Saponara,7 Kamile Grabliauskaite,7 Jae-Hwi Jang,7 Udo Ungethuem,7 Yu Wei,2,3,4 Arnold von Eckardstein,2,3,4 Rolf Graf,7 and Sabrina Sonda7 Deoxysphingolipids, Novel Biomarkers for Type 2 Diabetes, Are Cytotoxic for Insulin- Producing Cells Irreversible failure of pancreatic b-cells is the main 1-deoxysphinganine contribute to its cytotoxicity. culprit in the pathophysiology of diabetes, a disease Analyses of signaling pathways identified Jun that is now a global epidemic. Recently, elevated N-terminal kinase and p38 mitogen-activated plasma levels of deoxysphingolipids, including protein kinase as antagonistic effectors of cellular 1-deoxysphinganine, have been identified as a novel senescence. The results revealed that biomarker for the disease. In this study, we analyzed 1-deoxysphinganine is a cytotoxic lipid for insulin- whether deoxysphingolipids directly compromise producing cells, suggesting that the increased levels the functionality of insulin-producing Ins-1 cells and of this sphingolipid observed in diabetic patients primary islets. Treatment with 1-deoxysphinganine may contribute to the reduced functionality of PATHOPHYSIOLOGY induced dose-dependent cytotoxicity with pancreatic b-cells. Thus, targeting senescent, necrotic, and apoptotic characteristics deoxysphingolipid synthesis may complement the and compromised glucose-stimulated insulin currently available therapies for diabetes. secretion. In addition, 1-deoxysphinganine altered Diabetes 2014;63:1326–1339 | DOI: 10.2337/db13-1042 cytoskeleton dynamics, resulting in intracellular accumulation of filamentous actin and activation of the Rho family GTPase Rac1. Moreover, In the past 3 decades, the prevalence of diabetes has 1-deoxysphinganine selectively upregulated risen worldwide at a dramatic rate, with incidence pro- ceramide synthase 5 expression and was converted jections approaching 8% of the population by 2030 (1,2). to 1-deoxy-dihydroceramides without altering This remarkable increase is largely due to the epidemic normal ceramide levels. Inhibition of intracellular spread of type 2 diabetes (T2DM), which accounts for 1-deoxysphinganine trafficking and ceramide 90% of all cases of diabetes worldwide (3,4). Given the synthesis improved the viability of the cells, level of complexity associated with the pathophysiology indicating that the intracellular metabolites of of T2DM, understanding the mechanisms underlying this 1Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Corresponding author: Sabrina Sonda, [email protected]. Zurich, Zurich, Switzerland Received 3 July 2013 and accepted 14 December 2013. 2Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland This article contains Supplementary Data online at http://diabetes 3Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland .diabetesjournals.org/lookup/suppl/doi:10.2337/db13-1042/-/DC1. 4Competence Centre for Systems Physiology and Metabolic Diseases, Zurich, Switzerland R.A.Z. and T.H. contributed equally to this work. 5Institute of Parasitology, University of Zurich, Zurich, Switzerland © 2014 by the American Diabetes Association. See http://creativecommons 6Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland .org/licenses/by-nc-nd/3.0/ for details. 7Swiss Hepato-Pancreatico-Biliary (HPB)-Center, Division of Surgical Research, See accompanying article, p. 1191. Department of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland diabetes.diabetesjournals.org Zuellig and Associates 1327 disease is necessary to design alternative strategies to Animal Experiments limit its progression. Recently, substantial improve- Wistar rats, leptin-deficient ob/ob mice on C57BL/6J ments occurred in the detection of early stage or un- background (B6.V-Lep/OlaHsd), and wild-type (WT) diagnosed T2DM, thus allowing appropriate treatments C57BL/6J (Harlan Laboratories) were kept under a light- in high-risk populations. One of the latest biomarkers dark regimen (16:8 h) at constant temperature and given identified in patients with diabetes and metabolic free access to food and water. All animal experiments syndromes are increased plasma levels of deoxy- were performed in accordance with Swiss federal animal sphingolipids (1-deoxySLs) (5,6), a type of sphingolipid regulations and approved by the cantonal veterinary of- characterized by an initial condensation of alanine or fice of Zurich. Islets were harvested from pancreata of glycine instead of serine with palmitic acid and the male Wistar rats (250–300 g) by collagenase (NB8 col- resultant absence of the hydroxyl group in position C1. lagenase; Serva, Heidelberg, Germany) followed by tryp- Consequently, although