Detecting Treeline Dynamics in Response to Climate Warming Using

Total Page:16

File Type:pdf, Size:1020Kb

Detecting Treeline Dynamics in Response to Climate Warming Using Arekhi et al. Forest Ecosystems (2018) 5:23 https://doi.org/10.1186/s40663-018-0141-3 RESEARCH Open Access Detecting treeline dynamics in response to climate warming using forest stand maps and Landsat data in a temperate forest Maliheh Arekhi1* , Ahmet Yesil2, Ulas Yunus Ozkan2 and Fusun Balik Sanli3 Abstract Background: Treeline dynamics have inevitable impacts on the forest treeline structure and composition. The present research sought to estimate treeline movement and structural shifts in response to recent warming in Cehennemdere, Turkey. After implementing an atmospheric correction, the geo-shifting of images was performed to match images together for a per pixel trend analysis. We developedanewapproachbasedontheNDVI,LST(landsurface temperature) data, air temperature data, and forest stand maps for a 43-year period. The forest treeline border was mapped on the forest stand maps for 1970, 1992, 2002, and 2013 to identify shifts in the treeline altitudes, and then profile statistics were calculated for each period. Twenty sample plots (10 × 10 pixels) were selected to estimate the NDVI and LST shifts across the forest timberline using per-pixel trend analysis and non-parametric Spearman’s correlation analysis. In addition, the spatial and temporal shifts in treeline tree species were computed within the selected plots for four time periods on the forest stand maps to determine the pioneer tree species. Results: A statistically significant increasing trend in all climate variables was observed, with the highest slope in the monthly average mean July temperature (tau = 0.62, ρ < 0.00). The resultant forest stand maps showed a geographical expansion of the treeline in both the highest altitudes (22 m–45 m) and the lowest altitudes (20 m–105 m) from 1970 to 2013. The per pixel trend analysis indicated an increasing trend in the NDVI and LST values within the selected plots. Moreover, increases in the LST were highly correlated with increases in the NDVI between 1984 and 2017 (r = 0.75, ρ <0.05).Cedrus libani and Juniperus communis spp. were two pioneer tree species that expanded and grew consistently on open lands, primarily on rocks and soil-covered areas, from 1970 to 2013. Conclusion: The present study illustrated that forest treeline dynamics and treeline structural changes can be detected using two data sources. Additionally, the results will have a significant contribution to and implication for treeline movement studies and forest landscape change investigations attempting to project climate change impacts on tree species in response to climate warming. The results will assist forest managers in establishing some developmental adaptation strategies for forest treeline ecotones. Keywords: NDVI, Geoshift, LST, Timberline, Mann-Kendall, Landsat, Climate warming Background higher altitudes is mainly related to thermal variations Do forest treelines respond to global warming? The and other factors (Zinnert et al. 2011, Du et al. 2017, vegetation of treelines and alpine ecotones is among the Gaire et al. 2017, Holtmeier and Broll 2017, Skowno most vulnerable and sensitive to the impact of global et al. 2017), such as enhanced atmospheric CO2 and ni- warming on earth (Masek 2001, Bharti et al. 2012, trogen deposition (Masek 2001, Grace et al. 2002, Salzer Weisberg et al. 2013, Gaire et al. 2017, Mishra and et al. 2009, Capers et al. 2013, Skowno et al. 2017). Mainali 2017). The movement of forest treelines towards Simultaneously, increases in these factors usually result in the migration of alpine plants to upper altitudes. * Correspondence: [email protected] Moreover, downward shifts in treelines and decreases in 1Institutes of Graduate Studies in Science and Engineering, Forest Engineering, Istanbul University, 34452 Istanbul, Turkey treeline stability have been reported due to harsh envir- Full list of author information is available at the end of the article onmental conditions (Zhang et al. 2009, Du et al. 2017, © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Arekhi