Chapters 7, 8, 9 Bone Tissue/Joints

Total Page:16

File Type:pdf, Size:1020Kb

Chapters 7, 8, 9 Bone Tissue/Joints Chapters 7, 8, 9 Bone Tissue/Joints BSC 2085 Professor Tcherina Duncombe Palm Beach State College Skeleton • Support • Protection • Movement • Electrolyte Balance • Acid – base Balance • Blood Formation • Osseous tissue: connective: blood/marrow/cartilage/adipose/ nervous/fibrous •Calcification = mineralization Shapes of Bones • Long – levers acted upon by muscles: crowbars • Short – glide across one another in multiple directions: width/length same • Flat – enclose/protect soft organs: broad/thin/sandwich-like • Irregular 7-3 Structure of Long Bone • Compact: dense; 3/4 • Spongy/Cancellous; 1/4 • Marrow/Medullary cavity • Periosteum: osteogenic layer • Endosteum: cells dissolve bone tissue • Diaphysis: leverage • Epiphysis:tendons/ligaments • Epiphyseal plate/line • Articular cartilage • Nutrient foramina 7-4 Structure of a Flat Bone • External/internal surfaces:compact bone: sandwich-like • Middle layer:spongy bone(diploe)/bone marrow • Skull fracture may leave inner layer of compact bone unharmed 7-5 Cells of Osseous Tissue (1) • Osteogenic (stem)cells in periosteum and central canals: continual mitosis: some give rise to new osteoblasts (nonmitotic) • Osteoblasts make organic matter of matrix: stim by stress and fractures:secrete osteocalcin: stim insulin secretion/↑insulin sensitivity in adipocytes→limit growth of adipose tissue • Osteocytes = osteoblasts trapped in the matrix they formed 7-6 Cells of Osseous Tissue (2) • Osteoclasts : bone dissolving cells • 3-50 stem cells fused - resorb/deposit matrix→homeostasis →bone density/Ca2+ 3- ; PO4 7-7 Intramembranous Ossification (enlarge to osteogenic cells) (become trabeculae) • Osteogenesis=bone formation • Produces flat bones of skull/clavicle: develop w/in a fibrous sheet similar to dermis = dermal bones 7-8 Bone:osteogenic/osteoblasts/ osteoclasts osteocytes Histology of Compact Bone • Composite: polymer(collagen) and ceramic (hydroxyapatite) •Dry weight :1/3 organic; 2/3 inorganic matter •Organic matter:collagen, glycosaminoglycans, proteoglycans, glycoproteins (made by osteoblasts) •Inorganic matter:85% hydroxyapatite;10% calcium carbonate • Other minerals (fluoride, potassium, magnesium) • Combination: strength/resilience; minerals resist compression; collagen resists tension • Bone adapts by varying proportions 7-10 Bone Marrow • 2 Types • Red marrow: myeloid tissue – Hemopoietic = produces blood cells – vertebrae, ribs, sternum, pelvic girdle proximal heads of femur/humerus in adults • Yellow marrow – fatty marrow in adults: no produce blood – In long bones 7-11 Intramembranous Ossification (enlarge to osteogenic cells) (become trabeculae) • Osteogenesis=bone formation • Produces flat bones of skull/clavicle: develop w/in a fibrous sheet similar to dermis = dermal bones 7-12 Stages of Endochondral Ossification: bone from hyaline cartilage • 6th week development → 20’s 7-13 Fetal Skeleton at 12 Weeks 7-14 Bone Growth/Remodeling • 2 directions: - length: elongation= cartilage growth - width: appositional growth • Remodeling: Wolff’s Law of bones - architecture determined by stresses/bone adapts to stresses - both osteoclasts/osteoblasts Dwarfism • Achondroplastic – long bones stop growing in childhood • normal torso, short limbs – spontaneous mutation during DNA replication – failure of cartilage growth • Pituitary – lack of growth hormone – normal proportions with short stature 7-16 Mineral Deposition Mineral Resorption Mineralization = crystallization process Bone dissolved/minerals released into blood • osteoblasts produce collagen fibers • osteoclasts - minerals cover the fibers/harden the • matrix HCl/Acid phosphatase(digests colagen) - ions (calcium/phosphate/blood plasma) deposited along the fibers - ion concentration must reach solubility product •Abnormal calcification (ectopic) - may occur in lungs, brain, eyes, muscles, tendons or arteries (arteriosclerosis) Calcium Homeostasis 2+ 3- • Ca (Communication) ; PO4 • Muscle/Nervous 7-17 Hormonal Control of Calcium Balance: negative feedback • Calcitriol: form of VitD:skin/liver/kidneys: ↑blood calcium conc • PTH: ↑calcium: parathyroid glands • Calcitonin: ↓ calcium: thyroid gland: inhib osteoclasts/stim osteoblasts 7-18 Correction for Hypercalcemia 7-19 Parathyroid Glands • PTH release – blood Ca2+ levels – promotes synthesis of calcitriol • absorption of Ca2+ • urinary excretion • bone resorption Correction for Hypocalcemia 7-21 Types of Bone Fractures: 1) Stress fracture caused by trauma 2) Pathological fracture in bone weakened by disease Fractures classified by structural characteristics break in the skin multiple pieces 7-22 Healing of Fractures 2 7-23 Fractures and Their Repairs 7-24 Spinal Osteoporosis 7-25 Components of a Lever • A lever is a rigid object that rotates around a fixed point called a fulcrum • Rotation occurs when effort overcomes resistance – resistance arm and effort arm are described relative to fulcrum 9-26 Mechanical Advantage • Mechanical advantage is calculated from the length of the effort arm divided by the length of the resistance arm • Contraction of the biceps muscle causes the hand to move fast and further (MA <1.0) 9-27 First-Class Lever • Has fulcrum in the middle between effort and resistance • Atlantooccipital joint lies between the muscles on the back of the neck and the weight of the face – loss of muscle tone occurs when you nod off in class 9-28 Second-Class Lever • Resistance between fulcrum and effort • Resistance from the muscle tone of the temporalis muscle lies between the jaw joint and the pull of the diagastric muscle on the chin as it opens the mouth quickly 9-29 Third-Class Lever • Effort between the resistance and the fulcrum – most joints of the body • The effort applied by the biceps muscle is applied to the forearm between the elbow joint and the weight of the hand and the forearm 9-30 Types of Synovial Joints 9-31 Rheumatoid Arthritis 9-32 Joint Prostheses 9-33.
Recommended publications
  • Digitalcommons@UNMC Agranulocytosis
    University of Nebraska Medical Center DigitalCommons@UNMC MD Theses Special Collections 5-1-1935 Agranulocytosis Gordon A. Gunn University of Nebraska Medical Center This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research. Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses Part of the Medical Education Commons Recommended Citation Gunn, Gordon A., "Agranulocytosis" (1935). MD Theses. 386. https://digitalcommons.unmc.edu/mdtheses/386 This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. AGRANULOOYTOSIS ,- Senior Thesis by GOrdon .M.. Gunn INTRODUCTION Fifteen years ago the medioal profession new nothing of the disease spoken of in this paper as agranulocytosis. Since Schultz, in 1922, gave an accurate description of a fulminat­ ing case, agranulocytosis has oomettoClOCo.'UPy more and more prominence in the medical field. Today, the literature is fairly teeming with accounts of isolated cases of all descriptions. Added to this a confus­ ing nomenclature, varied classifications, and heterogeneous forms of treatment; and the large question of whether it is a disease entity, a group of diseases, or only a symptom complex, and some idea may be garnered as to the progress made. Time is a most important factor in diagnosis of this disease, and the prognosis at best is grave. The treatment has gone through the maze of trials as that of any other new disease; there must be a cause and so there must be some specific treatment.
