As a Therapeutic Target in Pancreatic Ductal Adenocarcinoma: Expression, Predictive Value, and Sensitivity to Inhibitors Jose M

Total Page:16

File Type:pdf, Size:1020Kb

As a Therapeutic Target in Pancreatic Ductal Adenocarcinoma: Expression, Predictive Value, and Sensitivity to Inhibitors Jose� M Published OnlineFirst January 14, 2016; DOI: 10.1158/1535-7163.MCT-15-0214 Companion Diagnostics and Cancer Biomarkers Molecular Cancer Therapeutics Choline Kinase Alpha (CHKa) as a Therapeutic Target in Pancreatic Ductal Adenocarcinoma: Expression, Predictive Value, and Sensitivity to Inhibitors Jose M. Mazarico1, Victor J. Sanchez-Ar evalo Lobo1, Rosy Favicchio2, William Greenhalf3, Eithne Costello3, Enrique Carrillo-de Santa Pau1, Miriam Marques 1, Juan C. Lacal4, Eric Aboagye2, and Francisco X. Real1,5 Abstract Choline kinase a (CHKa) plays a crucial role in the regulation pancreatic tumors. While cytoplasmic CHKa did not relate to of membrane phospholipid synthesis and has oncogenic prop- survival, nuclear CHKa distribution was observed in 43% of erties in vitro. We have analyzed the expression of CHKa in cell samples and was associated with longer survival, especially lines derived from pancreatic ductal adenocarcinoma (PDAC) among patients with well/moderately differentiated tumors. To and have found increased CHKa expression, associated with identify the mechanisms involved in resistance to CHKa inhibi- differentiation. CHKa protein expression was directly correlated tors, we cultured IMIM-PC-2 cells with increasingly higher con- with sensitivity to MN58b, a CHKa inhibitor that reduced cell centrations of MN58b and isolated a subline with a 30-fold higher growth through the induction of apoptosis. Accordingly, CHKa IC50. RNA-Seq analysis identified upregulation of ABCB1 and knockdown led to reduced drug sensitivity. In addition, we found ABCB4 multidrug resistance transporters, and functional studies that gemcitabine-resistant PDAC cells displayed enhanced sensi- confirmed that their upregulation is the main mechanism tivity to CHKa inhibition and, in vitro, MN58b had additive or involved in resistance. Overall, our findings support the notion synergistic effects with gemcitabine, 5-fluorouracil, and oxalipla- that CHKa inhibition merits further attention as a therapeutic tin, three active drugs in the treatment of PDAC. Using tissue option in patients with PDAC and that expression levels may microarrays, CHKa was found to be overexpressed in 90% of predict response. Mol Cancer Ther; 15(2); 1–11. Ó2016 AACR. Introduction curative intent (2). There is also a lack of effective therapies for advanced disease. Gemcitabine has been the gold-standard treat- Pancreatic adenocarcinoma (PDAC) is the fourth cause of ment for metastatic disease. The combination of 5-fluorouracil (5- cancer-related death in the Western world, with a 5-year survival FU), oxaliplatin, and irinotecan (FOLFIRINOX) and the combi- of <5%. During the last two decades, PDAC-related deaths have nation of gemcitabine with nab-paclitaxel and gemcitabine with only decreased marginally (1). There are multiple reasons for this erlotinib have shown increased antitumor activity (3–6), but there poor outcome. A majority of cases with PDAC are diagnosed at an is a need to identify new therapeutic targets and drugs. advanced stage, with either local (26%) or distant metastases In the last years, there has been a renewed interest in exploiting (53%), and only 20% of patients are candidates for surgery with the metabolic reprogramming that cells undergo upon malignant transformation (7). One promising metabolite deregulated in cancer is choline, an essential nutrient of the B vitamin family that 1Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain. 2Com- is necessary for the synthesis of phosphatidylcholine. Phospha- prehensive Cancer Imaging Centre, Department of Surgery & Cancer, tidylcholine is the most abundant phospholipid of the eukaryotic Imperial College London, Hammersmith Hospital, London, United cell membrane. Tumors show an active choline metabolism Kingdom. 