these deoxysphingoid bases can sin digestion to dissociate them into single cells as be acylated to deoxy-dihydroceramides, they cannot be previously described (13). further metabolized to complex sphingolipids or effi- ciently degraded by the canonical degradation pathway; Insulin Secretion thus, they tend to accumulate once produced. Impor- Dissociated islets cells were seeded in 12-well extracel- – tantly,1-deoxySLsdisplaytoxicpropertiesinvitro lular matrix (ECM) coated plates (Novamed, Jerusalem, m toward several cell lines (7–9), and in vivo, 1-deoxySLs Israel); treated for 24 h with 5 mol/L sphinganine, are believed to impair neuronal functionality in patients 1-deoxysphinganine, or BSA; and incubated in RPMI with the hereditary sensory and autonomic neuropathy medium containing 3.3 mmol/L glucose for 1 h. Follow- type I (10). In light of the increased plasma levels of ing sequential 1-h incubations with low (3.3 mmol/L), 1-deoxySLs found in diabetic patients and of the high (16.7 mmol/L), low (3.3 mmol/L) glucose concen- reported cytotoxic effects associated with the exposure trations, insulin secretion was measured by radioimmu- to increased 1-deoxySL concentrations, we investigated noassay (Insulin-CT; CIS Bio International, Schering AG, ’ whether these atypical sphingolipids directly compro- Baar, Switzerland) according to the manufacturer s mise pancreatic b-cells, the dysfunction of which plays instructions. an important role in the pathogenesis of both type 1 Quantitative RT-PCR diabetes and T2DM. Total RNA was extracted from Ins-1 cells cultured in m RESEARCH DESIGN AND METHODS 1 mol/L sphinganine or 1-deoxysphinganine for 24 h. Quality of RNA was assessed by a 2100 bioanalyzer Biochemical Reagents (Agilent Technologies, Basel, Switzerland). cDNA was Unless otherwise stated, all chemicals were purchased obtained with the RT2 First Strand Kit and profiled by from Sigma and cell culture reagents from Gibco-BRL. the Rat Cell Death Pathway Finder PCR Array (both from Inhibitor stock solutions were freshly diluted to the SABiosciences, Hombrechtikon, Switzerland) according concentrations required for the individual experiment to the manufacturer’s instructions. Ceramide synthase indicated in the figure legends. Lipid stock solutions were (CerS) primers for SYBR green quantitative PCR are prepared as previously described (10) as a bovine serum listed in the Supplementary Data. albumin (BSA) complex and added to the cells at the concentrations indicated in the figure legends. BSA was Immunohistochemistry and Flow Cytometry Analyses fi used as control. Pancreas specimens were xed in 4% formalin and par- affin embedded according to standard procedures (14). In Vitro Cell Culture Ins-1 cells were fixed in 3.6% formaldehyde and per- The Ins-1 rat insulinoma cell clone 832/13, provided by meabilized with 0.2% Triton X-100 in PBS. Primary C. Wollheim, was maintained in RPMI 1640 medium as antibodies used in this study are listed in the Supple- previously described (11,12). Cell metabolic activity was mentary Data. Apoptosis detection was performed with tested with the 0.5% tetrazolium salt solution 3-(4,5- an ApopTag peroxidase kit (MP Biomedicals, Illkirch, dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide France). Immunofluorescence analysis and image data (MTT) or WST-1 (Roche) according to the manufacturer’s collection were performed on a Zeiss Axioplan 2 imaging instructions. Cell death was quantified by trypan blue fluorescence microscope (Carl Zeiss Microimaging, exclusion or lactate dehydrogenase (LDH) release in the Göttingen, Germany) or on a Leica SP2 AOBS confocal medium (Roche). Cellular senescence was quantified with laser-scanning microscope (Leica Microsystems, Wetzlar, the b-galactosidase assay kit (Cell Biolabs). Adenovirus- Germany) using a glycerol immersion objective lens expressing p21 (Adp21) (rat) and adenovirus-containing (Leica, HCX PL APO CS 633 1.3 Corr). Image z-stacks green fluorescent protein (AdGFP) were purchased from were collected with a pinhole setting of Airy 1 and two- Vector Biolabs (Philadelphia, PA). Rac1 activity was fold oversampling. Image stacks of optical sections were measured with G-LISA Rac1 activation assay (Cytoskeleton, processed with the Huygens deconvolution software Denver, CO). package version 2.7 (Scientific Volume Imaging, 1328 Deoxysphingolipids and Diabetes Diabetes Volume 63, April 2014 Hilversum, the Netherlands). Three-dimensional (3D) (5,6), we analyzed whether 1-deoxySLs can directly reconstruction, volume rendering, and quantification of affect the viability of insulin-secreting cells.