et al. Forest Ecosystems (2018) 5:23 Page 2 of 14 Gaire et al. 2017) and human disturbances (Jump and demonstrates trends in historical shifts that can be detected Penuelas 2005, Li et al. 2016b). Indeed, these shifts prob- by remote sensing techniques (Singh et al. 2011,Raynolds ably have a remarkable influence on plants that are a et al. 2013,Roparsetal.2015, Morley et al. 2017). carbon sink major source (Hanberry and Hansen 2015, Combining forest stand maps with long-term Li et al. 2016a). In fact, the reliable assessment of forest Landsat data provides a good opportunity for detect- treeline dynamics is essential to conserve the ecological ing and monitoring historical shifts in the forest condition of alpine ecotone biodiversity for sustainable structure, timberline border, and treeline movement management and forest conservation strategies (Grace (Zinnert et al. 2011,Solár2013). Additionally, an- et al. 2002, Holtmeier and Broll 2010, Mishra and Mainali other aspect of remote sensing data accessibility is 2017,Skownoetal.2017). that its data include LST, which provides an unpre- Various methods have developed and used in various cedented opportunity to investigate and compare for- parts of the world to determine woody plant encroach- est dynamics (van Leeuwen et al., 2011)among ment in response to global warming, including methods certain interval times. The importance of LST in cli- using dendroecological techniques (Danby 2007, Salzer mate change analyses has been proven (Cristóbal et al. 2009, Du et al. 2017, Gaire et al. 2017, Wang et al. et al. 2008,Brabynetal.2014)(Shuman and Comiso 2017b), aerial photograph assessments (Lutz et al. 2013, 2002,Parastatidisetal.2017). However, LST anomal- Solár 2013, Ropars et al. 2015), field plot resurveys ies are poorly investigated, and the spatial and tem- (Grabherr et al. 1994, Holtmeier and Broll 2005, Danby poral monitoring of LST can be used in treeline and Hik, 2007a, Elmendorf et al. 2012), satellite images monitoring studies. The Mediterranean region is rec- (Masek 2001, Holtmeier and Broll 2005, Fraser et al. ognized as an area impacted by global warming in 2011, Zinnert et al. 2011, Patrick Shawn Sawyer 2014, Turkey, and it is facing increasing summer tempera- Mishra and Mainali 2017, Skowno et al. 2017), repeated tures and winter precipitation (Solomon et al. 2007, photographic evidence (Kullman 1993), palynological Talu et al. 2010,Parolly2015). Moreover, evidence data investigations (Grace et al. 2002), seedling recruit- of the upward movement of treelines has been re- ment studies (Miller et al. 2017), and model scenarios ported in the eastern Karadeniz region (Black Sea), (Masek 2001, Trivedi et al. 2008). Furthermore, the and treelines may move approximately 200–400-m number of successful investigations that have integrated according to climate change predictions (Terzioglu Salih remote sensing images and historical maps is increasing 2015). Some climate change scenarios have indicated that (Wallentin et al. 2008, Zinnert et al. 2011, Weisberg the mountain flora in the western and central Taurus et al. 2013). Simultaneously, remote sensing data provide mountain regions (Parolly 2015) and the eastern Mediter- both fine- and coarse-resolution data (Fraser et al. 2011, ranean region are threatened (Ozturk et al. 2015). Con- 2012). Moreover, Landsat satellite data are the most ef- ventionally, a treeline vertical movement of approximately fective data sets and cover large areas (Arekhi et al. 640 m is expected to occur with a 4.5 °C warming rate per 2017, Chen et al. 2017). Landsat images, which have century and 33 m of movement per 1 °C increase. been recorded since 1972 and are freely available for a Holtmeier and Broll 2017 stated, “82% of coarse scale (re- period of more than 45 years with high spatial-temporal gional) variation in treeline elevation is associated with resolution and a 16-day revisit time (Masek 2001, Wang thermal conditions”. However, there is evidence that accel- et al. 2017a), represent one of the most valuable data erated glacier melt in sensitive, snow-covered mountain sources for determining woody plant encroachment. areas due