Novel Non-Congeneric Derivatives of the Choline Kinase Alpha Inhibitor ICL-CCIC-0019

Total Page:16

File Type:pdf, Size:1020Kb

Novel Non-Congeneric Derivatives of the Choline Kinase Alpha Inhibitor ICL-CCIC-0019 pharmaceutics Article Novel Non-Congeneric Derivatives of the Choline Kinase Alpha Inhibitor ICL-CCIC-0019 Ning Wang 1, Diana Brickute 1, Marta Braga 1 , Chris Barnes 1, Haonan Lu 1 , Louis Allott 1,2,* and Eric O. Aboagye 1,* 1 Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; [email protected] (N.W.); [email protected] (D.B.); [email protected] (M.B.); [email protected] (C.B.); [email protected] (H.L.) 2 Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK * Correspondence: [email protected] (L.A.); [email protected] (E.O.A.) Abstract: Choline kinase alpha (CHKA) is a promising target for the development of cancer therapeu- tics. We have previously reported ICL-CCIC-0019, a potent CHKA inhibitor with high cellular activity but with some unfavorable pharmacological properties. In this work, we present an active analogue of ICL-CCIC-0019 bearing a piperazine handle (CK146) to facilitate further structural elaboration of the pharmacophore and thus improve the biological profile. Two different strategies were evaluated in this study: (1) a prodrug approach whereby selective CHKA inhibition could be achieved through modulating the activity of CK146, via the incorporation of an "-(Ac) Lys motif, cleavable by elevated levels of histone deacetylase (HDAC) and cathepsin L (CTSL) in tumour cells; (2) a prostate-specific Citation: Wang, N.; Brickute, D.; membrane antigen (PSMA) receptor targeted delivery strategy. Prodrug (CK145) and PSMA-targeted Braga, M.; Barnes, C.; Lu, H.; Allott, (CK147) derivatives were successfully synthesized and evaluated in vitro. While the exploitation L.; Aboagye, E.O. Novel Non-Congeneric Derivatives of the of CK146 in those two strategies did not deliver the expected results, important and informative Choline Kinase Alpha Inhibitor structure-activity relationships were observed and have been reported. ICL-CCIC-0019. Pharmaceutics 2021, 13, 1078. https://doi.org/10.3390/ Keywords: choline kinase alpha (CHKA) inhibitor; ICL-CCIC-0019; prodrug; PSMA; targeted drug pharmaceutics13071078 delivery; PIK4CB Academic Editor: Luisa Carlota Lopez-Cara 1. Introduction Received: 22 June 2021 Abnormal lipid metabolism is a common feature observed in many cancers [1]. En- Accepted: 9 July 2021 hanced de novo synthesis of lipids in tumorigenesis supports the rapid proliferation of Published: 14 July 2021 cancer cells, cell signaling and tumor survival [2]. The cholinic phenotype, characterized by the overexpression of choline kinase alpha isoform (CHKA) and increased phosphocholine Publisher’s Note: MDPI stays neutral (PCho) levels, is one of the aberrant lipid metabolism pathways revealed in cancer [3]. with regard to jurisdictional claims in Choline kinase is a class of enzymes responsible for generating PCho which is involved in published maps and institutional affil- the biosynthesis of phosphatidylcholine, a major lipid component of cell membranes [4]. iations. Choline kinase exists in at least three isoforms, CHKA1, CHKA2 and CHKB [4], of which the A, but not the B isoform, has been implicated in cancer development [3,5]. Overexpression of CHKA has been reported in a wide range of solid tumors [3,5–12], and correlates with advanced histological tumor grade, poor prognosis and reduced survival rates in breast Copyright: © 2021 by the authors. and non-small-cell lung cancers [9,13]. In prostate cancer (PCa), CHKA is a co-chaperone Licensee MDPI, Basel, Switzerland. for the androgen receptor (AR), thus maintains AR signaling [14]. Taken together, CHKA This article is an open access article is a