Recommended publications
  • P53 and Ceramide As Collaborators in the Stress Response
    Int. J. Mol. Sci. 2013, 14, 4982-5012; doi:10.3390/ijms14034982 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review p53 and Ceramide as Collaborators in the Stress Response Rouba Hage-Sleiman 1,2,*, Maria O. Esmerian 1,2, Hadile Kobeissy 2 and Ghassan Dbaibo 1,2 1 Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: [email protected] (M.O.E.); [email protected] (G.D.) 2 Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +961-1-350-000 (ext. 4883). Received: 26 December 2012; in revised form: 22 January 2013 / Accepted: 1 February 2013 / Published: 1 March 2013 Abstract: The sphingolipid ceramide mediates various cellular processes in response to several extracellular stimuli. Some genotoxic stresses are able to induce p53-dependent ceramide accumulation leading to cell death. However, in other cases, in the absence of the tumor suppressor protein p53, apoptosis proceeds partly due to the activity of this “tumor suppressor lipid”, ceramide. In the current review, we describe ceramide and its roles in signaling pathways such as cell cycle arrest, hypoxia, hyperoxia, cell death, and cancer. In a specific manner, we are elaborating on the role of ceramide in mitochondrial apoptotic cell death signaling.
    [Show full text]
  • Targeting Cancer Metabolism to Resensitize Chemotherapy: Potential Development of Cancer Chemosensitizers from Traditional Chinese Medicines
    cancers Review Targeting Cancer Metabolism to Resensitize Chemotherapy: Potential Development of Cancer Chemosensitizers from Traditional Chinese Medicines Wei Guo, Hor-Yue Tan, Feiyu Chen, Ning Wang and Yibin Feng * School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 00000, China; [email protected] (W.G.); [email protected] (H.-Y.T.); [email protected] (F.C.); [email protected] (N.W.) * Correspondence: [email protected] Received: 22 December 2019; Accepted: 3 February 2020; Published: 10 February 2020 Abstract: Cancer is a common and complex disease with high incidence and mortality rates, which causes a severe public health problem worldwide. As one of the standard therapeutic approaches for cancer therapy, the prognosis and outcome of chemotherapy are still far from satisfactory due to the severe side effects and increasingly acquired resistance. The development of novel and effective treatment strategies to overcome chemoresistance is urgent for cancer therapy. Metabolic reprogramming is one of the hallmarks of cancer. Cancer cells could rewire metabolic pathways to facilitate tumorigenesis, tumor progression, and metastasis, as well as chemoresistance. The metabolic reprogramming may serve as a promising therapeutic strategy and rekindle the research enthusiasm for overcoming chemoresistance. This review focuses on emerging mechanisms underlying rewired metabolic pathways for cancer chemoresistance in terms of glucose and energy, lipid, amino acid, and nucleotide metabolisms, as well as other related metabolisms. In particular, we highlight the potential of traditional Chinese medicine as a chemosensitizer for cancer chemotherapy from the metabolic perspective. The perspectives of metabolic targeting to chemoresistance are also discussed.
    [Show full text]
  • Sphingolipid Metabolism Diseases ⁎ Thomas Kolter, Konrad Sandhoff
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1758 (2006) 2057–2079 www.elsevier.com/locate/bbamem Review Sphingolipid metabolism diseases ⁎ Thomas Kolter, Konrad Sandhoff Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany Received 23 December 2005; received in revised form 26 April 2006; accepted 23 May 2006 Available online 14 June 2006 Abstract Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated “cross correction”, gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT. © 2006 Elsevier B.V. All rights reserved. Keywords: Ceramide; Lysosomal storage disease; Saposin; Sphingolipidose Contents 1. Sphingolipid structure, function and biosynthesis ..........................................2058 1.1.
