On the Flood Forecasting at the Bulgarian Part Of

Total Page:16

File Type:pdf, Size:1020Kb

On the Flood Forecasting at the Bulgarian Part Of BALWOIS 2004 Ohrid, FY Republic of Macedonia, 25-29 May 2004 The Mountains Influence On Turkey Climate Serhat Sensoy Turkish State Meteorological Service Ankara, Turkey Abstract Since the Black sea mountains at the north of the country and the Taurus mountains in the south lay parallel to the seashore and rise very sharply, rain clouds can not penetrate to the internal part of the country. Rain clouds drops most of their water on the slopes opposite the sea. As rain clouds pass over the mountains and reach Central Anatolia they have no significant capability of rain. For this reason, the Central Anatolia does not have very much precipitation. The difference between the rates of precipitation on the inner and outer slopes seems to be effective on the expansion of plants. Since the succession of the mountains in Western Anatolia lay perpendicular to the seashore, rain clouds penetrate towards the inner regions for about 400 km. Owing to the irregularity of its topography, various types of climate ranging from subtropical to cold climates characterize climate in Turkey. Key words. Mountain, effect, climate, Turkey, rainfall, intensity, analyze What is climatology? Climate is what you expect. Weather is what you get. Weather is the state of the atmosphere, over a brief period of time. For example, we speak of today's weather or the weather this week. Climate represents composite of day-to-day weather over a longer period of time (NDMC, 2004). In other word, climate is the average state of the atmosphere. Climate can be highly variable. For example; people in Mediterranean expect a white Christmas, and people in East Anatolia expect very warm, humid summers. It is no coincidence that we pack differently when we travel in March to Uludag, Antalya or to Trabzon. These examples begin to show how we use climate to live our lives. Additionally: (a) Our houses are designed based on the climate where we live. (b) Farmers make their plans based on the length of the growing season from the last killing freeze in the spring to the first freeze in the fall. (c) Utility companies base power supplies on what they expect to be the maximum need for heating in the winter and the maximum need for cooling in the summer. A climatologist attempts to discover and explain the impacts of climate so that society can plan its activities, design its buildings and infrastructure, and anticipate the effects of adverse conditions. Although climate is not weather, it is defined by the same terms such as temperature, precipitation, wind, and solar radiation. Climate is usually defined by what is expected or "normal," which climatologists traditionally interpret as the 30-year mean. By itself, "normal" can be misleading unless we also understand the concept of variability. For example, many people consider sunny, days as normal in Antakya. History and climatology tell us that this is not the full story. While sunny weather is frequently associated with Antakya, severe floods also have had a significant impact, including major floods in 1941 and 2001. If we know the status of the climate today and the differences between this and the recent past, we can begin to plan for the future. (Obasi, 2001) Major air masses that affect climate of turkey There are two types of air masses affecting Turkey; Polar and Tropical. They are also subdivided into two groups maritime and continental. Turkey is under the effect of polar air masses in the winter and tropical air masses in the summer. It is seen from Fig. 1. (a) Maritime Polar Air Mass (mP): It’s originated from Atlantic Ocean and passes over Europe. It brings rainfall to the Black Sea Region and snow to the inland regions. If it comes from over Mediterranean it became more effective. Climate 1 BALWOIS 2004 Ohrid, FY Republic of Macedonia, 25-29 May 2004 (b) Continental Polar Air Masses (cP): It’s originated from Russia and Siberian. It is cold and dry air masses and characterized by fog and clear sky at nights. When it passes over Black Sea, it picks moisture and can cause orographic rainfall in the Black Sea costal region. (c) Maritime Tropical Air Mass (mT): It’s warm and humid. This air mass forms over Azores Islands. It brings a lot of precipitation especially to the western part of Turkey in the summer. These two air masses control Turkey’s annual precipitation; and in the long-term, the control the variation of rainfall in duration and area rainfall distribution. (d) Continental Tropical Air Masses (cT): It’s hot and dry. It is originated from North African Desert. When it meets northern systems or picks sufficient moisture over Mediterranean, it can cause rainfall. Figure 1. Air masses affecting Turkey Turkey's climate is influenced from Northeast Atlantic Depression (low Pressure) and Subtropical anticyclones (Azorean high pressures), as