prognostic marker and a potential therapeutic target for cancer treatment. distributed under the terms and A number of small-molecule CHKA inhibitors have been developed as novel anti- conditions of the Creative Commons Attribution (CC BY) license (https:// cancer strategies for CHKA inhibition [15]. Hemicholinium-3 (HC-3) was the first CHKA creativecommons.org/licenses/by/ inhibitor built around a bis-oxazonium pharmacophore (Figure1)[ 16–18], but exhibited 4.0/). off-target effects on choline transporters, acetyltransferase and acetylcholinesterase [19]. Pharmaceutics 2021, 13, 1078. https://doi.org/10.3390/pharmaceutics13071078 https://www.mdpi.com/journal/pharmaceutics Pharmaceutics 2021, 13, x FOR PEER REVIEW 2 of 17 Pharmaceutics 2021, 13, 1078 2 of 17 off-target effects on choline transporters, acetyltransferase and acetylcholinesterase [19]. MN58BMN58B waswas subsequently subsequently designed designed by by structural structural modifications modifications of HC-3 of HC-3 and demonstratedand demon- goodstrated antiproliferative good antiproliferative potencies potenciesin vitro and in vitroin vivo and(Figure in vivo1)[ (Figure20–22]. The1) [20–22]. replacement The re- of pyridiniumsplacement of inpyridiniums MN58B by in quinoliniums MN58B by quinolin as cationiciums head as cationic groups head elicited groups the bestelicited results the inbest vitro resultsand in vivovitro, and in gave vivo, rise and to RSM-932Agave rise to (Figure RSM-932A1), the (Figure first CHKA 1), the inhibitorfirst CHKA to enterinhibitor Phase to Ienter clinical Phase trials I clinical [23,24 ].trials [23,24]. FigureFigure 1. 1.Chemical Chemical structuresstructures andand pharmacologicalpharmacological datadata of correspondingcorresponding CHKA inhibitors: HC-3 [18,25], [18,25], MN58B MN58B [20,21], [20,21], RSM-932ARSM-932A [ 23[23],], ICL-CCIC-0019 ICL-CCIC-0019 [[26,27]26,27] andand CK14CK14 [[26].26]. InIn recentrecent years, the the x-ray x-ray crystal crystal structur structuree of of CHKA, CHKA, together together with with computational computational in insilico silico techniques techniques have have boosted boosted the the developmen developmentt of CHKA of CHKA inhibitors inhibitors (the (the crystal crystal structure struc- tureof human of human CHKA, CHKA, pdb code: pdb 2CKO) code: 2CKO)[18,20,28–36]. [18,20 ,A28 –series36]. of A symmetrical series of symmetrical N,N-dimethyl-N,N- dimethylaminopyridineaminopyridine (DMAP) (DMAP) derivatives derivatives bearing bearing alkyl linkers alkyl linkers of varying of varying lengths lengths were were de- designedsigned by by Trousil Trousil et et al. al. as as CHKA CHKA inhibitors inhibitors (Figure (Figure 1),1), where DMAP mimicked cationiccationic cholinecholine moietiesmoieties [[26];26]; fromfrom thisthis study, ICL-CCIC-0019ICL-CCIC-0019 was selected for further biological evaluationsevaluations and displayed displayed great great potential potential in in preclinical preclinical studies studies [27]. [27 ICL-CCIC-0019]. ICL-CCIC-0019 selec- se- lectivelytively inhibited inhibited CHKA CHKA activity activity with with potent potent antiproliferative antiproliferative activities activities against against a a broad spectrumspectrum of human cancer cancer cell cell lines lines (IC (IC50:50 0.27: 0.27 ± 0.06± 0.06 μM;µ meanM; mean GI50 of GI 850 cancerof 8 cancer cell lines: cell lines:1.09 μ 1.09M, range:µM, range: 0.38–2.70 0.38–2.70 μM; GIµ50M; range GI50 ofrange 2 normal of 2 normal cell lines: cell 30–120 lines: 30–120μM); ICL-CCIC-µM); ICL- CCIC-00190019 caused caused rapid and rapid sustained and sustained lipid synthesi lipid synthesiss inhibition inhibition by acting by actingon CDP-choline on CDP-choline path- pathwayway and andalso alsoshowed showed potent potent in vivoin vivo anti-tanti-tumorumor activity. activity. The Thecompound, compound, however, however, in- inducedduced mitochondrial mitochondrial changes changes and and slight slight reduct reductionion in inbody body weight weight (not (not below below the the stand- stan- dardard 15–20%) 15–20%) observed observed in in the the rodent rodent model model bear bearinging HCT116 HCT116 xenografts; xenografts; implying implying adverse adverse pharmacologicalpharmacological effectseffects which which precluded precluded clinical clinical translation translation [25 [25].]