    [Show full text]
  • Správa O Činnosti Organizácie SAV Za Rok 2013
    Ústav normálnej a patologickej fyziológie SAV Správa o činnosti organizácie SAV za rok 2013 Bratislava január 2014 Obsah osnovy Správy o činnosti organizácie SAV za rok 2013 1. Základné údaje o organizácii 2. Vedecká činnosť 3. Doktorandské štúdium, iná pedagogická činnosť a budovanie ľudských zdrojov pre vedu a techniku 4. Medzinárodná vedecká spolupráca 5. Vedná politika 6. Spolupráca s VŠ a inými subjektmi v oblasti vedy a techniky 7. Spolupráca s aplikačnou a hospodárskou sférou 8. Aktivity pre Národnú radu SR, vládu SR, ústredné orgány štátnej správy SR a iné organizácie 9. Vedecko-organizačné a popularizačné aktivity 10. Činnosť knižnično-informačného pracoviska 11. Aktivity v orgánoch SAV 12. Hospodárenie organizácie 13. Nadácie a fondy pri organizácii SAV 14. Iné významné činnosti organizácie SAV 15. Vyznamenania, ocenenia a ceny udelené pracovníkom organizácie SAV 16. Poskytovanie informácií v súlade so zákonom o slobodnom prístupe k informáciám 17. Problémy a podnety pre činnosť SAV PRÍLOHY A Zoznam zamestnancov a doktorandov organizácie k 31.12.2013 B Projekty riešené v organizácii C Publikačná činnosť organizácie D Údaje o pedagogickej činnosti organizácie E Medzinárodná mobilita organizácie Správa o činnosti organizácie SAV 1. Základné údaje o organizácii 1.1. Kontaktné údaje Názov: Ústav normálnej a patologickej fyziológie SAV Riaditeľ: RNDr. Oľga Pecháňová, DrSc. Zástupca riaditeľa: MUDr. Fedor Jagla, CSc. Vedecký tajomník: RNDr. Iveta Bernátová, DrSc. Predseda vedeckej rady: RNDr. Iveta Bernátová, DrSc. Členovia snemu SAV: MUDr. Fedor Jagla, CSc., MUDr. Igor Riečanský, PhD. Adresa: Sienkiewiczova 1, 813 71 Bratislava http://www.unpf.sav.sk Tel.: 02/32296063 Fax: E-mail: [email protected] Názvy a adresy detašovaných pracovísk: nie sú Vedúci detašovaných pracovísk: nie sú Typ organizácie: Rozpočtová od roku 1953 1.2.
    [Show full text]
  • Acute and Chronic Complications
    Uniwersytet Medyczny w Łodzi Medical University of Lodz https://publicum.umed.lodz.pl Higher Blood Glucose Variability is Associated with Increased Risk of Hypoglycemia Publikacja / Publication in Well or Poorly Controlled Type 1 or Type 2 Diabetes, Czupryniak Leszek, Borkowska Anna, Szymańska-Garbacz Elektra DOI wersji wydawcy / Published http://dx.doi.org/10.2337/db17-381-663 version DOI Adres publikacji w Repozytorium URL / Publication address in https://publicum.umed.lodz.pl/info/article/AML063ddbabfba14480a6e45b1d944e1ccd/ Repository Data opublikowania w Repozytorium 2020-08-31 / Deposited in Repository on Rodzaj licencji / Type of licence Other open licence Czupryniak Leszek, Borkowska Anna, Szymańska-Garbacz Elektra : Higher Blood Glucose Variability is Associated with Increased Risk of Hypoglycemia in Well or Cytuj tę wersję / Cite this version Poorly Controlled Type 1 or Type 2 Diabetes, Diabetes, vol. 66, no. Suppl. 1, 2017, pp. 103-104, DOI:10.2337/db17-381-663 COMPLICATIONS—HYPOGLYCEMIA COMPLICATIONS—HYPOGLYCEMIA an activating role of SAMSN1, L-triiodothyronine, IFNA4, JAK1 and mTORC1, and an inhibitory action of BDNF, POR, ESR1, CTNNB1 and ERG on the gene networks identified in our samples. Moderated Poster Discussion: Hypoglycemia—Novel Concepts Our study for the first time characterizes the transcriptional responses (Posters: 381-P to 386-P), see page 19. of the BBB compartment to recurrent hypoglycemia exposure and may help identify novel therapeutic targets to restore the impaired responses against 381‑P hypoglycemia in patients with type 1 diabetes. & Supported By: National Institutes of Health; JDRF Hypoglycemia‑Associated Autonomic Failure Is Associated with POSTERS Complications Coordinated miRNA‑mRNA Network Changes in the Ventromedial Acute and Chronic Hypothalamus & 383‑P RAHUL AGRAWAL, CASEY TAYLOR, ADRIANA VIEIRA-DE-ABREU, SIMON J.