well as the seasonal movement of Basra low pressure. In some years, especially in the winter season, Siberian anticyclone carries temporal polar air masses from the Russian plateaus to Turkey. There are four-pressure systems that affecting climate of Turkey: (a) Atlantic (Iceland) depression (Low Pressure) (b) Siberian Anticyclone (High Pressure) (c) Azorean Anticyclone (High Pressure) (d) Basra (Gulf) Low Pressure (extension of the monsoon low pressure) These pressure systems usually are stable, but sometimes they are affecting air masses over Turkey by expanding and narrowing. Climate of Turkey Although Turkey is situated in large Mediterranean geographical location where climatic conditions are quite temperate, diverse nature of the landscape, and the existence in particular of the mountains that run parallel to the coasts, result in significant differences in climatic conditions from one region to the other. While the coastal areas enjoy milder climates, the inland Anatolian plateau experiences extremes of hot summers and cold winters with limited rainfall. The Aegean and Mediterranean coasts have cool, rainy winters and hot, moderately dry summers. Annual precipitation in those areas varies from 580 to 1,300 millimeters, depending on location. The Climate 2 BALWOIS 2004 Ohrid, FY Republic of Macedonia, 25-29 May 2004 Black Sea coast receives the greatest amount of rainfall. The eastern part of the region receives 2,200 millimeters annually and is the only region of Turkey that receives rainfall throughout the year. Turkey's diverse regions have different climates because of irregular topography. Taurus Mountains is close to the coast and rain clouds cannot penetrate to the interior part of the country. Rain clouds drops most of their water on the coastal area. As rain clouds pass over the mountains and reach central Anatolia they have no significant capability to produce rainfall. In the Eastern region of Anatolia, the elevation of mountains exceeds 2500-3000 m. Northern Black Sea Mountains and Caucasian Mountain hold the rain clouds, and therefore the area is affected by the continental climate with long and very cold winter. Minimum temperatures of -30oC to -38oC are observed in the mountainous areas in the east, and snow may lie on the ground 120 days of the year. Winters are bitterly cold with frequent, heavy snowfall. Villages in the region remain isolated for several days during winter storms. Summers are hot and dry, with temperatures above 30oC. Spring and autumn are generally mild, but during both seasons sudden hot and cold spells frequently occur in the region Annual precipitation averages about 500-800 mm. with actual amounts determined by elevation. In Istanbul and around the Sea of Marmora the climate is moderate (winter 4oC and summer 27oC); in winter, however, the temperatures can drop below zero. In Western Anatolia, there is a mild Mediterranean climate with average temperatures of 9oC in winter and 29oC in summer. On the southern coast of Anatolia the similar climatic condition are observed. The climate of the Anatolian Plateau is a steppe climate. There is a great temperature difference between day and night. Rainfall is low but it usually is in form of snow. The average temperature is 23oC in summer and -2oC in winter. The climate in the Black Sea area is wet, and humid (summer 23oC, winter 7oC). In Eastern Anatolia and South-Eastern Anatolia there is a long winter, and snow remains on the ground from November until the end of April (the average temperature in winter is -13oC and in summer 17oC). Analysis of temperature Long term mean temperature of Turkey The lowest temperatures occur in the Eastern Anatolian (Ardahan) and highest temperatures occur in the Southeastern Anatolian region because of higher elevation and terrestrial climate. Most part of the central Anatolia has temperature between 8-12oC. In all part of the Marmora, coastal area of Black Sea, central part of the Aegean Sea and inland of the Mediterranean, the long-term annual mean temperatures are between 12-16oC. In the Aegean and Mediterranean coastal area and all part of the southeast Anatolia regions, the annual mean temperatures vary from 16 to 20oC. Geographically distributions of mean annual temperatures are seen in Fig. 2 and average air temperatures for major cities are given in Table 1. Figure 2. Geographical distributions of mean annual temperatures Climate 3 BALWOIS 2004 Ohrid, FY Republic of Macedonia, 25-29 May 2004 Table 1. Average air temperatures for major cities in Turkey (oC) City Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Antalya 10 11 13 16 20 25 28 28 25 20 15 12 Izmir 9 10 11 16 20 25 28 27 23 18 15 10 Istanbul 5 6 7 12 16 21 23 23 20 16 12 8 Trabzon 6 6 7 11 15 20 22 22 19 15 12 9 Ankara 0 1 5 11 16 20 23 23 18 13 8 2 Erzurum -9 -7 -3 5 11 15 20 20 15 9 2 -5 Diyarbakir 2 2 2 14 19 26 31 31 25 17 10 4 Temperature anomalies Long-term mean temperature of Turkey is 13.2oC.