    [Show full text]
  • Organs of the Immune System
    ORGANS OF THE IMMUNE SYSTEM BY MRS. N .MAKANDI ORGANS OF THE IMMUNE SYSTEM Major organs of the immune system are bone marrow, thymus, spleen and lymph nodes. These organs produce lymphocytes required to destroy bacteria, virus, tumor cells, etc. NB// The function of the immune system is protecting the body from parasitic, bacterial, viral, fungal infections and from the growth of tumor cells. • Organs of the immune system make cells that either contribute in the immune response or act as sites for the immune function. There are two groups of immune system organs. • Primary (central) organs where immature lymphocytes develop – Thymus – Bone marrow • Secondary (peripheral) organs --tissues where antigen is localized so that it can be effectively exposed to mature lymphocytes – Lymph nodes – Spleen – MALT (Mucosal-Associated Lymphoid Tissue) • GALT (Gut-Associated Lymphoid Tissue) • BALT (Bronchial/Tracheal-Associated Lymphoid Tissue) • NALT (Nose-Associated Lymphoid Tissue) • VALT (Vulvovaginal-Associated Lymphoid Tissue) Primary (central) lymphoid organs Bone marrow • All the cells of the human immune system are formed in the bone marrow, found within the bones, by a process called hematopoiesis. • The process of hematopoiesis involves differentiation of bone-marrow derived stem cells either into mature cells of the immune system or precursor of cells which move out of the bone marrow and continue their maturation elsewhere. • The bone marrow is responsible for the production of important immune system cells like B cells, granulocytes, natural killer cells and immature thymocytes. It also produces red blood cells and platelets • Bone marrow is the site of B cell maturation. • The site of B cell maturation in birds is the bursa of Fabricius, after which B cells are named.
    [Show full text]
  • Applications of Chondrocyte-Based Cartilage Engineering: an Overview
    Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 1879837, 17 pages http://dx.doi.org/10.1155/2016/1879837 Review Article Applications of Chondrocyte-Based Cartilage Engineering: An Overview Abdul-Rehman Phull,1 Seong-Hui Eo,1 Qamar Abbas,1 Madiha Ahmed,2 and Song Ja Kim1 1 Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea 2Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan Correspondence should be addressed to Song Ja Kim; [email protected] Received 14 May 2016; Revised 24 June 2016; Accepted 26 June 2016 Academic Editor: Magali Cucchiarini Copyright © 2016 Abdul-Rehman Phull et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment.
    [Show full text]
  • Module 2 : Anatomy – the Skeleton
    Module 2 : Anatomy – The Skeleton In this module you will learn: The functions of the skeletal system The types of bones in the human body The effects of exercise on your bones What happens to the bones as we get older When studying to become a fitness instructor or personal trainer, you will learn all about the anatomy of the human body. Studying the skeleton is one of the foundations of your trade, you will need to know how the body is structured, the names of each bone, types of bones, importance of bone and joint health, detail of the spine and different terms of movement. Without stating the obvious, each of your clients has their own skeleton and you must be fully aware of how this works. This is for many reasons; you are a teacher and must be fully aware of how to prevent injuries, avoid unnecessary stress on the bones and, if qualified, help the client prevent or heal bone and joint related conditions or medical problems. 2.1 Understanding the Skeletal System The skeleton is comprised of 206 different bones that provide 5 main functions: Support mechanism for muscle and tissue Protection for organs Movement with bones, muscles, and joints Storing minerals and blood cells Growth Skeletal System 2.2 Bones are Formed by Ossification Some bones (such as the flat bones of your skull) in the body are formed in a similar stage to connective tissue. The process is known as direct or intramembranous ossification. Other bones are made up of cartilaginous matter, this is developed from future bone in the embryo which then dissolves and is replaced with other bone cells.