3The NIHR Liverpool Pancreas Biomedical Research Unit, Liverpool, United Kingdom. 4Division of Translational Oncology, manifested by an increase of phosphocholine and total choline Department of Oncology, Fundacion Jimenez Díaz, Madrid, Spain. metabolites required to sustain cell growth and transformation 5 Departament de Ciencies Experimentals i de la Salut, Universitat (8). Phosphatidylcholine is also the precursor of important sec- Pompeu Fabra, Barcelona, Spain. ond messengers and mitogenic signals, such as diacylglycerol or Note: Supplementary data for this article are available at Molecular Cancer arachidonic acid, through its hydrolysis by phospholipases. The Therapeutics Online (http://mct.aacrjournals.org/). first enzyme of the Kennedy pathway, choline kinase, phosphor- Corresponding Authors: Francisco X. Real, Centro Nacional de Investigaciones ylates free choline and generates phosphocholine. Two enzymes Oncologicas, Melchor Fernandez Almagro 3, Madrid 28029, Spain. Phone: 349- have been identified in mammals: choline kinase a (CHKa), of 1732-8000; Fax: 349-1224-6923; E-mail: [email protected]; and Víctor J. Sanchez- which two isoforms are generated by alternative splicing, and Arevalo Lobo, E-mail: [email protected] choline kinase b (CHKb; ref. 9). CHKb has not been reported to be doi: 10.1158/1535-7163.MCT-15-0214 oncogenic (10), but CHKa has been proposed to participate in Ó2016 American Association for Cancer Research. initiation and progression of several tumors (11–14). These www.aacrjournals.org OF1 Downloaded from mct.aacrjournals.org on September 30, 2021. © 2016 American Association for Cancer Research. Published OnlineFirst January 14, 2016; DOI: 10.1158/1535-7163.MCT-15-0214 Mazarico et al. findings render CHKa an attractive therapeutic target. Several 50% weekly at each passage of the cells (split 1:3 when confluent); choline kinase inhibitors (CHKI) have been developed from final concentration was 8 mmol/L. hemicholinium-3. MN58b, a first-generation CHKI-competitive To generate gemcitabine-resistant PDAC cell lines, an incre- inhibitor, has antiproliferative and antitumoral activity in vitro mental dose approach was used. The starting concentration was and in vivo (11, 15–18). Second-generation CHKIs are in phase I 35 nmol/L 20-deoxy-20,20-difluorocytidine monohydrochloride clinical trials (19). (Eli Lilly Ltd). Gemcitabine concentration was maintained con- We aimed to assess the importance of CHKa in PDAC and to stant and was increased 1.5- to 2-fold at each cell passage. The final test the efficacy of its pharmacologic inhibition as a single agent or concentration was 250 nmol/L. Resistant cells were authenticated in combination with the drugs most commonly used in this by STR profiling. tumor. CHKa levels are predictive of drug sensitivity and CHKa downregulation sensitizes cells to other anticancer drugs. We have Growth and viability assays fi identi ed a novel mechanism of acquired resistance to CHKIs, Cells (5  104 per well) were seeded in triplicate in 6-well resulting from the upregulation of multidrug resistant (MDR) plates, trypsinized, and counted. To determine viability, cells proteins. (2  104 per well) were seeded in 24-well plates. After 24 hours, medium was removed and MN58b was added; after 72 hours, Material and Methods cells were fixed with 3% formaldehyde, washed twice with PBS, Cell culture and incubated with 0.5% crystal violet in 25% methanol; crystal The following PDAC cell lines were used: SK-PC-1, SK-PC-3, violet was eluted with 10% acetic acid and the OD590 nm was and IMIM-PC-2 (20); Suit2 007, Suit2 028, T3M4, and PATU 8988 determined. To assess colony formation, cells (5  104 per well) T (M. Buchholz, University of Marburg, Germany); Panc-1, were