Recommended publications
  • Journal of International Environmental Application & Science
    Journal of International Environmental Application & Science ISSN-1307-0428 Editor in Chief: Prof. Dr. Sukru DURSUN, Environmental Engineering Department, Engineering & Natural Science Faculty, Konya Technical University, Konya, TURKEY EDITORIAL BOARD Prof. Dr. Lynne BODDY Prof. Dr. IR. Raf DEWIL Cardiff School of Biosciences, Main Building, Museum Chemical Eng. Dept, Chemical & Biochem. Process Techn. & Avenue, Cardiff CF10 3TL UK Control Section, Katholieke Un. Leuven, Heverlee, BELGIUM Prof. Dr. Phil INESON Prof. Dr. Tay Joo HWA Stockholm Environment Institute, University of York, Environ. & Water Resources Engineering Division, of Civil & Heslington, York, YO10 5DD, UK Environ. Eng. School, Nanyang Techno. Un., SINGAPORE Prof. Dr. Lidia CRISTEA Dr. Somjai KARNCHANAWONG Romanian Sci. & Arts University, B-dul Energeticienilor, No.9- Environ. Engineering Dept, Faculty of Engineering Chiang Mai 11, Sec. 3, ZC 030796, Bucharest, ROMANIA University, THAILAND Prof. Dr. N. MODIRSHAHLA, Prof. Dr Hab. Boguslaw BUSZEWSK Department of Applied Chemistry, Islamic Azad University, Chemistry & Bioanalytics Environ., Chemistry Faculty, Tabriz Branch, IRAN Nicolaus Copernicus University, Torun, POLAND Prof. Dr. Victor A.DRYBAN, Prof. Dr. Azita Ahmadi-SÉNICHAULT Rock Pressure National Academy of Sciences of Ukraine, Arts et Métiers Paris Tech - Centre de Bordeaux, Esplanade Donetsk, UKRAINE des Arts et Metiers, FRANCE Prof.Dr. Rüdiger ANLAUF Osnabrueck University of Applied Sciences, Osnabrück, Prof. Dr. Irena BARANOWSKA GERMANY Analytical Chemistry Dept., Silesian Technical University, Gliwice, POLAND Prof. Dr. Amjad SHRAIM Chemistry & Earth Sciences Department, College of Arts & Prof. Dr. Indumathi M NAMBI Sciences, Qatar University, Doha, QATAR Indian Institute of Technology Madras, Civil Eng. Dept., Environ. & Water Resources Eng. Div., INDIA Prof. Dr. Massimo ZUCCHETTI Dipartimento di Energetica, Politecnico di Torino, Corso Duca Prof.
    [Show full text]
  • A. FALCONE, V. IACOMI – Archeologia Dell'acqua a Elaiussa
    BOLLETTINO DI ARCHEOLOGIA ON LINE DIREZIONE GENERALE ARCHEOLOGIA, BELLE ARTI E PAESAGGIO XI, 2018/1 ANNALISA FALCONE*, VERONICA IACOMI* ARCHEOLOGIA DELL’ACQUA AD ELAIUSSA SEBASTE, CILICIA (TURCHIA): UN CONTESTO DI SCAVO DI ETA’ PROTOBIZANTINA NEL QUARTIERE RESIDENZIALE PRESSO IL PORTO SUD Elaiussa Sebaste (modern Ayaş, Akdeniz Bölgesı, southern Turkey) has been investigated since 1995 by the Italian Archaeological Mission of “Sapienza” University of Rome. Excavations brought to light large sectors of the Roman– Byzantine public area (theatre, agora, baths), necropoleis, two city harbours, the so called “Byzantine palace” and part of the domestic and handcraft quarters. The site was, during the Roman age, one of the most important cities of Cilicia Aspera and maintained its prestigious role as a significant trading port until the late empire and the early Byzantine age, when it became one of the most active centres of LR1 amphoras production. This contri- bution will focus on the “Cura Aquarum Project”, started in 2009 and aimed at identifying, positioning and doc- umenting all the structures related with the water supply of the site. Recognition works were carried out identifying large sections of the aqueduct’s truck, the connected water tanks and numerous cisterns disseminated across the city. Together with the surveys, the complete excavation of one of the cisterns entirely cut in the rock found in the domestic early-Byzantine quarter – luckily sealed just after the site abandonment – contributed to clarify the im- portance of the rainwater harvesting system, even after the aqueduct’s construction, providing a significant portrayal of the latest phase of Elaiussa’s occupation.
