Digitalcommons@UNMC Agranulocytosis

Total Page:16

File Type:pdf, Size:1020Kb

Load more

University of Nebraska Medical Center

DigitalCommons@UNMC

5-1-1935

Agranulocytosis

Gordon A. Gunn

University of Nebraska Medical Center

This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research.

Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses
Part of the Medical Education Commons

Recommended Citation

Gunn, Gordon A., "Agranulocytosis" (1935). MD Theses. 386.

https://digitalcommons.unmc.edu/mdtheses/386

This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected].

Recommended publications
  • Organs of the Immune System

    Organs of the Immune System

    ORGANS OF THE IMMUNE SYSTEM BY MRS. N .MAKANDI ORGANS OF THE IMMUNE SYSTEM Major organs of the immune system are bone marrow, thymus, spleen and lymph nodes. These organs produce lymphocytes required to destroy bacteria, virus, tumor cells, etc. NB// The function of the immune system is protecting the body from parasitic, bacterial, viral, fungal infections and from the growth of tumor cells. • Organs of the immune system make cells that either contribute in the immune response or act as sites for the immune function. There are two groups of immune system organs. • Primary (central) organs where immature lymphocytes develop – Thymus – Bone marrow • Secondary (peripheral) organs --tissues where antigen is localized so that it can be effectively exposed to mature lymphocytes – Lymph nodes – Spleen – MALT (Mucosal-Associated Lymphoid Tissue) • GALT (Gut-Associated Lymphoid Tissue) • BALT (Bronchial/Tracheal-Associated Lymphoid Tissue) • NALT (Nose-Associated Lymphoid Tissue) • VALT (Vulvovaginal-Associated Lymphoid Tissue) Primary (central) lymphoid organs Bone marrow • All the cells of the human immune system are formed in the bone marrow, found within the bones, by a process called hematopoiesis. • The process of hematopoiesis involves differentiation of bone-marrow derived stem cells either into mature cells of the immune system or precursor of cells which move out of the bone marrow and continue their maturation elsewhere. • The bone marrow is responsible for the production of important immune system cells like B cells, granulocytes, natural killer cells and immature thymocytes. It also produces red blood cells and platelets • Bone marrow is the site of B cell maturation. • The site of B cell maturation in birds is the bursa of Fabricius, after which B cells are named.
  • Leukocyte Adhesion Deficiency-I

    Leukocyte Adhesion Deficiency-I

    Clinical Communications Leukocyte adhesion deficiency-I: A this article’s Online Repository at www.jaci-inpractice.org for a comprehensive review of all published comprehensive listing of publications and patient numbers by cases country and Table E2 for a comprehensive listing of references). Elena Almarza Novoa, PhDa,b,*, Per investigator assessment, 113 patients were considered to have severe LAD-I, 63 moderate, and 147 not classified. Sanchali Kasbekar, PharmDc,*, d e Neutrophil CD18 expression was reported for 265 cases and was Adrian J. Thrasher, MD, PhD , Donald B. Kohn, MD , less than 2% in 135 patients (51%) and 2% or more in 130 Julian Sevilla, MD, PhDf, Tony Nguyen, MBAg, patients (49%). Four patients with CD18 greater than or equal Jonathan D. Schwartz, MDc,z, and to 2% were considered to have severe LAD-I (CD18% range, Juan A. Bueren, PhDa,b,z 2.4-17.3). Sex information was available for 282 patients, of which 148 (52%) were males. Clinical Implications Age at presentation was reported for 146 cases. For 63 patients with CD18 less than 2%, median presentation was at age 1 Leukocyte adhesion deficiency-I (LAD-I) is a rare, serious month (range, 0.03-18 months); for 62 patients with CD18 of disorder with severity determined by defective CD18 2% or more, median presentation was at age 6 months (range, expression. LAD-I is characterized by umbilical 0.03-192 months). HSCT was performed for 125 patients; 198 complications, granulocytosis, and diverse infections. patients did not undergo HSCT. Severe LAD-I is frequently fatal before the age of 2 years Infections were described for 248 (77%) of the 323 cases; fi without allogeneic transplant.
  • • Cytosis: O Neutrophilia: Defined As an Increase in the Neutrophilic Count in the Peripheral Blood Above Reference Range for Age