. Modulating Modulating the the unfavor- unfa- ablevorable properties properties of ICL-CCIC-0019 of ICL-CCIC-0019 was was likely likely to be to challengingbe challenging for for two two reasons: reasons: firstly, firstly, the intrinsicthe intrinsic toxicity toxicity of quaternary of quaternary ammonium ammonium CHKA CHKA inhibitors inhibitors is difficult is difficult to overcome to overcome since theirsince structurestheir structures mimic mimic choline choline and the and inhibition the inhibition of choline of transporterscholine transporters was observed was ob- for theseserved molecules for these [molecules26]. Secondly, [26]. the Secondly, limited th structurale limited diversity structural of diversity ICL-CCIC-0019 of ICL-CCIC- makes direct0019 makes modification direct modification of the molecule of the less molecule feasible. less While feasible. the quaternary While the ammonium quaternary moieties ammo- arenium essential moieties to are the activityessential and to the could activity not be and modified, could not we be hypothesized modified, we that hypothesized controlling thethat release controlling or delivery the release of potent or delivery CHKA inhibitors of potent inCHKA target inhibitors tissue may in reduce target off-target tissue may ac- cumulationreduce off-target and toxicity. accumulation These strategies and toxicity. have Th beenese strategies exemplified have for been a range exemplified
Recommended publications
  • Identification and Validation of Novel and More Effective Choline Kinase
    www.nature.com/scientificreports OPEN Identifcation and validation of novel and more efective choline kinase inhibitors against Streptococcus pneumoniae Tahl Zimmerman1*, Valerie Chasten1, Juan Carlos Lacal2 & Salam A. Ibrahim1 Streptococcus pneumoniae choline kinase (sChoK) has previously been proposed as a drug target, yet the efectiveness of the frst and only known inhibitor of sChoK, HC-3, is in the millimolar range. The aim of this study was thus to further validate sChoK as a potential therapeutic target by discovering more powerful sChoK inhibitors. LDH/PK and colorimetric enzymatic assays revealed two promising sChoK inhibitor leads RSM-932A and MN58b that were discovered with IC50 of 0.5 and 150 μM, respectively, and were shown to be 2–4 magnitudes more potent than the previously discovered inhibitor HC-3. Culture assays showed that the minimum inhibitory concentration (MIC) of RSM- 932A and MN58b for S. pneumoniae was 0.4 μM and 10 μM, respectively, and the minimum lethal concentration (MLC) was 1.6 μM and 20 μM, respectively. Western blot monitoring of teichoic acid production revealed diferential patterns in response to each inhibitor. In addition, both inhibitors possessed a bacteriostatic mechanism of action, and neither interfered with the autolytic efects of vancomycin. Cells treated with MN58b but not RSM-932A were more sensitive to a phosphate induced autolysis with respect to the untreated cells. SEM studies revealed that MN58b distorted the cell wall, a result consistent with the apparent teichoic acid changes. Two novel and more highly potent putative inhibitors of sChoK, MN58b and RSM-932A, were characterized in this study.