    [Show full text]
  • Shankar Ias Academy Test 18 - Geography - Full Test - Answer Key
    SHANKAR IAS ACADEMY TEST 18 - GEOGRAPHY - FULL TEST - ANSWER KEY 1. Ans (a) Explanation: Soil found in Tropical deciduous forest rich in nutrients. 2. Ans (b) Explanation: Sea breeze is caused due to the heating of land and it occurs in the day time 3. Ans (c) Explanation: • Days are hot, and during the hot season, noon temperatures of over 100°F. are quite frequent. When night falls the clear sky which promotes intense heating during the day also causes rapid radiation in the night. Temperatures drop to well below 50°F. and night frosts are not uncommon at this time of the year. This extreme diurnal range of temperature is another characteristic feature of the Sudan type of climate. • The savanna, particularly in Africa, is the home of wild animals. It is known as the ‘big game country. • The leaf and grass-eating animals include the zebra, antelope, giraffe, deer, gazelle, elephant and okapi. • Many are well camouflaged species and their presence amongst the tall greenish-brown grass cannot be easily detected. The giraffe with such a long neck can locate its enemies a great distance away, while the elephant is so huge and strong that few animals will venture to come near it. It is well equipped will tusks and trunk for defence. • The carnivorous animals like the lion, tiger, leopard, hyaena, panther, jaguar, jackal, lynx and puma have powerful jaws and teeth for attacking other animals. 4. Ans (b) Explanation: Rivers of Tamilnadu • The Thamirabarani River (Porunai) is a perennial river that originates from the famous Agastyarkoodam peak of Pothigai hills of the Western Ghats, above Papanasam in the Ambasamudram taluk.
    [Show full text]
  • Middle East Meteorology - H.M
    TROPICAL METEOROLOGY- Middle East Meteorology - H.M. Hasanean MIDDLE EAST METEOROLOGY H.M. Hasanean Meteorology Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University Keywords: Middle East Meteorology, Arid and sub arid climate, Dust storm, Climate change, Circulation systems. Contents 1. Introduction 1.1 Middle East Definition 1.2 Overview of the Middle East Climate 2. Regional climate in the Middle East climate 2.1 Climate of Egypt 2.2 Climate of the Arabian Peninsula an Overview 2.3 Climate of Syria 2.4 Climate of Lebanon 2.5 Climate Jordan 2.6 Climate of Israel and Palestine 2.7 Climate of Cyprus 2.8 Climate of Iraq 2.9 Climate of Turkey 2.10 Climate of Iran 3. Dust storms over the Middle East 3.1 Types of Dust Storms 3.2 Synoptic Analysis of Dust Storms in the Middle East 4. Climate change over the Middle East climate 5. Climate change impacts on water resources in Middle East 6. Circulation systems affect the climate of the Middle East 6.1 Impact of the North Atlantic Oscillation (NAO) on Middle Eastern Climate 6.2 Impact of the El Nino Southern Oscillation (ENSO) on Middle East Climate 6.3 The Role of Highs Pressure (Siberian and Subtropical High Pressure) and Indian Low Pressure on Middle Eastern Climate 6.4 The roleUNESCO of Jet streams on Middle East – Climate EOLSS 7. Conclusion Acknowledgements Glossary SAMPLE CHAPTERS Bibliography Biographical Sketch Summary The Middle East is a region that spans southwestern Asia, western Asia, and northeastern Africa. Although much of the Middle East region has a Mediterranean climate type, i.e.