    [Show full text]
  • PDF (Ph.D.Thesis)
    The biological and clinical characterisation and validation of novel biomarkers in colorectal cancer Seán Fitzgerald B.Sc., M.Sc. This thesis is submitted to Dublin City University for the degree of Ph.D. July 2015 Based on research carried out at School of Biotechnology, Dublin City University, Dublin 9, Ireland. Supervisors: Professor Richard O’Kennedy Dr. Gregor Kijanka External Supervisor: Professor Elaine Kay Department of Pathology, RCSI, Beaumont Hospital. i Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Ph.D. is entirely my own work, that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: ____________ ID No.: ___________ Date: _______ ii Acknowledgements Firstly, I would like to express my sincere gratitude and appreciation to my supervisors Prof. Richard O’Kennedy, Prof. Elaine Kay and Dr. Gregor Kijanka. This thesis would not have been possible without the expert advice and guidance that I received from each of you, both on an academic and personal level. I am especially grateful to Dr. Gregor Kijanka for his endless guidance, wisdom and friendship throughout my PhD. I would like to thank all the members of the Applied Biochemistry Group and the School of Biotechnology in DCU for their help, support and friendship over the last few years.
    [Show full text]
  • A Selective Inhibitor of Ceramide Synthase 1 Reveals a Novel Role in Fat Metabolism
    ARTICLE DOI: 10.1038/s41467-018-05613-7 OPEN A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism Nigel Turner1, Xin Ying Lim2,3, Hamish D. Toop 4, Brenna Osborne 1, Amanda E. Brandon5, Elysha N. Taylor4, Corrine E. Fiveash1, Hemna Govindaraju1, Jonathan D. Teo3, Holly P. McEwen3, Timothy A. Couttas3, Stephen M. Butler4, Abhirup Das1, Greg M. Kowalski 6, Clinton R. Bruce6, Kyle L. Hoehn 7, Thomas Fath1,10, Carsten Schmitz-Peiffer8, Gregory J. Cooney5, Magdalene K. Montgomery1, Jonathan C. Morris 4 & Anthony S. Don3,9 1234567890():,; Specific forms of the lipid ceramide, synthesized by the ceramide synthase enzyme family, are believed to regulate metabolic physiology. Genetic mouse models have established C16 ceramide as a driver of insulin resistance in liver and adipose tissue. C18 ceramide, syn- thesized by ceramide synthase 1 (CerS1), is abundant in skeletal muscle and suggested to promote insulin resistance in humans. We herein describe the first isoform-specific ceramide synthase inhibitor, P053, which inhibits CerS1 with nanomolar potency. Lipidomic profiling shows that P053 is highly selective for CerS1. Daily P053 administration to mice fed a high- fat diet (HFD) increases fatty acid oxidation in skeletal muscle and impedes increases in muscle triglycerides and adiposity, but does not protect against HFD-induced insulin resis- tance. Our inhibitor therefore allowed us to define a role for CerS1 as an endogenous inhibitor of mitochondrial fatty acid oxidation in muscle and regulator of whole-body adiposity. 1 School of Medical Sciences, UNSW Sydney, Sydney 2052 NSW, Australia. 2 Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney 2052 NSW, Australia.