    [Show full text]
  • Detection of Pro Angiogenic and Inflammatory Biomarkers in Patients With
    www.nature.com/scientificreports OPEN Detection of pro angiogenic and infammatory biomarkers in patients with CKD Diana Jalal1,2,3*, Bridget Sanford4, Brandon Renner5, Patrick Ten Eyck6, Jennifer Laskowski5, James Cooper5, Mingyao Sun1, Yousef Zakharia7, Douglas Spitz7,9, Ayotunde Dokun8, Massimo Attanasio1, Kenneth Jones10 & Joshua M. Thurman5 Cardiovascular disease (CVD) is the most common cause of death in patients with native and post-transplant chronic kidney disease (CKD). To identify new biomarkers of vascular injury and infammation, we analyzed the proteome of plasma and circulating extracellular vesicles (EVs) in native and post-transplant CKD patients utilizing an aptamer-based assay. Proteins of angiogenesis were signifcantly higher in native and post-transplant CKD patients versus healthy controls. Ingenuity pathway analysis (IPA) indicated Ephrin receptor signaling, serine biosynthesis, and transforming growth factor-β as the top pathways activated in both CKD groups. Pro-infammatory proteins were signifcantly higher only in the EVs of native CKD patients. IPA indicated acute phase response signaling, insulin-like growth factor-1, tumor necrosis factor-α, and interleukin-6 pathway activation. These data indicate that pathways of angiogenesis and infammation are activated in CKD patients’ plasma and EVs, respectively. The pathways common in both native and post-transplant CKD may signal similar mechanisms of CVD. Approximately one in 10 individuals has chronic kidney disease (CKD) rendering CKD one of the most common diseases worldwide1. CKD is associated with a high burden of morbidity in the form of end stage kidney disease (ESKD) requiring dialysis or transplantation 2. Furthermore, patients with CKD are at signifcantly increased risk of death from cardiovascular disease (CVD)3,4.
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]
  • Table S1. List of Oligonucleotide Primers Used
    Table S1. List of oligonucleotide primers used. Cla4 LF-5' GTAGGATCCGCTCTGTCAAGCCTCCGACC M629Arev CCTCCCTCCATGTACTCcgcGATGACCCAgAGCTCGTTG M629Afwd CAACGAGCTcTGGGTCATCgcgGAGTACATGGAGGGAGG LF-3' GTAGGCCATCTAGGCCGCAATCTCGTCAAGTAAAGTCG RF-5' GTAGGCCTGAGTGGCCCGAGATTGCAACGTGTAACC RF-3' GTAGGATCCCGTACGCTGCGATCGCTTGC Ukc1 LF-5' GCAATATTATGTCTACTTTGAGCG M398Arev CCGCCGGGCAAgAAtTCcgcGAGAAGGTACAGATACGc M398Afwd gCGTATCTGTACCTTCTCgcgGAaTTcTTGCCCGGCGG LF-3' GAGGCCATCTAGGCCATTTACGATGGCAGACAAAGG RF-5' GTGGCCTGAGTGGCCATTGGTTTGGGCGAATGGC RF-3' GCAATATTCGTACGTCAACAGCGCG Nrc2 LF-5' GCAATATTTCGAAAAGGGTCGTTCC M454Grev GCCACCCATGCAGTAcTCgccGCAGAGGTAGAGGTAATC M454Gfwd GATTACCTCTACCTCTGCggcGAgTACTGCATGGGTGGC LF-3' GAGGCCATCTAGGCCGACGAGTGAAGCTTTCGAGCG RF-5' GAGGCCTGAGTGGCCTAAGCATCTTGGCTTCTGC RF-3' GCAATATTCGGTCAACGCTTTTCAGATACC Ipl1 LF-5' GTCAATATTCTACTTTGTGAAGACGCTGC M629Arev GCTCCCCACGACCAGCgAATTCGATagcGAGGAAGACTCGGCCCTCATC M629Afwd GATGAGGGCCGAGTCTTCCTCgctATCGAATTcGCTGGTCGTGGGGAGC LF-3' TGAGGCCATCTAGGCCGGTGCCTTAGATTCCGTATAGC RF-5' CATGGCCTGAGTGGCCGATTCTTCTTCTGTCATCGAC RF-3' GACAATATTGCTGACCTTGTCTACTTGG Ire1 LF-5' GCAATATTAAAGCACAACTCAACGC D1014Arev CCGTAGCCAAGCACCTCGgCCGAtATcGTGAGCGAAG D1014Afwd CTTCGCTCACgATaTCGGcCGAGGTGCTTGGCTACGG LF-3' GAGGCCATCTAGGCCAACTGGGCAAAGGAGATGGA RF-5' GAGGCCTGAGTGGCCGTGCGCCTGTGTATCTCTTTG RF-3' GCAATATTGGCCATCTGAGGGCTGAC Kin28 LF-5' GACAATATTCATCTTTCACCCTTCCAAAG L94Arev TGATGAGTGCTTCTAGATTGGTGTCggcGAAcTCgAGCACCAGGTTG L94Afwd CAACCTGGTGCTcGAgTTCgccGACACCAATCTAGAAGCACTCATCA LF-3' TGAGGCCATCTAGGCCCACAGAGATCCGCTTTAATGC RF-5' CATGGCCTGAGTGGCCAGGGCTAGTACGACCTCG