seeded in 6-well plates and medium was replaced 24 hours RWP-1, BxPC-3 (ATCC); PK-9 (C. Iacobuzzio-Donahue, Memo- later with medium containing MN58b. After 72 hours, cells were rial Sloan Kettering Cancer Center, New York, NY); MZ-PC-4 processed as described earlier. (University of Zurich,€ Switzerland). Oncogene-immortalized HPDE (M. Tsao, University Health Network, Toronto, Canada) Apoptosis assays and hTERT-immortalized human ductal pancreatic cells (HPNE, Cells (5  104 per well) were seeded in 6-well plates in the T. Gress) were used as controls (21). Nonpancreatic cells used presence of increasing concentrations of MN58b. After 24 and were J82, RT112, and HT1376 (bladder; F. Radvanyi, I. Curie, 48 hours, cells were washed with PBS, resuspended in Annexin Paris, France); HT-29 (colon; A. Zweibaum, INSERM, Villejuif, V binding buffer, and incubated with APC-Annexin V (BD – France); human embryonic kidney (HEK) 293T (ATCC); SK- Biosciences) in the dark for 15 to 20 minutes. DAPI was added BR-3, MDA-MB-231 (breast; ATCC). The identity of the lines was for 15 minutes, and viability was assessed in a FACS Canto II fi fi con rmed using short tandem repeat (STR) ngerprinting. Cells flow cytometer (BD Biosciences). Results were quantified using were cultured in DMEM supplemented with 10% FBS, 1% Na FlowJo software (FlowJo version 7.6.1, TreeStar Inc.). pyruvate, and 1% penicillin/streptomycin. All cells were free of mycoplasma contamination. Control nontargeting or CHKa-tar- geting lentiviral particles were produced in HEK-293T cells using Drug synergy assays  4 Sigma Mission plasmids following the manufacturer's instruc- Cells (2 10 per well) were seeded in 24-well plates. After tions. The interfering sequences were: 24 hours, medium was removed and drugs (MN58b, gemcita- bine, oxaliplatin, and 5-FU) were added for 72 hours, alone or Sh-1: GTACCGGGTGTTACTTGCAGGTACTTTGCTCGAGCAAA- in combination, at a range of doses according to the previously GTACCTGCAAGTAACACTTTTTTG;
Recommended publications
  • Detection of Pro Angiogenic and Inflammatory Biomarkers in Patients With
    www.nature.com/scientificreports OPEN Detection of pro angiogenic and infammatory biomarkers in patients with CKD Diana Jalal1,2,3*, Bridget Sanford4, Brandon Renner5, Patrick Ten Eyck6, Jennifer Laskowski5, James Cooper5, Mingyao Sun1, Yousef Zakharia7, Douglas Spitz7,9, Ayotunde Dokun8, Massimo Attanasio1, Kenneth Jones10 & Joshua M. Thurman5 Cardiovascular disease (CVD) is the most common cause of death in patients with native and post-transplant chronic kidney disease (CKD). To identify new biomarkers of vascular injury and infammation, we analyzed the proteome of plasma and circulating extracellular vesicles (EVs) in native and post-transplant CKD patients utilizing an aptamer-based assay. Proteins of angiogenesis were signifcantly higher in native and post-transplant CKD patients versus healthy controls. Ingenuity pathway analysis (IPA) indicated Ephrin receptor signaling, serine biosynthesis, and transforming growth factor-β as the top pathways activated in both CKD groups. Pro-infammatory proteins were signifcantly higher only in the EVs of native CKD patients. IPA indicated acute phase response signaling, insulin-like growth factor-1, tumor necrosis factor-α, and interleukin-6 pathway activation. These data indicate that pathways of angiogenesis and infammation are activated in CKD patients’ plasma and EVs, respectively. The pathways common in both native and post-transplant CKD may signal similar mechanisms of CVD. Approximately one in 10 individuals has chronic kidney disease (CKD) rendering CKD one of the most common diseases worldwide1. CKD is associated with a high burden of morbidity in the form of end stage kidney disease (ESKD) requiring dialysis or transplantation 2. Furthermore, patients with CKD are at signifcantly increased risk of death from cardiovascular disease (CVD)3,4.