    [Show full text]
  • Targeting the Sphingosine Kinase/Sphingosine-1-Phosphate Signaling Axis in Drug Discovery for Cancer Therapy
    cancers Review Targeting the Sphingosine Kinase/Sphingosine-1-Phosphate Signaling Axis in Drug Discovery for Cancer Therapy Preeti Gupta 1, Aaliya Taiyab 1 , Afzal Hussain 2, Mohamed F. Alajmi 2, Asimul Islam 1 and Md. Imtaiyaz Hassan 1,* 1 Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; [email protected] (P.G.); [email protected] (A.T.); [email protected] (A.I.) 2 Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; afi[email protected] (A.H.); [email protected] (M.F.A.) * Correspondence: [email protected] Simple Summary: Cancer is the prime cause of death globally. The altered stimulation of signaling pathways controlled by human kinases has often been observed in various human malignancies. The over-expression of SphK1 (a lipid kinase) and its metabolite S1P have been observed in various types of cancer and metabolic disorders, making it a potential therapeutic target. Here, we discuss the sphingolipid metabolism along with the critical enzymes involved in the pathway. The review provides comprehensive details of SphK isoforms, including their functional role, activation, and involvement in various human malignancies. An overview of different SphK inhibitors at different phases of clinical trials and can potentially be utilized as cancer therapeutics has also been reviewed. Citation: Gupta, P.; Taiyab, A.; Hussain, A.; Alajmi, M.F.; Islam, A.; Abstract: Sphingolipid metabolites have emerged as critical players in the regulation of various Hassan, M..I. Targeting the Sphingosine Kinase/Sphingosine- physiological processes. Ceramide and sphingosine induce cell growth arrest and apoptosis, whereas 1-Phosphate Signaling Axis in Drug sphingosine-1-phosphate (S1P) promotes cell proliferation and survival.
    [Show full text]
  • Ceramides: Nutrient Signals That Drive Hepatosteatosis
    J Lipid Atheroscler. 2020 Jan;9(1):50-65 Journal of https://doi.org/10.12997/jla.2020.9.1.50 Lipid and pISSN 2287-2892·eISSN 2288-2561 Atherosclerosis Review Ceramides: Nutrient Signals that Drive Hepatosteatosis Scott A. Summers Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA Received: Sep 24, 2019 ABSTRACT Revised: Nov 4, 2019 Accepted: Nov 10, 2019 Ceramides are minor components of the hepatic lipidome that have major effects on liver Correspondence to function. These products of lipid and protein metabolism accumulate when the energy needs Scott A. Summers of the hepatocyte have been met and its storage capacity is full, such that free fatty acids start Department of Nutrition and Integrative to couple to the sphingoid backbone rather than the glycerol moiety that is the scaffold for Physiology, University of Utah, 15N 2030E, Salt Lake City, UT 84112, USA. glycerolipids (e.g., triglycerides) or the carnitine moiety that shunts them into mitochondria. E-mail: [email protected] As ceramides accrue, they initiate actions that protect cells from acute increases in detergent- like fatty acids; for example, they alter cellular substrate preference from glucose to lipids Copyright © 2020 The Korean Society of Lipid and they enhance triglyceride storage. When prolonged, these ceramide actions cause insulin and Atherosclerosis. This is an Open Access article distributed resistance and hepatic steatosis, 2 of the underlying drivers of cardiometabolic diseases. under the terms of the Creative Commons Herein the author discusses the mechanisms linking ceramides to the development of insulin Attribution Non-Commercial License (https:// resistance, hepatosteatosis and resultant cardiometabolic disorders.
    [Show full text]
  • Biological Functions of Sphingomyelin Synthase Related Protein and Ceramide Synthase 4 Investigated with Transgenic Mouse Mutants