    [Show full text]
  • Impact of Consuming Extra-Virgin Olive Oil Or Nuts Within a Mediterranean Diet on DNA Methylation in Peripheral White Blood Cell
    nutrients Article Impact of Consuming Extra-Virgin Olive Oil or Nuts within a Mediterranean Diet on DNA Methylation in Peripheral White Blood Cells within the PREDIMED-Navarra Randomized Controlled Trial: A Role for Dietary Lipids Ana Arpón 1,2 ID , Fermín I. Milagro 1,2,3 ID , Cristina Razquin 3,4,5, Dolores Corella 3,6 ID , Ramón Estruch 3,7, Montserrat Fitó 3,8, Amelia Marti 1,3,5 ID , Miguel A. Martínez-González 3,4,5, Emilio Ros 3,9, Jordi Salas-Salvadó 3,10 ID , José-Ignacio Riezu-Boj 1,2,5,† ID and J. Alfredo Martínez 1,2,3,5,11,*,† ID 1 Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain; [email protected] (A.A.); [email protected] (F.I.M.); [email protected] (A.M.); [email protected] (J.-I.R.-B.) 2 Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain 3 Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain; [email protected] (C.R.); [email protected] (D.C.); [email protected] (R.E.); mfi[email protected] (M.F.); [email protected] (M.A.M.-G.); [email protected] (E.R.); [email protected] (J.S.-S.) 4 Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain 5 Navarra Institute for Health Research (IdiSNa), 31008 Pamplona, Spain 6 Department of Preventive Medicine and Public Health, University of Valencia, 46010 Valencia, Spain 7 Department of Internal Medicine, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain 8 Institut de Recerca Hospital del Mar de Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain 9 Lipid Clinic, Department of Endocrinology and Nutrition, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Dissecting the Telomere-Independent Pathways Underlying Human Cellular Senescence
    Dissecting the Telomere-Independent Pathways Underlying Human Cellular Senescence By Emilie Marie Isabelle Rovillain A thesis submitted to the University College of London for the degree of Doctor of Philosophy Department of Neurodegenerative diseases Institute of Neurology UCL Queen Square London WC1 3BG 2010 ABSTRACT Cellular senescence is an irreversible program of cell cycle arrest triggered in normal somatic cells in response to a variety of intrinsic and extrinsic stimuli including telomere attrition, DNA damage, physiological stress and oncogene activation. Finding that inactivation of the pRB and p53 pathways by SV40-LT antigen cooperates with hTERT to immortalize cells has allowed us to use a thermolabile mutant of SV40- LT to develop human fibroblasts where the cells are immortal if grown at 34oC but undergo an irreversible growth arrest within 5 days at 38oC. When these cells cease dividing, senescence-associated-β-galactosidase (SA-β-Gal) activity is induced and the growth-arrested cells have many features of senescent cells. Since these cells growth-arrest in a synchronous manner, I have used Affymetrix expression profiling to identify the genes differentially expressed upon senescence. This identified 816 up- and 961 down-regulated genes whose expression was reversed when growth arrest was abrogated. I have shown that senescence was associated with activation of the NF-B pathway and up-regulation of a number of senescence-associated-secretory- proteins including IL6. Perturbation of NF-κB signalling either by direct silencing of NF- B subunits or by upstream modulation overcame growth-arrest indicating that activation of NF-B signalling has a causal role in promoting senescence.