    [Show full text]
  • Exports: the Heart of Nep
    How to Export to 2018 Turkey This report includes all the information related to trade basics and detailed data regarding export from Brazil to Turkey. This report is for information purposes only and Tumer Eng. will not be liable to any direct, indirect, incidental, special, consequential or exemplary damages, including but not limited to, damages for loss of profits, goodwill, use, data, or other intangible losses. Ver:1.0 2018 1 Contents 1 Why Turkey.................................................................................................................................... 12 1.1 General Information .............................................................................................................. 12 1.2 Geography ............................................................................................................................. 13 1.2.1 Distances ....................................................................................................................... 18 1.2.2 Climate of Turkey .......................................................................................................... 19 1.2.2.1 Air temperature changes until now .......................................................................... 20 1.2.2.2 Precipitation changes until now ................................................................................ 21 1.2.2.3 Air temperature changes in the 21st century ........................................................... 21 1.2.2.4 Precipitation changes in the 21st century ................................................................
    [Show full text]
  • Climate of Turkey
    Climate of Turkey http://www.guidetoturkey.com/aboutturkey/info_tips/climate.a > CITIES & TOWNS Climate of Turkey Select > SOCIAL LIFE Although Turkey is situated in a geographical location where climatic conditions Education are quite temperate, the diverse nature of the landscape, and the existence in Folklore particular of the mountains that run parallel to the coasts, results in significant Holidays differences in climatic conditions from one region to the other. The Evil Eye Nightlife Turkey's diverse regions have different climates, with the weather system on the > GEOGRAPHY Geography coasts contrasting with that prevailing in the interior. The Aegean and Flora & Fauna Mediterranean coasts have cool, rainy winters and hot, moderately dry summers. Climate Annual precipitation in those areas varies from 580 to 1,300 millimeters, Weather depending on location. Generally, rainfall is less to the east. The Black Sea coast Population receives the greatest amount of rainfall. The eastern part of that coast averages Cities 1,400 millimeters annually and is the only region of Turkey that receives rainfall Sites Regions throughout the year. Distances > ART & CULTURE Mountains close to the coast prevent Mediterranean influences from extending Arts inland, giving the interior of Turkey a continental climate with distinct seasons. Music The Anatolian Plateau is much more subject to extremes than are the coastal Turkish Music areas. Winters on the plateau are especially severe. Temperatures of -30°C to Mehter > COMMUNICATION -40°C can occur in the mountainous areas in the east, and snow may lie on the Communication in ground 120 days of the year. In the west, winter temperatures average below Turkey 1°C.
    [Show full text]
  • Spring Temperature Variability Over Turkey Since 1800 CE Reconstructed
    1 Spring temperature variability over Turkey since 1800 CE reconstructed 2 from a broad network of tree-ring data 3 4 Nesibe Köse(1),*, H. Tuncay Güner(1), Grant L. Harley(2), Joel Guiot(3) 5 6 (1)Istanbul University, Faculty of Forestry, Forest Botany Department 34473 Bahçeköy-Istanbul, 7 Turkey 8 (2)University of Southern Mississippi, Department of Geography and Geology, 118 College 9 Drive Box 5051, Hattiesburg, Mississippi, 39406, USA 10 (3) Aix-Marseille Université, CNRS, IRD, CEREGE UM34, ECCOREV, 13545 Aix-en- 11 Provence, France 12 13 14 15 16 17 *Corresponding author. Fax: +90 212 226 11 13 18 E-mail address: [email protected] 19 1 20 Abstract 21 The 20th century was marked by significant decreases in spring temperature ranges and increased 22 nighttime temperatures throughout Turkey. The meteorological observational period in Turkey, 23 which starts ca. 1929 CE, is too short for understanding long-term climatic variability. Hence, 24 the historical context of this gradual warming trend in spring temperatures is unclear. Here we 25 use a network of 23 tree-ring chronologies to provide a high-resolution spring (March–April) 26 temperature reconstruction over Turkey during the period 1800–2002. The reconstruction model 27 accounted for 67% (Adj. R2 = 0.64, p < 0.0001) of the instrumental temperature variance over the 28 full calibration period (1930–2002). During the pre-instrumental period (1800–1929) we 29 captured more cold events (n = 23) than warm (n = 13), and extreme cold and warm events were 30 typically of short duration (1–2 years).