    Biological functions of Sphingomyelin synthase related protein and Ceramide synthase 4 investigated with transgenic mouse mutants Dissertation Zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Andreas Bickert aus Neuwied Bonn, 2016 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn Erstgutachter: Prof. Dr. Klaus Willecke Zweitgutachter: Prof. Dr. Michael Hoch Tag der Promotion: 25.10.2016 Erscheinungsjahr: 2017 Table of Contents Table of Contents 1 Introduction.................................................................................................. 1 1.1 Biological lipids ............................................................................................ 1 1.2 Eucaryotic membranes ................................................................................ 3 1.3 Sphingolipids ............................................................................................... 5 1.3.1 Sphingolipid metabolic pathway ................................................................. 6 1.3.1.1 De novo sphingolipid biosynthesis .......................................................... 8 1.3.1.2 The ceramide transfer protein ................................................................. 8 1.3.1.3 Biosynthesis of complex sphingolipids .................................................... 9 1.3.1.4 Sphingolipid degradation and the salvage
    [Show full text]
  • Disorders of Sphingolipid Synthesis, Sphingolipidoses, Niemann-Pick Disease Type C and Neuronal Ceroid Lipofuscinoses
    551 38 Disorders of Sphingolipid Synthesis, Sphingolipidoses, Niemann-Pick Disease Type C and Neuronal Ceroid Lipofuscinoses Marie T. Vanier, Catherine Caillaud, Thierry Levade 38.1 Disorders of Sphingolipid Synthesis – 553 38.2 Sphingolipidoses – 556 38.3 Niemann-Pick Disease Type C – 566 38.4 Neuronal Ceroid Lipofuscinoses – 568 References – 571 J.-M. Saudubray et al. (Eds.), Inborn Metabolic Diseases, DOI 10.1007/978-3-662-49771-5_ 38 , © Springer-Verlag Berlin Heidelberg 2016 552 Chapter 38 · Disor ders of Sphingolipid Synthesis, Sphingolipidoses, Niemann-Pick Disease Type C and Neuronal Ceroid Lipofuscinoses O C 22:0 (Fatty acid) Ganglio- series a series b HN OH Sphingosine (Sphingoid base) OH βββ β βββ β Typical Ceramide (Cer) -Cer -Cer GD1a GT1b Glc ββββ βββ β Gal -Cer -Cer Globo-series GalNAc GM1a GD1b Neu5Ac βαββ -Cer Gb4 ββ β ββ β -Cer -Cer αβ β -Cer GM2 GD2 Sphingomyelin Pcholine-Cer Gb3 B4GALNT1 [SPG46] [SPG26] β β β ββ ββ CERS1-6 GBA2 -Cer -Cer ST3GAL5 -Cer -Cer So1P So Cer GM3 GD3 GlcCer - LacCer UDP-Glc UDP Gal CMP -Neu5Ac - UDP Gal PAPS Glycosphingolipids GalCer Sulfatide ββ Dihydro -Cer -Cer SO 4 Golgi Ceramide apparatus 2-OH- 2-OH-FA Acyl-CoA FA2H CERS1-6 [SPG35] CYP4F22 ω-OH- ω-OH- FA Acyl-CoA ULCFA ULCFA-CoA ULCFA GM1, GM2, GM3: monosialo- Sphinganine gangliosides Endoplasmic GD3, GD2, GD1a, GD1b: disialo-gangliosides reticulum KetoSphinganine GT1b: trisialoganglioside SPTLC1/2 [HSAN1] N-acetyl-neuraminic acid: sialic acid found in normal human cells Palmitoyl-CoA Deoxy-sphinganine + Serine +Ala or Gly Deoxymethylsphinganine 38 . Fig. 38.1 Schematic representation of the structure of the main sphingolipids , and their biosynthetic pathways.
    [Show full text]
  • Deutsche Nationalbibliografie
    Deutsche Nationalbibliografie Reihe H Hochschulschriften Monatliches Verzeichnis Jahrgang: 2018 H 03 Stand: 07. März 2018 Deutsche Nationalbibliothek (Leipzig, Frankfurt am Main) 2018 ISSN 1869-3989 urn:nbn:de:101-201711171596 2 Hinweise Die Deutsche Nationalbibliografie erfasst eingesandte Pflichtexemplare in Deutschland veröffentlichter Medienwerke, aber auch im Ausland veröffentlichte deutschsprachige Medienwerke, Übersetzungen deutschsprachiger Medienwerke in andere Sprachen und fremdsprachige Medienwerke über Deutschland im Original. Grundlage für die Anzeige ist das Gesetz über die Deutsche Nationalbibliothek (DNBG) vom 22. Juni 2006 (BGBl. I, S. 1338). Monografien und Periodika (Zeitschriften, zeitschriftenartige Reihen und Loseblattausgaben) werden in ihren unterschiedlichen Erscheinungsformen (z.B. Papierausgabe, Mikroform, Diaserie, AV-Medium, elektronische Offline-Publikationen, Arbeitstransparentsammlung oder Tonträger) angezeigt. Alle verzeichneten Titel enthalten einen Link zur Anzeige im Portalkatalog der Deutschen Nationalbibliothek und alle vorhandenen URLs z.B. von Inhaltsverzeichnissen sind als Link hinterlegt. In Reihe H werden die an den Hochschulen und sonsti- klassifikation (DDC) gegliedert und können auch über die gen mit Promotionsrecht ausgestatteten Körperschaften Sachgruppenlesezeichen am linken Bildschirmrand ange- Deutschlands abgenommenen Dissertationen und Habili- steuert werden. Ein direkter Sucheinstieg ist über die tationsschriften erfasst, ferner deutschsprachige Disser- entsprechende Menüfunktion möglich.
    [Show full text]