    [Show full text]
  • DATASHEET USA: [email protected]
    DATASHEET USA: [email protected] FOR IN VITRO RESEARCH USE ONLY Europe: [email protected] NOT FOR USE IN HUMANS OR ANIMALS China: [email protected] Choline kinase alpha Polyclonal Anbody Catalog number: 13520-1-AP Background Size: 39 μg/150 μl CHKA(Choline kinase alpha) is also named as CHK, CKI, EK(Ethanolamine kinase) Source: Rabbit and belongs to the choline/ethanolamine kinase family. Choline kinase (ATP:choline Isotype: IgG phosphotransferase) is a cytosolic enzyme that catalyzes the commied step in the Synonyms: synthesis of PC by the CDP-choline pathway. The enzyme catalyzes the CHKA; CHETK alpha, CHK, phosphorylaon of choline with ATP to form phosphocholine and CHKA, Choline kinase alpha, ADP(PMID:9506987). It has 2 isoforms produced by alternave splicing with the CK, CKI, EK, Ethanolamine molecular weight of 52 kDa and 50 kDa. kinase; Applications Tested applicaons: ELISA, WB, IHC, IP Cited applicaons: IHC, WB Species specificity: Human,Mouse,Rat; other species not tested. Cited species: Human, mouse, rat Caculated Choline kinase 439aa,52 kDa alpha MW: Immunohistochemical of paraffin- Observed Choline kinase 50 kDa,52 kDa embedded human liver using 13520- 1-AP(CHKA anbody) at diluon of alpha MW: 1:50 (under 10x lens) Posive WB detected in COLO 320 cells, mouse colon ssue Posive IP detected in Mouse spleen ssue Posive IHC detected in Human liver ssue Recommended diluon: WB: 1:200-1:2000 IP: 1:200-1:2000 IHC: 1:20-1:200 Applicaon key: WB = Western blong, IHC = Immunohistochemistry, IF = Immunofluorescence, IP = Immunoprecipitaon Immunohistochemical of paraffin- Immunogen information embedded human liver using 13520- 1-AP(CHKA anbody) at diluon of Immunogen: Ag4761 1:50 (under 40x lens) GenBank accession number: BC036471 Gene ID (NCBI): 1119 Full name: Choline kinase alpha Product information Purificaon method: Angen affinity purificaon Storage: PBS with 0.02% sodium azide and 50% glycerol pH 7.3.
    [Show full text]
  • Choline Kinase Inhibition As a Treatment Strategy for Cancers With
    Choline Kinase Inhibition as a Treatment Strategy of Cancers with Deregulated Lipid Metabolism Sebastian Trousil Imperial College London Department of Surgery and Cancer A dissertation submitted for the degree of Doctor of Philosophy 2 Declaration I declare that this dissertation is my own and original work, except where explicitly acknowledged. The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. Abstract Aberrant choline metabolism is a characteristic shared by many human cancers. It is predominantly caused by elevated expression of choline kinase alpha, which catalyses the phosphorylation of choline to phosphocholine, an essential precursor of membrane lipids. In this thesis, a novel choline kinase inhibitor has been developed and its therapeutic potential evaluated. Furthermore the probe was used to elaborate choline kinase biology. A lead compound, ICL-CCIC-0019 (IC50 of 0.27 0.06 µM), was identified through a focused library screen. ICL-CCIC-0019 was competitive± with choline and non-competitive with ATP. In a selectivity screen of 131 human kinases, ICL-CCIC-0019 inhibited only 5 kinases more than 20% at a concentration of 10 µM(< 35% in all 131 kinases). ICL- CCIC-0019 potently inhibited cell growth in a panel of 60 cancer cell lines (NCI-60 screen) with a median GI50 of 1.12 µM (range: 0.00389–16.2 µM).