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]
  • Impact of Consuming Extra-Virgin Olive Oil Or Nuts Within a Mediterranean Diet on DNA Methylation in Peripheral White Blood Cell
    nutrients Article Impact of Consuming Extra-Virgin Olive Oil or Nuts within a Mediterranean Diet on DNA Methylation in Peripheral White Blood Cells within the PREDIMED-Navarra Randomized Controlled Trial: A Role for Dietary Lipids Ana Arpón 1,2 ID , Fermín I. Milagro 1,2,3 ID , Cristina Razquin 3,4,5, Dolores Corella 3,6 ID , Ramón Estruch 3,7, Montserrat Fitó 3,8, Amelia Marti 1,3,5 ID , Miguel A. Martínez-González 3,4,5, Emilio Ros 3,9, Jordi Salas-Salvadó 3,10 ID , José-Ignacio Riezu-Boj 1,2,5,† ID and J. Alfredo Martínez 1,2,3,5,11,*,† ID 1 Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain; [email protected] (A.A.); [email protected] (F.I.M.); [email protected] (A.M.); [email protected] (J.-I.R.-B.) 2 Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain 3 Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain; [email protected] (C.R.); [email protected] (D.C.); [email protected] (R.E.); mfi[email protected] (M.F.); [email protected] (M.A.M.-G.); [email protected] (E.R.); [email protected] (J.S.-S.) 4 Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain 5 Navarra Institute for Health Research (IdiSNa), 31008 Pamplona, Spain 6 Department of Preventive Medicine and Public Health, University of Valencia, 46010 Valencia, Spain 7 Department of Internal Medicine, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain 8 Institut de Recerca Hospital del Mar de Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain 9 Lipid Clinic, Department of Endocrinology and Nutrition, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain.
    [Show full text]
  • Choline Kinase Inhibition As a Treatment Strategy for Cancers With
    Choline Kinase Inhibition as a Treatment Strategy of Cancers with Deregulated Lipid Metabolism Sebastian Trousil Imperial College London Department of Surgery and Cancer A dissertation submitted for the degree of Doctor of Philosophy 2 Declaration I declare that this dissertation is my own and original work, except where explicitly acknowledged. The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. Abstract Aberrant choline metabolism is a characteristic shared by many human cancers. It is predominantly caused by elevated expression of choline kinase alpha, which catalyses the phosphorylation of choline to phosphocholine, an essential precursor of membrane lipids. In this thesis, a novel choline kinase inhibitor has been developed and its therapeutic potential evaluated. Furthermore the probe was used to elaborate choline kinase biology. A lead compound, ICL-CCIC-0019 (IC50 of 0.27 0.06 µM), was identified through a focused library screen. ICL-CCIC-0019 was competitive± with choline and non-competitive with ATP. In a selectivity screen of 131 human kinases, ICL-CCIC-0019 inhibited only 5 kinases more than 20% at a concentration of 10 µM(< 35% in all 131 kinases). ICL- CCIC-0019 potently inhibited cell growth in a panel of 60 cancer cell lines (NCI-60 screen) with a median GI50 of 1.12 µM (range: 0.00389–16.2 µM).
    [Show full text]
  • Progression of a Muscular Dystrophy Due to a Genetic Defect in Membrane Synthesis Is Driven by Large Changes in Neutral Lipid Metabolism
    Progression of a Muscular Dystrophy Due to a Genetic Defect in Membrane Synthesis is Driven by Large Changes in Neutral Lipid Metabolism Mahtab Tavasoli Dalhousie University https://orcid.org/0000-0001-7962-3566 Sarah Lahire University of Reims Champagne-Ardenne Stanislav Sokolenko Dalhousie University J. Pedro Fernández-Murray1 Dalhousie University Kitipong Uaesoontrachoon Dalhousie University/Agada Biosciences Abir Lefsay Dalhousie University Joyce Rowsell Agada Biosciences Sadish Srinivassane Agada Biosciences Molly Praest Agada Biosciences Alexandra MacKinnon Agada Biosciences Melissa Mammoliti Agada Biosciences Ashley Maloney Agada Biosciences Marina Moraca Agada Biosciences Kanneboyina Nagaraju Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University Eric Hoffman School of Pharmacy and Pharmaceutical Sciences Christopher McMaster ( [email protected] ) Dalhousie University Article Keywords: metabolism, muscular dystrophy, skeletal muscle, lipid, acylcarnitine, triacylglycerol, phosphatidylcholine, peroxisome proliferator-activated receptors (PPAR) Posted Date: May 19th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-64129/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Progression of a Muscular Dystrophy Due to a Genetic Defect in Membrane Synthesis is Driven by Large Changes in Neutral Lipid Metabolism Mahtab Tavasoli1, Sarah Lahire2, Stanislav Sokolenko3, J. Pedro Fernandez-Murray1, Kitipong Uaesoontrachoon4,
    [Show full text]
  • CHKL (CHKB) (NM 005198) Human Recombinant Protein Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP310253 CHKL (CHKB) (NM_005198) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human choline kinase beta (CHKB), transcript variant 1 Species: Human Expression Host: HEK293T Tag: C-Myc/DDK Predicted MW: 45.1 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Preparation: Recombinant protein was captured through anti-DDK affinity column followed by conventional chromatography steps. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_005189 Locus ID: 1120 UniProt ID: Q9Y259, A0A024R4X4 RefSeq Size: 1595 Cytogenetics: 22q13.33 RefSeq ORF: 1185 Synonyms: CHETK; CHKL; CK; CKB; CKEKB; EK; EKB; MDCMC This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 CHKL (CHKB) (NM_005198) Human Recombinant Protein – TP310253 Summary: Choline kinase (CK) and ethanolamine kinase (EK) catalyze the phosphorylation of choline/ethanolamine to phosphocholine/phosphoethanolamine. This is the first enzyme in the biosynthesis of phosphatidylcholine/phosphatidylethanolamine in all animal cells. The highly purified CKs from mammalian sources and their recombinant gene products have been shown to have EK activity also, indicating that both activities reside on the same protein.