    • Cytosis: O Neutrophilia: Defined As an Increase in the Neutrophilic Count in the Peripheral Blood Above Reference Range for Age

    HENATOLYMPHOID SYSTEM THIRD YEAR MEDICAL STUDENTS-UNIVERSITY OF JORDAN AHMAD T. MANSOUR, MD NONNEOPLASTIC DISEASES OF THE WHITE BLOOD CELLS • There are five major types of WBCs in the blood: neutrophils, lymphocytes, eosinophils, basophils and monocytes. • The normal function of the white blood cells depends on a tight regulation of their count and their function. Therefore, disease develops if there is a derangement of the cells count or function, it takes one of the following forms: o Cytosis: increase in the number of circulating cells above reference range. (Note: leukocytosis means an increase in the WBC count, neutrophilia means increase in the neutrophilic count, lymphocytosis means increase in the lymphocytic count, monocytosis means increase in the monocytic count, basophilia means increase in the basophilic count and eosinophilia means in crease in the eosinophilic count). o Cytopenia: decrease in the number of circulating cells below reference range. (Note: neutropenia means decreased neutrophils, lymphocytopenia, or simply lymphopenia, means decrease in lymphocytes, monocytopenia means decrease in monocytes, eosinopenia means decrease in eosinophils, and basopenia means decrease in basophils). o Abnormal or absent function • Cytosis: o Neutrophilia: defined as an increase in the neutrophilic count in the peripheral blood above reference range for age. o Causes: bacterial infection is the most common and most important etiology. Tissue necrosis in cases of burns or trauma and medications such as epinephrine and corticosteroids are also additional causes for neutrophilia. § Some physiologic conditions can lead to neutrophilia such as stress, smoking and pregnancy. o Pathophysiology: neutrophils are present in the blood in two populations: circulating and marginal (meaning neutrophils stuck to the vessel wall).
  • Abstracts of the Nurses Group EBMT 2006

    Abstracts of the Nurses Group EBMT 2006

    Abstracts of the Nurses Group EBMT 2006 and so decreases levels of anxiety and improves clinical Supportive care outcomes (Audit Commission 1993). Bone Marrow Transplantation (BMT) has been described as a procedure associated with isolation of the patient, prolonged N922 hospitalizations, rapid fluctuations in medical conditions, Nursing aspects in patient-information frequent and often life-threatening infections, and graft-versus- G. Rother, C. Weßler, N. Reebehn host disease (GvHD). UK-SH, Campus Kiel (Kiel,D) It is a complex process with immediate as well as long-term effects, which may permanently impair quality of life and can In addition to the information supplied by physicians there is affect morbidity and mortality. Achieving a level of also a need for explaining the nursing aspects to the patients. understanding of what is involved can be a bewildering Both sides are important to minimize fear, to create an proposition for many patients and their carers, and in itself can atmosphere of confidence and to help the patient complete present obstacles to informed consent and subsequent post- their treatment successfully. transplant expectations. A stay on the BMT-unit is not like any other time in hospital. The Seven Steps is a project which evolved through the need Lots of questions arise before admission and during the stay to meet our patients’ demand for accurate and clear written and patients often are left with a huge amount of uncertainty literature to support and compliment verbal description. The about what to do or not to do. During the preparations at the result is a book, which divides the bone marrow transplant outpatient clinic physicians inform their patients thoroughly journey into 7 clear steps, which provide a high level of detail about the medical side of the transplantation process but they yet with a strong patient focus.
  • Digitalcommons@UNMC Granulocytopenia