    [Show full text]
  • Progression of a Muscular Dystrophy Due to a Genetic Defect in Membrane Synthesis Is Driven by Large Changes in Neutral Lipid Metabolism
    Progression of a Muscular Dystrophy Due to a Genetic Defect in Membrane Synthesis is Driven by Large Changes in Neutral Lipid Metabolism Mahtab Tavasoli Dalhousie University https://orcid.org/0000-0001-7962-3566 Sarah Lahire University of Reims Champagne-Ardenne Stanislav Sokolenko Dalhousie University J. Pedro Fernández-Murray1 Dalhousie University Kitipong Uaesoontrachoon Dalhousie University/Agada Biosciences Abir Lefsay Dalhousie University Joyce Rowsell Agada Biosciences Sadish Srinivassane Agada Biosciences Molly Praest Agada Biosciences Alexandra MacKinnon Agada Biosciences Melissa Mammoliti Agada Biosciences Ashley Maloney Agada Biosciences Marina Moraca Agada Biosciences Kanneboyina Nagaraju Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University Eric Hoffman School of Pharmacy and Pharmaceutical Sciences Christopher McMaster ( [email protected] ) Dalhousie University Article Keywords: metabolism, muscular dystrophy, skeletal muscle, lipid, acylcarnitine, triacylglycerol, phosphatidylcholine, peroxisome proliferator-activated receptors (PPAR) Posted Date: May 19th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-64129/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Progression of a Muscular Dystrophy Due to a Genetic Defect in Membrane Synthesis is Driven by Large Changes in Neutral Lipid Metabolism Mahtab Tavasoli1, Sarah Lahire2, Stanislav Sokolenko3, J. Pedro Fernandez-Murray1, Kitipong Uaesoontrachoon4,
    [Show full text]
  • Functional Interactions Between Choline Kinase Α, Epidermal Growth
    Oncogene (2012) 31, 1431–1441 & 2012 Macmillan Publishers Limited All rights reserved 0950-9232/12 www.nature.com/onc ORIGINAL ARTICLE Functional interactions between Choline kinase a, epidermal growth factor receptor and c-Src in breast cancer cell proliferation T Miyake and SJ Parsons Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, VA, USA Epidermal growth factor receptor (EGFR) family mem- 1999b, 2000), implicating its function in tumorigenesis. bers and c-Src are co-overexpressed in many cancers. The The non-receptor tyrosine kinase, c-Src, is also over- synergistic effect of EGFR and c-Src has been shown in expressed in many of these same tumors, suggesting that the tumorigenesis of breast and other cancers. Reported the two tyrosine kinases may functionally interact. In mechanisms of synergy include transcriptional regulation breast tumors, for example, 70–100% overexpress c-Src, by STAT5b and the regulation of cellular ATP production with the majority of these tumors co-overexpressing one by mitochondrial protein COX II. Here, we report a new of the EGFR family members (HER1-4) (reviewed in mechanism of EGFR-c-Src synergy through choline Ishizawar and Parsons, 2004). Breast cancer cells or kinase a (CHKA). The first enzyme of the phosphatidyl murine fibroblasts that co-overexpress EGFR and c-Src choline production pathway, CHKA, is overexpressed in exhibit synergistic increases in anchorage-independent many cancers, and the product of the enzyme, phospho- growth in cell culture and development of tumors in choline, is also increased in tumor cells. In this report, mouse xenograft models than those overexpressing only we find that CHKA forms a complex with EGFR in a one of the pair (Maa et al., 1995; Biscardi et al., 1998).
    [Show full text]
  • CHKL (CHKB) (NM 005198) Human Recombinant Protein Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP310253 CHKL (CHKB) (NM_005198) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human choline kinase beta (CHKB), transcript variant 1 Species: Human Expression Host: HEK293T Tag: C-Myc/DDK Predicted MW: 45.1 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Preparation: Recombinant protein was captured through anti-DDK affinity column followed by conventional chromatography steps. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_005189 Locus ID: 1120 UniProt ID: Q9Y259, A0A024R4X4 RefSeq Size: 1595 Cytogenetics: 22q13.33 RefSeq ORF: 1185 Synonyms: CHETK; CHKL; CK; CKB; CKEKB; EK; EKB; MDCMC This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 CHKL (CHKB) (NM_005198) Human Recombinant Protein – TP310253 Summary: Choline kinase (CK) and ethanolamine kinase (EK) catalyze the phosphorylation of choline/ethanolamine to phosphocholine/phosphoethanolamine. This is the first enzyme in the biosynthesis of phosphatidylcholine/phosphatidylethanolamine in all animal cells. The highly purified CKs from mammalian sources and their recombinant gene products have been shown to have EK activity also, indicating that both activities reside on the same protein.
    [Show full text]