    [Show full text]
  • Phospholipids: Identification and Implication in Muscle Pathophysiology
    International Journal of Molecular Sciences Review Phospholipids: Identification and Implication in Muscle Pathophysiology Rezlène Bargui 1, Audrey Solgadi 2, Bastien Prost 2 ,Mélanie Chester 1, Ana Ferreiro 1,3 ,Jérôme Piquereau 4 and Maryline Moulin 1,* 1 Basic and Translational Myology Laboratory, CNRS UMR8251, Université de Paris, F-75013 Paris, France; [email protected] (R.B.); [email protected] (M.C.); [email protected] (A.F.) 2 UMS-IPSIT-SAMM, Université Paris-Saclay, INSERM, CNRS, Ingénierie et Plateformes au Service de l’Innovation Thérapeutique, F-92296 Châtenay-Malabry, France; [email protected] (A.S.); [email protected] (B.P.) 3 AP-HP, Reference Centre for Neuromuscular Disorders, Institute of Myology, Pitié-Salpêtrière Hospital, F-75013 Paris, France 4 Signalling and Cardiovascular Pathophysiology, INSERM UMR1180, Université Paris-Saclay, F-92296 Châtenay-Malabry, France; [email protected] * Correspondence: [email protected] Abstract: Phospholipids (PLs) are amphiphilic molecules that were essential for life to become cellular. PLs have not only a key role in compartmentation as they are the main components of membrane, but they are also involved in cell signaling, cell metabolism, and even cell pathophysiology. Considered for a long time to simply be structural elements of membranes, phospholipids are increasingly being viewed as sensors of their environment and regulators of many metabolic processes. After presenting their main characteristics, we expose the increasing methods of PL detection and identification that Citation: Bargui, R.; Solgadi, A.; help to understand their key role in life processes. Interest and importance of PL homeostasis is Prost, B.; Chester, M.; Ferreiro, A.; growing as pathogenic variants in genes involved in PL biosynthesis and/or remodeling are linked Piquereau, J.; Moulin, M.
    [Show full text]
  • Novel Non-Congeneric Derivatives of the Choline Kinase Alpha Inhibitor ICL-CCIC-0019
    pharmaceutics Article Novel Non-Congeneric Derivatives of the Choline Kinase Alpha Inhibitor ICL-CCIC-0019 Ning Wang 1, Diana Brickute 1, Marta Braga 1 , Chris Barnes 1, Haonan Lu 1 , Louis Allott 1,2,* and Eric O. Aboagye 1,* 1 Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; [email protected] (N.W.); [email protected] (D.B.); [email protected] (M.B.); [email protected] (C.B.); [email protected] (H.L.) 2 Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK * Correspondence: [email protected] (L.A.); [email protected] (E.O.A.) Abstract: Choline kinase alpha (CHKA) is a promising target for the development of cancer therapeu- tics. We have previously reported ICL-CCIC-0019, a potent CHKA inhibitor with high cellular activity but with some unfavorable pharmacological properties. In this work, we present an active analogue of ICL-CCIC-0019 bearing a piperazine handle (CK146) to facilitate further structural elaboration of the pharmacophore and thus improve the biological profile. Two different strategies were evaluated in this study: (1) a prodrug approach whereby selective CHKA inhibition could be achieved through modulating the activity of CK146, via the incorporation of an "-(Ac) Lys motif, cleavable by elevated levels of histone deacetylase (HDAC) and cathepsin L (CTSL) in tumour cells; (2) a prostate-specific Citation: Wang, N.; Brickute, D.; membrane antigen (PSMA) receptor targeted delivery strategy.