    Digitalcommons@UNMC Granulocytopenia

    University of Nebraska Medical Center DigitalCommons@UNMC MD Theses Special Collections 5-1-1936 Granulocytopenia Howard E. Mitchell University of Nebraska Medical Center This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research. Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses Part of the Medical Education Commons Recommended Citation Mitchell, Howard E., "Granulocytopenia" (1936). MD Theses. 457. https://digitalcommons.unmc.edu/mdtheses/457 This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. G PA~lULOCYTOPENI A SENIOR THESIS By Howard E. Mitchell April 17, 1936 TABLE OF CONT'ENTS Introduction Definition • · 1 History . • • • 1 Nomenclature • • • • • 4 ClassificBtion • • • • 6 Physiology • • • • .10 Etiology • • 22 Geographic Distribution • 23 Age, Sex, and R9ce • • ·• 23 Occupation • .. • • • • .. • 23 Ba.cteria • • • • .. 24 Glandu18.r Dysfunction • • • 27 Radiation • • • • 28 Allergy • • • 28 Chemotactic and Maturation Factors • • 28 Chemicals • • • • • 30 Pathology • • • • • 36 Symptoms • • • • • • • 43 DiEtgnosis • • • • • .. • • • • • .. • 4'7 Prognosis 48 '" • • • • • • • • • • • • Treatment • • • • • • • • 49 Non"'specific Therapy • • • • .. 50 Transfusion • • • • .. 51 X-Ray • • • • • • • • • 52 Liver ·Extract • • • • • • • 53 Nucleotides • • • • • • • • • • • 53 General Ca.re • • • • • • • • 57 Conclusion • • • • • • • • • 58 480805 INTHODUCTION Although t~ere is reference in literature of the Nineteenth Century to syndromes similating the disease (granulocytopenia) 9.8 W(~ know it todes, it "vas not un­ til the year 1922 that Schultz 8ctually described his C8se as a disease entity and by so doing, stimulated the interest of tne medical profession to further in­ vestigation.
  • Human Anatomy and Physiology

    Human Anatomy and Physiology

    LECTURE NOTES For Nursing Students Human Anatomy and Physiology Nega Assefa Alemaya University Yosief Tsige Jimma University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2003 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2003 by Nega Assefa and Yosief Tsige All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Human Anatomy and Physiology Preface There is a shortage in Ethiopia of teaching / learning material in the area of anatomy and physicalogy for nurses. The Carter Center EPHTI appreciating the problem and promoted the development of this lecture note that could help both the teachers and students.
  • Integrins, Selectins and Cams

    Integrins, Selectins and Cams

    SAMJ ARTICLES I REVIEW ARTICLE recently we have found similarly impaired neutrophil­ endothelial cell interactions in patients with chronic liver I disease.' Other workers have shown low levels of essential Integrins, selectins and CAMs on p-cells in patients with Burkitt's lymphoma.' I Because adhesion between leucocytes is central to the CAMs - the 'glue of life' regulation of Iymphocyte proliferation, abnormal adhesiveness caused by dysfunctional CAMs is thought to I Steven Froese, Enid Shephard, Susan Adams, result in poor immune surveillance and an increased risk of Simon Robson, Ralph Kirsch cancer, Certain inflammatory processes are associated with I acquired leucocyte adhesion defects and impaired neutrophil adhesion to endothelium. Patients with sepsis, The ability of cells to adhere to one another and to adult respiratory distress syndrome and myocardial surrounding structural tissue proteins is essential to the life infarction are among those affected,6 process of all multicellular organisms. Specific receptors, their Iigands and their counter-receptors, collectively referred to in Time' as the 'glue of life', play a major role in maintaining organ and tissue integrity. Progress in molecular The nature and function of and cell biology has advanced knowledge of these cellular CAMs adhesion molecules (CAMs) to a point where they will soon be part of the everyday vocabulary of practising doctors. The search for the processes which mediate cell-cell CAMs, first recognised for their role in the organisation of recognition and interaction was based on the assumption developing embryological neural tissue, respond to neural, that, in order to establish and maintain specialised tissues endocrine and paracrine stimuli and in turn influence and organs, multicellular organisms must have a mechanism immune and inflammatory cell function, cell repair processes by which cells interact with each other and with constituents and the integrity of specialised organs and tissues.
  • Neutropenia : an Analysis of the Risk Factors for Infection Steven Ira Rosenfeld Yale University

    Neutropenia : an Analysis of the Risk Factors for Infection Steven Ira Rosenfeld Yale University