    [Show full text]
  • A Causative-Diagnostic Analysis of Turkey's Majcr Prcblems And
    A CAUSATIVE-DIAGNOSTIC ANALYSIS OF TURKEY'S MAJCR PRCBLEMS AND A CQUwUNICATIVE APPROACH TO THEIR SOLUTION (DEMOCRATIC PLANNING AND MASS COMMUNICATION) Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By ILHAN OZDIL, B.S. The Ohio State University 195U Approved by* VI Adviser Table of Contents Page Introduction • . • T± Propositions ...... .............................. Tl The Sti*ucture of the Study ...................... •▼'111 The irfethod uf the Study........................ • . lx The Vindication of the Topical Selection........... Xl P&A Diagnosis Chapter 1 A Brief Retrospect ........... 1 Chapter II About the Nature of the Kemalist Revolution .... 9 1. The Nature of Kemalisra........... 9 2. The idain Principles, Objectives and Reforms of the Kemalist Revolution 13 3. Turkish Revolution as a Far-reaching Democratic Educa­ tional Process ........... 16 Chapter III A Causative-Diagnostic Analysis of Sane Uajor Problems of Turkey.................................25 1. Agriculture ...................................... 35 A. Definition and description of the problem...... 35 B. Causative-diagnostic analysis of the problem . 1+1 C. Remedial proposals and their communicative bearings ............... 1+8 D. Present Situation......... 5U 2 • Industry 56 A* Definition and description of the problem ..... 56 B. Causative-diagnostic analysis of the problem . 63 C. Remedial proposals and their communicative bearings .......................................73 D. Present Situation ......... 76 3* Public Health and Social Welfare............. 79 A. Definition and description of the problem...... 79 B. Causative-diagnostic analysis of the problem . 82 C. Remedial proposals and their communicative bearings ..... ..................... .... 87 D. Present situation .... ..... 91 li. Politics and Democratization . ............. 98 A. Definition and description of the problem...... 98 B.
    [Show full text]
  • Tea Sector Report
    TEA SECTOR REPORT Common borders. Common solutions. 1 DISCLAIMER The document has been produced with the assistance of the European Union under Joint Operational Programme Black Sea Basin 2014-2020. Its content is the sole responsibility of Authors and can in no way be taken to reflect the views of the European Union. Common borders. Common solutions. 2 Contents 1. Executıve Summary ......................................................................................................................................... 4 2. Tea Sector Report ............................................................................................................................................ 7 1.1. Current Status ............................................................................................................................................... 7 1.1.1. World .................................................................................................................................................... 7 1.1.2. Black Sea Basin ................................................................................................................................... 49 1.1.3. National and Regional ........................................................................................................................ 60 1.2. Traditional Tea Agriculture and Management ............................................................................................ 80 1.2.1. Current Status ...................................................................................................................................
    [Show full text]
  • Spring Temperature Variability Over Turkey Since 1800 CE Reconstructed
    1 Spring temperature variability over Turkey since 1800 CE reconstructed 2 from a broad network of tree-ring data 3 4 Nesibe Köse(1),*, H. Tuncay Güner(1), Grant L. Harley(2), Joel Guiot(3) 5 6 (1)Istanbul University, Faculty of Forestry, Forest Botany Department 34473 Bahçeköy-Istanbul, 7 Turkey 8 (2)University of Southern Mississippi, Department of Geography and Geology, 118 College 9 Drive Box 5051, Hattiesburg, Mississippi, 39406, USA 10 (3) Aix-Marseille Université, CNRS, IRD, CEREGE UM34, ECCOREV, 13545 Aix-en- 11 Provence, France 12 13 14 15 16 17 *Corresponding author. Fax: +90 212 226 11 13 18 E-mail address: [email protected] 19 1 20 Abstract 21 The meteorological observational period in Turkey, which starts ca. 1930 CE, is too short for 22 understanding long-term climatic variability. Tree rings have been used intensively as proxy 23 records to understand summer precipitation history of the region, primarily because of having a 24 dominant precipitation signal. Yet,, the historical context of temperature variability is unclear. 25 Here we used higher order principle components of a network of 23 tree-ring chronologies to 26 provide a high-resolution spring (March–April) temperature reconstruction over Turkey during 27 the period 1800–2002. The reconstruction model accounted for 67% (Adj. R2 = 0.64, p < 0.0001) 28 of the instrumental temperature variance over the full calibration period (1930–2002). The 29 reconstruction is punctuated by a temperature increase during the 20th century; yet extreme cold 30 and warm events during the 19th century seem to eclipse conditions during the 20th century.