    [Show full text]
  • Cell Culture-Based Profiling Across Mammals Reveals DNA Repair And
    1 Cell culture-based profiling across mammals reveals 2 DNA repair and metabolism as determinants of 3 species longevity 4 5 Siming Ma1, Akhil Upneja1, Andrzej Galecki2,3, Yi-Miau Tsai2, Charles F. Burant4, Sasha 6 Raskind4, Quanwei Zhang5, Zhengdong D. Zhang5, Andrei Seluanov6, Vera Gorbunova6, 7 Clary B. Clish7, Richard A. Miller2, Vadim N. Gladyshev1* 8 9 1 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard 10 Medical School, Boston, MA, 02115, USA 11 2 Department of Pathology and Geriatrics Center, University of Michigan Medical School, 12 Ann Arbor, MI 48109, USA 13 3 Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, 14 MI 48109, USA 15 4 Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 16 48109, USA 17 5 Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10128, USA 18 6 Department of Biology, University of Rochester, Rochester, NY 14627, USA 19 7 Broad Institute, Cambridge, MA 02142, US 20 21 * corresponding author: Vadim N. Gladyshev ([email protected]) 22 ABSTRACT 23 Mammalian lifespan differs by >100-fold, but the mechanisms associated with such 24 longevity differences are not understood. Here, we conducted a study on primary skin 25 fibroblasts isolated from 16 species of mammals and maintained under identical cell culture 26 conditions. We developed a pipeline for obtaining species-specific ortholog sequences, 27 profiled gene expression by RNA-seq and small molecules by metabolite profiling, and 28 identified genes and metabolites correlating with species longevity. Cells from longer-lived 29 species up-regulated genes involved in DNA repair and glucose metabolism, down-regulated 30 proteolysis and protein transport, and showed high levels of amino acids but low levels of 31 lysophosphatidylcholine and lysophosphatidylethanolamine.
    [Show full text]
  • Chok-Full of Potential: Choline Kinase in B Cell and T Cell Malignancies
    pharmaceutics Review ChoK-Full of Potential: Choline Kinase in B Cell and T Cell Malignancies Samantha Gokhale 1,2 and Ping Xie 1,3,* 1 Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Nelson Labs Room B336, Piscataway, NJ 08854, USA; [email protected] 2 Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA 3 Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA * Correspondence: [email protected]; Tel.: +1-848-445-0802; Fax: +1-732-445-1794 Abstract: Aberrant choline metabolism, characterized by an increase in total choline-containing com- pounds, phosphocholine and phosphatidylcholine (PC), is a metabolic hallmark of carcinogenesis and tumor progression. This aberration arises from alterations in metabolic enzymes that control PC biosynthesis and catabolism. Among these enzymes, choline kinase α (CHKα) exhibits the most frequent alterations and is commonly overexpressed in human cancers. CHKα catalyzes the phosphorylation of choline to generate phosphocholine, the first step in de novo PC biosynthesis. CHKα overexpression is associated with the malignant phenotype, metastatic capability and drug resistance in human cancers, and thus has been recognized as a robust biomarker and therapeutic target of cancer. Of clinical importance, increased choline metabolism and CHKα activity can be detected by non-invasive magnetic resonance spectroscopy (MRS) or positron emission tomogra- phy/computed tomography (PET/CT) imaging with radiolabeled choline analogs for diagnosis and treatment monitoring of cancer patients. Both choline-based MRS and PET/CT imaging have also Citation: Gokhale, S.; Xie, P. been clinically applied for lymphoid malignancies, including non-Hodgkin lymphoma, multiple ChoK-Full of Potential: Choline myeloma and central nervous system lymphoma.