    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1980 Neutropenia : an analysis of the risk factors for infection Steven Ira Rosenfeld Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Rosenfeld, Steven Ira, "Neutropenia : an analysis of the risk factors for infection" (1980). Yale Medicine Thesis Digital Library. 3087. http://elischolar.library.yale.edu/ymtdl/3087 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. NEUTROPENIA: AN ANALYSIS OF THE RISK FACTORS FOR INFECTION by Steven Ira Rosenfeld B.A. Johns Hopkins University 1976 A Thesis Submitted to The Yale University School of Medicine In Partial Fulfillment of the Requirements for the Degree of Doctor of Medicine 1980 Med Li^> Ya ABSTRACT The risk factors for infection were evaluated retrospectively in 107 neutropenic patients without underlying malignancy or cyto¬ toxic drug therapy. Neutrophil count was an independent risk factor for infection, with the incidence of infection increasing as the neutrophil count decreased. The critical neutrophil count, below which the incidence of infection was significantly increased was 250/mnr*, (p<.001). Eighty five percent of the <250 group entered with, or developed infection. Additional risk factors for infection included increased duration of neutropenia, age less than 1 year old, male sex, hypogammaglobulinemia, and recent antibiotic therapy.
  • Lazy Leucocyte Syndrome-Disorder of the Granulocyte Membrane?

    Lazy Leucocyte Syndrome-Disorder of the Granulocyte Membrane?

    J Clin Pathol: first published as 10.1136/jcp.31.4.300 on 1 April 1978. Downloaded from Journal of Clinical Pathology, 1978, 31, 300-308 Lazy leucocyte syndrome-disorder of the granulocyte membrane? P. H. PINKERTON, JEAN B. ROBINSON, AND J. S. SENN From the Departments ofLaboratory Haematology and Medicine, Sunnybrook Medical Centre and Departments ofPathology and Medicine, University of Toronto, Toronto, Ontario, Canada SUMMARY An adult with long-standing neutropenia had the functional granulocyte abnormalities typical of the lazy leucocyte syndrome. Scanning electron microscopy of the patient's neutrophils showed alteration in the surface configuration of the cell with coarsening of the normal fine ruffles and the appearance of knob-like projections. Similar functional and anatomical changes were induced in normal neutrophils by treatment with vinblastine. The lazy leucocyte syndrome may be a consequence of altered membrane microfilamentous protein structure or function, and undue rigidity of the affected neutrophils may explain the clinicopathological features of the disease. Neutrophil microbicidal activity consists of a com- Rebuck and Crowley (1955), using a 12-mm diameter plex series of functions including migration, phago- round coverslip, replaced at two- or four-hourly cytosis of organisms, production of bactericidal intervals for a period of 20 hours, over an abraded substances and their release into the phagosome, and area on the volar aspect of the forearm. The cells digestion of the ingested material. A variety of adhering to the coverslips were stained with congenital and acquired disorders of these functions Romanowsky stain, examined by light microscopy, has been described (Baehner, 1974; Gallin and Wolff, and counted.
  • Bone Marrow.Pdf

    Bone Marrow.Pdf

    Libyan International Medical University Faculty of Pharmacy Academic Year 2019-2020 OBJECTIVES 1. Define bone marrow 2. Illustrate where the bone marrow is found 3. Describe the components of bone marrow 4. Describe the types of bone marrow 5. Explain the functions of bone marrow What is Bone Marrow? ■ Bone marrow, also called myeloid tissue, is the soft, highly vascular and flexible connective tissue within bone cavities which serve as the primary site of new blood cell production or hematopoiesis. Where is the Bone Marrow found? ■ In a newborn baby's bones exclusively contain hematopoietically active "red" marrow, and there is a progressive conversion towards "yellow" marrow with age. ■ In adults, red marrow is found mainly in the central skeleton, such as the pelvis, sternum, cranium, ribs, vert ebrae and scapulae, and variably found in the proximal epiphyseal ends of long bones such as the femur and humerus. What are the components of Bone Marrow? ■ The bone marrow is composed of both cellular and non-cellular components and is structurally divided into vascular and non-vascular regions. ■ The non-vascular section of bone marrow is composed of hemopoietic cells of various lineages and maturity, packed between fat cells, thin bands of bony tissue (trabeculae), collagen fibers, fibroblasts and dendritic cells. This is where hematopoiesis takes place. ■ The vascular section contains blood vessels that supply the bone with nutrients and transport blood stem cells and formed mature blood cells away into circulation. ■ Ultrastructural studies show hemopoietic cells cluster around the vascular sinuses where they mature, before they eventually are discharged into the blood.
  • Hematopoietic Stem Cells with High Proliferative Potential: ASSAY of THEIR CONCENTRATION in MARROW by the FREQUENCY and DURATION of CURE of W/Wv MICE