    [Show full text]
  • Studies on Brain and Spinal Cord Tumors
    Studies on Brain and Spinal Cord Tumors Chapter 1 Osteochondroma of the Spine Iraj Lotfinia Professor of Neurosurgery, Tabriz Universsity of medical science, Tabriz, Iran. Fax: 00984113340830; Email: [email protected] Abstract Osteochondroma (OC) is the most common benign tumor of the bones, and it remains the most common precursor for secondary chondrosarcoma, which often occurs in the long bones’ metaphyseal areas. Rarely, it is also found in the spine. This tumor comprises a cartilage capped bone projection and is observed in both solitary and multiple forms. In many cases, the lesion can be definitively diagnosed according to radiological characteristics, but the rarity of these lesions in the spine, gradual onset of symptoms, and the frequent lack of observation of lesions in plain radiography may delay the diagnosis or cause misdiagnosis. These lesions are be- nign and do not risk the patient’s life; however, they rarely may be found to be a malignant degeneration that transformed into chondrosarcoma. When the lesion has led to clinical symptoms or has faced the patient with cosmetic challenges, or when definitive diagnosis is unknown, treatment is required. The primary treatment is the surgical removal of the lesion. Timely diagnosis and complete resection of the le- sion using surgery lead to complete recovery and prevent recurrence. 1. Introduction According to the World Health Organization’s (WHO’s) definition in 2002, osteocar- tilaginous exostosis are benign bone neoplasms covered by a cartilaginous cap created at the outer surface of the bone by endochondral ossification [1]. Osteochondroma (OC) is the most common benign primary tumor of the bone.
    [Show full text]
  • REVIEW ARTICLE Interactions Between GH, IGF-I, Glucocorticoids
    0031-3998/02/5202-0137 PEDIATRIC RESEARCH Vol. 52, No. 2, 2002 Copyright © 2002 International Pediatric Research Foundation, Inc. Printed in U.S.A. REVIEW ARTICLE Interactions between GH, IGF-I, Glucocorticoids, and Thyroid Hormones during Skeletal Growth HELEN ROBSON, THOMAS SIEBLER, STEPHEN M. SHALET, AND GRAHAM R. WILLIAMS Department of Clinical Research [H.R.], Department of Endocrinology [S.M.S.], Christie Hospital National Health Service Trust, Manchester, U.K.; University Children’s Hospital, University of Leipzig, Leipzig, Germany [T.S.]; IC Molecular Endocrinology Group, Division of Medicine and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College School of Science Technology and Medicine, Hammersmith Hospital, London, U.K. [G.R.W.] ABSTRACT Linear growth occurs during development and the childhood Abbreviations years until epiphyseal fusion occurs. This process results from 5'-DI, 5'-iodothyronine deiodinase endochondral ossification in the growth plates of long bones and FGF, fibroblast growth factor is regulated by systemic hormones and paracrine or autocrine FGFR, fibroblast growth factor receptor factors. The major regulators of developmental and childhood GC, glucocorticoid growth are GH, IGF-I, glucocorticoids, and thyroid hormone. GHR, GH receptor Sex steroids are responsible for the pubertal growth spurt and GR, glucocorticoid receptor epiphyseal fusion. This review will consider interactions between HSPG, heparan sulfate proteoglycan GH, IGF-I, glucocorticoids, and thyroid hormone during linear 11␤HSD, 11␤-hydroxysteroid dehydrogenase growth. It is well known from physiologic and clinical studies IGF-IR, IGF-I receptor that these hormones interact at the level of the hypothalamus and IGFBP, IGF binding protein pituitary. Interacting effects on peripheral tissues such as liver are Ihh, Indian hedgehog also well understood, but we concentrate here on the epiphyseal JAK-2, Janus-activated kinase-2 growth plate as an important and newly appreciated target organ PTHrP, PTH-related peptide for convergent hormone action.