    [Show full text]
  • ÇOMÜ Ziraat Fakültesi Dergisi (COMU Journal of Agriculture Faculty)
    ISSN: 2147–8384 e-ISSN: 2564–6826 ÇOMÜ Ziraat Fakültesi Dergisi (COMU Journal of Agriculture Faculty) Cilt (Volume): 8 Sayı (Issue): 2 Yıl/Year: 2020 Yazışma Adresi (Corresponding Address) Çanakkale Onsekiz Mart Üniversitesi, Ziraat Fakültesi Dergisi Yayın Koordinatörlüğü, Terzioğlu Kampüsü, 17100, Çanakkale/Türkiye Tel: +90 286 218 00 18 Faks: +90 286 21805 45 E-mail: [email protected] ÇOMÜ Ziraat Fakültesi Dergisi Hakemli bir dergi olup yılda iki sefer yayınlanır. Dergi içerisindeki makaleler, çizelgeler, şekiller ve resimler izinsiz olarak kullanılamaz. Diğer makale, bildiri ve kitaplar için alıntı yapılacağı zaman referans verilerek yapılmalıdır. COMÜ Journal of Agriculture Faculty is a peer reviewed journal and published twice in a year. The articles, tables and figures of this journal are not allow to be used anywhere without permission. Only should be given as reference in other research papers, articles, books, poster and oral presentations. All rights to articles published in this journal are reserved by the COMU, Faulty of Agriculture, Canakkale. ÇOMÜ Ziraat Fakültesi Dergisi (COMU Journal of Agriculture Faculty) İmtiyaz Sahibi (Publisher) Prof. Dr. Murat YILDIRIM, Dekan/Dean Editörler Kurulu Başkanı (Editor–in–Chief) Prof. Dr. Altıngül ÖZASLAN PARLAK Yardımcı Editörler (Assistant Editor–in–Chief) Prof.Dr. Mehmet PARLAK Prof. Dr. Gökhan ÇAMOĞLU Doç. Dr. Fatih KAHRIMAN Doç. Dr. Cemil TÖLÜ Doç.Dr Anıl ÇAY Dr. Öğr. Üyesi Baboo Ali Dr. Öğr.Üyesi Bengü EVEREST Danışma Kurulu (Advisory Board) Prof. Dr. Aydın AKIN, Bahçe Bitkileri Prof. Dr. Çiğdem ULUBAŞ SERÇE, Bitki Koruma Prof. Dr. Muhammad AFZAL, Bitki Koruma Prof. Dr. Neelima TALWAR, Bitki Koruma Prof. Dr. Nevin DEMİRBAŞ, Tarım Ekonomisi Doç.
    [Show full text]
  • I IMPACTS of CLIMATE NONSTATIONARITIES ON
    IMPACTS OF CLIMATE NONSTATIONARITIES ON HYDROCLIMATOLOGICAL VARIABLES IN TURKEY A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY RIZWAN AZIZ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CIVIL ENGINEERING AUGUST 2018 i ii Approval of the thesis: IMPACTS OF CLIMATE NONSTATIONARITIES ON HYDROCLIMATOLOGICAL VARIABLES IN TURKEY submitted by RIZWAN AZIZ in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Civil Engineering Department, Middle East Technical University by, Prof. Dr. Halil Kalıpçılar Dean, Graduate School of Natural and Applied Sciences Prof. Dr. İsmail Özgür Yaman Head of Department, Civil Engineering Prof. Dr. İsmail Yücel Supervisor, Civil Engineering Dept., METU Assoc. Prof. Dr. Ceylan Talu Yozgatlıgil Co-supervisor Statistics Dept., METU Examining Committee Members: Prof. Dr. Elçin Kentel Erdoğan Civil Engineering Dept., METU Prof. Dr. İsmail Yücel Civil Engineering Dept., METU Assoc. Prof. Dr. Koray K. Yılmaz Geological Engineering Dept., METU Prof. Dr. Ömer Lütfi Şen Eurasia Institute of Earth Sciences, ITU Prof. Dr. Cemal Saydam Environmental Engineering Dept., Hacettepe University Date: 29/08/2018 iii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last Name : Rizwan Aziz Signature : iv ABSTRACT IMPACTS OF CLIMATE NONSTATIONARITIES ON HYDROCLIMATOLOGICAL VARIABLES IN TURKEY Aziz, Rizwan Ph.D., Department of Civil Engineering Supervisor: Prof.
    [Show full text]