    Hematopoietic Stem Cells with High Proliferative Potential: ASSAY of THEIR CONCENTRATION in MARROW by the FREQUENCY and DURATION of CURE of W/Wv MICE

    Hematopoietic Stem Cells with High Proliferative Potential: ASSAY OF THEIR CONCENTRATION IN MARROW BY THE FREQUENCY AND DURATION OF CURE OF W/Wv MICE Dane R. Boggs, … , Lora A. Gress, Don R. Canfield J Clin Invest. 1982;70(2):242-253. https://doi.org/10.1172/JCI110611. This study was designed to approach two primary questions concerning hematopoietic stem cells (HSC) in mice: what is the concentration of HSC with extensive proliferative potential in marrow, and how long can an HSC continue to function in an intact animal? The assay system was the W/Wv mouse, a mouse with an inherited HSC defect, reflected in a reduction in all myeloid tissue and most particularly in a macrocytic anemia. A single chromosomally marked HSC will reconstitute the defective hematopoietic system of the W/Wv. The concentration of HSC in normal littermate (+/+) marrow was assayed by limiting dilution calculation using cure of W/Wv as an end point (correction of anemia and erythrocytes' macrocytosis) and found to be ∼10/105. This is significantly less than spleen colony forming cell (CFU-S) concentration: ∼220/105 in +/+ and ranging from 50 to 270/105 in various other studies. Blood values were studied at selected intervals for as long as 26 mo. Of 24 initially cured mice, which were observed for at least 2 yr, 75% remained cured. However, of all cured mice, 17 lost the cure, returning to a macrocytic anemic state. Cured mice had normal numbers of nucleated and granulocytic cells per humerus and a normal concentration of CFU-S. However, cure of secondary W/Wv recipients by this marrow was inefficient compared with the original +/+ […] Find the latest version: https://jci.me/110611/pdf Hematopoietic Stem Cells with High Proliferative Potential ASSAY OF THEIR CONCENTRATION IN MARROW BY THE FREQUENCY AND DURATION OF CURE OF W/WV MICE DANE R.
  • A Case of Acute Eosinophilic Granulocytic Leukemia with PML

    A Case of Acute Eosinophilic Granulocytic Leukemia with PML

    Leukemia (1997) 11, 609–618 1997 Stockton Press All rights reserved 0887-6924/97 $12.00 CORRESPONDENCE CASE REPORT A case of acute eosinophilic granulocytic leukemia with PML-RAR alpha fusion gene expression and response to all-trans retinoic acid R-Q Yu1, W Huang2, S-J Chen2, S-D Jiang1 and Z Chen2 1Division of Hematology, Department of Internal Medicine, Shanghai Chang-Zheng Hospital; and 2Laboratory of Molecular Biology, Shanghai Institute of Hematology, China A typical case of eosinophilic granulocytic leukemia with PML- RAR alpha fusion gene expression is reported. The patient achieved complete remission after oral administration of all- trans retinoic acid without any exposure to cytotoxic agents. The facts strongly suggest that the genetic event occurred at the level of pluripotent stem cells. Keywords: leukemia; eosinophilic; PML-RAR alpha; retinoic acid Introduction It has been well demonstrated that the presence of a fusion gene, PML-RAR alpha, resulting from the reciprocal translo- cation of human chromosome 15 and 17, t(15;17)(q22:q21) is a specific molecular marker of acute promyelocytic leuke- mia, and plays an important role in the pathogenesis of that disease.1–4 Until now PML-RAR alpha fusion gene has not been found in other malignant cells. Recently, we saw a typi- Figure 1 Bone marrow smear showing coarse refractile eosino- cal case of acute eosinophilic granulocytic leukemia with philic granules in leukemic cells. PML-RAR alpha fusion gene expression that achieved com- plete remission after differentiation therapy with all-trans larity with a G/E ratio of 14.1:1. The differential count showed retinoic acid (ATRA).