    [Show full text]
  • Abstracts of the Nurses Group EBMT 2006
    Abstracts of the Nurses Group EBMT 2006 and so decreases levels of anxiety and improves clinical Supportive care outcomes (Audit Commission 1993). Bone Marrow Transplantation (BMT) has been described as a procedure associated with isolation of the patient, prolonged N922 hospitalizations, rapid fluctuations in medical conditions, Nursing aspects in patient-information frequent and often life-threatening infections, and graft-versus- G. Rother, C. Weßler, N. Reebehn host disease (GvHD). UK-SH, Campus Kiel (Kiel,D) It is a complex process with immediate as well as long-term effects, which may permanently impair quality of life and can In addition to the information supplied by physicians there is affect morbidity and mortality. Achieving a level of also a need for explaining the nursing aspects to the patients. understanding of what is involved can be a bewildering Both sides are important to minimize fear, to create an proposition for many patients and their carers, and in itself can atmosphere of confidence and to help the patient complete present obstacles to informed consent and subsequent post- their treatment successfully. transplant expectations. A stay on the BMT-unit is not like any other time in hospital. The Seven Steps is a project which evolved through the need Lots of questions arise before admission and during the stay to meet our patients’ demand for accurate and clear written and patients often are left with a huge amount of uncertainty literature to support and compliment verbal description. The about what to do or not to do. During the preparations at the result is a book, which divides the bone marrow transplant outpatient clinic physicians inform their patients thoroughly journey into 7 clear steps, which provide a high level of detail about the medical side of the transplantation process but they yet with a strong patient focus.
    [Show full text]
  • Bone Markings / Features on Bones
    08/05/2016 Bone Markings : Skeletal System Search Custom Search Like Tweet Home Health News Human Body Biology Chemistry Glossary Textbooks Bone Disorders Ads by Google ► Bone Tissue ► Bone Marrow ► Human Skull Bone ► Bone on Bone Knee Sun 8 May 2016 Bone Markings / Features on Bones Human Body Study Section Bone markings and the features of bones (including the correct words used to describe them) are often required by first­level courses in human anatomy and associated health science subjects. It is important to be familiar with the terminology used to Human Body Index refer to bone markings in order to communicate effectively with professionals involved in healthcare, research, forensics, and Health Glossary related disciplines. More about Bones and the Skeletal System: The following terms used to describe bone markings or features on bones are in alphabetical order with short definitions: Human Skeleton Axial and Appendicular Word / Term Meaning / Description Type of Example(s) Skeleton (Bone Marking or bone The Structure and Feature) marking Functions of Bones Types of Bones 1. Angle A corner Feature of Inferior angle (lower) and superior angle (upper) are Bone Markings & Features shape of bone the rounded angles or "corners" of the scapula. on Bones Disorders of the Skeletal 2. Body The main portion of a bone The diaphysis of long bones such as the humerus. System Curvature of the Spine 3. Condyle Rounded bump or large rounded Process ­ The medial condyle of the femur (bone), upper­leg. prominence. Such rounded surfaces forms joints Types of Joints usually fit into a fossa on another bone to Specific bones: form a joint.
    [Show full text]
  • The Epiphyseal Plate: Physiology, Anatomy, and Trauma*
    3 CE CREDITS CE Article The Epiphyseal Plate: Physiology, Anatomy, and Trauma* ❯❯ Dirsko J. F. von Pfeil, Abstract: This article reviews the development of long bones, the microanatomy and physiology Dr.med.vet, DVM, DACVS, of the growth plate, the closure times and contribution of different growth plates to overall growth, DECVS and the effect of, and prognosis for, traumatic injuries to the growth plate. Details on surgical Veterinary Specialists of Alaska Anchorage, Alaska treatment of growth plate fractures are beyond the scope of this article. ❯❯ Charles E. DeCamp, DVM, MS, DACVS athologic conditions affecting epi­ foramen. Growth factors and multipotent Michigan State University physeal (growth) plates in imma­ stem cells support the formation of neo­ ture animals may result in severe natal bone consisting of a central marrow P 2 orthopedic problems such as limb short­ cavity surrounded by a thin periosteum. ening, angular limb deformity, or joint The epiphysis is a secondary ossifica­ incongruity. Understanding growth plate tion center in the hyaline cartilage forming anatomy and physiology enables practic­ the joint surfaces at the proximal and distal At a Glance ing veterinarians to provide a prognosis ends of the bones. Secondary ossification Bone Formation and assess indications for surgery. Injured centers can appear in the fetus as early Page E1 animals should be closely observed dur­ as 28 days after conception1 (TABLE 1). Anatomy of the Growth ing the period of rapid growth. Growth of the epiphysis arises from two Plate areas: (1) the vascular reserve zone car­ Page E2 Bone Formation tilage, which is responsible for growth of Physiology of the Growth Bone is formed by transformation of con­ the epiphysis toward the joint, and (2) the Plate nective tissue (intramembranous ossifica­ epiphyseal plate, which is responsible for Page E4 tion) and replacement of a cartilaginous growth in bone length.3 The epiphyseal 1 Growth Plate Closure model (endochondral ossification).