    [Show full text]
  • Apoptosis Is Abolished in Norepinephrine Stimulated Adult Rat Ventricular Myocytes Exposed to Inhalational Anesthetics by Modula
    Lucchinetti et al., Supplementary Material Supplementary material to: Gene Regulatory Control of Myocardial Energy Metabolism Predicts Postoperative Cardiac Function in Patients Undergoing Off-pump Coronary Artery Bypass Graft Surgery: Role of Anesthetic Choice by E. Lucchinetti, C. Hofer, L. Bestmann, M. Hersberger, J. Feng, M. Zhu, L. Furrer, M.C. Schaub, R. Tavakoli, M. Genoni, A. Zollinger, and M. Zaugg including: • Supplementary Information • Three supplementary tables (Table S1 to Table S3) • Three supplementary figures (Figure S1 to Figure S3) Supplementary information Gene Set Enrichment Analysis (GSEA) is designed to identify genes with co-ordinate transcriptional regulation within functionally related groups of genes, which are called gene sets in GSEA. Signaling pathways are examples of gene sets. Pathway information was curated using knowledge from online databases and from peer- reviewed literature sources. For further details about gene sets and statistical procedures, please see the online supplementary material to the original publication (Subramanian et al. PNAS 2005;102:15545-50), which is freely available under: http://www.pnas.org/cgi/data/0506580102/DC2/1 Public online pathway sources are: Biocarta (http://www.biocarta.com), Human Protein Reference Database (www.hprd.org), Gene Ontology (www.geneontology.org), Signal Transduction Knowledge Environment STKE: (http://stke.sciencemag.org/cm/), GenMAPP (http://www.genmapp.org), Signaling PAthway Database SPAD (http://www.grt.kyushu-u.ac.jp/spad/menu.html), Kyoto Encyclopedia of Genes and Genomes (http://www.genome.jp/kegg/kegg2.html), the AfCS-Nature Signaling Gateway (www.signaling-gateway.org), the Cancer Genome Anatomy Project (http://cgap.nci.nih.gov/Pathways). The G-CSF pathway was curated by the authors according to the following peer-reviewed publications: 1.
    [Show full text]
  • A Girl with Developmental Delay and a High CK
    A girl with developmental delay and a high CK Mimi S. Lee, MD, Nishant Tiwari, MD, Emmanuelle Tiongson, MD, Perry B. Shieh MD PhD. Neuromuscular medicine fellow, UCLA Department of Neurology, Department of Childrens’ Hospital Los Angeles Neuropathology Chief Complaint •4 yo Russia-born Armenian girl • learning disability • motor delay Developmental stages Review of Systems •Pertinent positives: • learning disability • muscle weakness • hypotonia • frequent falls Review of Systems •Pertinent negatives: • diplopia • ptosis • vison loss • contracture • chest pain/palpitation • rashes or birthmarks Family history Father Mother Brother Proband Previous work up in Moscow, Russia • At age of 4 • 3/2007: negative for Angelman Syndrome • 1/2007: negative examination for deletion in regions of chromosome 17, Smith-Magenis Syndrome • chromosome analysis: 46, XY, het 15 • Serum examination: NO evidence of any hereditary aminoacidopathies, organic acidurias and defects of mitochondrial beta-oxidation Previous work up At age of 9 • 3/2011: Negative for deletion of exon 7 and 8 of the SMN gene • 7/28/2011 • CK: 2840 • Aldolase: 36.7 • Lactate/Pyruvate ratio: 19.27 EEG at age of 9 • The main rhythm does not meet the norm for the given age group (N – 9Hz and higher). • Sleep is superficial • Marked diffuse changes of the cortex BEA. • Malfunction of the midline structures of the basal-diencephalic level • Complexes of sharp-slow wave type moderately above the background, diffuse (on the right and left), predominantly in the left temporal-parietal region are recorded. Imaging/Studies: • 5/3/2011 MRI Pelvis/Femur: Nonspecific mild muscular atrophy • 5/20/2011 Echo: Normal ventricular size and function • 5/25/2011 MRI Brain: Normal non-contrast and contrast MRI of the brain • 6/9/2011 Left quadriceps muscle biopsy: muscular dystrophy, type undetermined MRI brain MRI brain @ 9 y.o.
    [Show full text]