    [Show full text]
  • Osteochondroma: Ignore Or Investigate?
    r e v b r a s o r t o p . 2 0 1 4;4 9(6):555–564 www.rbo.org.br Updating Article ଝ Osteochondroma: ignore or investigate? a b,c,∗ Antônio Marcelo Gonc¸alves de Souza , Rosalvo Zósimo Bispo Júnior a School of Medicine, Federal University of Pernambuco (UFPE), Recife, PE, Brazil b School of Medicine, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil c University Center of João Pessoa (UNIPÊ), João Pessoa, PB, Brazil a r a t i b s c t l e i n f o r a c t Article history: Osteochondromas are bone protuberances surrounded by a cartilage layer. They generally Received 23 August 2013 affect the extremities of the long bones in an immature skeleton and deform them. They usu- Accepted 31 October 2013 ally occur singly, but a multiple form of presentation may be found. They have a very charac- Available online 27 October 2014 teristic appearance and are easily diagnosed. However, an atypical site (in the axial skeleton) and/or malignant transformation of the lesion may sometimes make it difficult to iden- Keywords: tify osteochondromas immediately by means of radiographic examination. In these cases, Osteochondroma/etiology imaging examinations that are more refined are necessary. Although osteochondromas Osteochondroma/physiopathology do not directly affect these patients’ life expectancy, certain complications may occur, with Osteochondroma/diagnosis varying degrees of severity. Bone neoplasms © 2014 Sociedade Brasileira de Ortopedia e Traumatologia. Published by Elsevier Editora Ltda. All rights reserved. Osteocondroma: ignorar ou investigar? r e s u m o Palavras-chave: Osteocondromas são protuberâncias ósseas envolvidas por uma camada de cartilagem.
    [Show full text]
  • Human Anatomy and Physiology
    LECTURE NOTES For Nursing Students Human Anatomy and Physiology Nega Assefa Alemaya University Yosief Tsige Jimma University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2003 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2003 by Nega Assefa and Yosief Tsige All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Human Anatomy and Physiology Preface There is a shortage in Ethiopia of teaching / learning material in the area of anatomy and physicalogy for nurses. The Carter Center EPHTI appreciating the problem and promoted the development of this lecture note that could help both the teachers and students.
    [Show full text]
  • Postnatal Maturation and Radiology of the Growing Spine Sharon E
    Neurosurg Clin N Am 18 (2007) 431–461 Postnatal Maturation and Radiology of the Growing Spine Sharon E. Byrd, MDa,b,*, Elizabeth M. Comiskey, MDa,c aRush Medical College, 1653 West Congress Parkway, Chicago, IL 60612, USA bSection of Neuroradiology, Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA cSection of Pediatric Radiology, Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA The spine is part of the supporting framework Anatomy of the body and is composed of vertebrae, discs, The spine consists of osseous and soft tissue and ligaments. It continues to mature postnatally, components that provide support and mobility for with marked changes occurring predominantly in the body and a protective covering for the central the vertebrae during infancy, childhood, and early nervous system. The vertebral column is com- adolescence. Maturation of the spine is not only posed of 7 cervical, 12 thoracic, and 5 lumbar manifested by the ossification process but by vertebrae; the sacrum (composed of 5 fused changes in the shape of the vertebrae, spinal vertebrae that become progressively smaller); curvature, spinal canal, discs, and bone marrow. and the coccyx (3 to 5 rudimentary vertebrae). A The parts of the spine and the maturation process typical vertebra consists of a body and neural can be evaluated by various imaging modalities arch. The neural arch is composed of bilateral such as conventional plain spine imaging (CPSI pedicles, laminae, superior and inferior articulat- [plain spine radiography]), CT, and MRI.
    [Show full text]