to increasing temperature impacts treeline Likewise, they provide a great resource for depicting structure and composition (MacDonald et al. 2008,Capers timberline dynamics and treeline movements with vari- et al. 2013, Wilmers et al. 2013, Holtmeier and Broll ous methods and vegetation indices (Holtmeier and 2017). However, there are a few studies investigating the Broll 2005, 2017, Zinnert et al. 2011, Bharti et al. 2012, case of forest treelines in the Mediterranean region, and Elmendorf et al. 2012, Gaire et al. 2017, Wang et al. there is a gap in knowledge about forest treeline dynamics 2017a). The NDVI is the most common vegetation and structural shifts. index, and it is well known as a good representative of Thepresentstudyobjectiveswere1)toquantify plant biomass. Additionally, the NDVI is directly indica- treeline movement rates from 1970 to 2013 by the tive of plant photosynthetic activity (Zinnert et al. 2011, combination of NDVI maps with forest stand maps; Du et al. 2016, Li et al. 2016a, Mishra and Mainali 2) to explore whether the increasing trends in LST 2017). Therefore, monitoring of changes in the NDVI and NDVI coincided with treeline advancement from values across the forest timberline border provides a 1984 to 2017; 3) to determine promising tree species quantitative estimate of the tree biomass and density in the timberline border in four times (1970, 1992, over time (Singh et al. 2011, Bharti et al. 2012, Sawyer 2002, 2013) by overlaying forest stand maps on and Stephen 2012, Iverson and McKenzie 2013), which NDVI maps.
Recommended publications
  • Can Shelterwood Logging Maintain Herb Layer Diversity in a Beech Forest in Turkey?
    Yılmaz - Yılmaz: Herb layer diversity in a beech forest in Turkey - 487 - CAN SHELTERWOOD LOGGING MAINTAIN HERB LAYER DIVERSITY IN A BEECH FOREST IN TURKEY? YILMAZ, O. Y.1* – YILMAZ, H.2 1Department of Surveying and Cadastre, Faculty of Forestry, Istanbul University-Cerrahpaşa, Istanbul 34473, Turkey 2Ornamental Plant Cultivation Program, Vocational School of Forestry, Istanbul University- Cerrahpaşa, Istanbul 34473, Turkey (phone: +90-212-338-2400; fax: +90-212-338-2428) *Corresponding author e-mail: [email protected]; phone: +90-212-338-2400; fax: +90-212-226-1113 (Received 9th Sep 2019; accepted 15th Nov 2019) Abstract. The abundance and diversity of forest understory vegetation can be significantly impacted by forest management. Besides having a wide geographical distribution in Turkey, the Oriental beech (Fagus orientalis Lipsky) is also one of the economically important timber species of the country. The aim of this study is to compare the understory herb layer communities of mature and young beech stands which regenerated as a result of the shelterwood method. We studied understory plant species diversity and composition in 16 plots in old and young beech stands in Belgrad Forest near İstanbul, Turkey. We found no significant differences between the two stand types in understory plant diversity but understory species compositions in two stand types were found to be different. Our finding can be useful for forest management planning; by focusing on stand scale to achieve forest management conserving understory plant diversity in a forest. Keywords: Belgrad Forest, understory composition, indicator species, pure beech stands, stand age Introduction Herb layer vegetation is an important component for biodiversity conservation efforts because it contains the majority of vascular plant species diversity and plays a significant role in forest ecosystem functioning (Augusto et al., 2003; Lorenz et al., 2006; Gilliam, 2007; Ellum, 2009).
    [Show full text]
  • Poverty, Forest Dependence and Migration in Forest
    Poverty, Forest Dependence and Migration in the Forest Communities of Turkey Evidence and policy impact analysis POVERTY, FOREST DEPENDENCE AND MIGRATION IN THE FOREST COMMUNITIES OF TURKEY A B POVERTY, FOREST DEPENDENCE AND MIGRATION IN THE FOREST COMMUNITIES OF TURKEY Poverty, Forest Dependence and Migration in the Forest Communities of Turkey Evidence and policy impact analysis JUNE, 2017 Acknowledgements This paper was prepared by a combined team1 of World Bank staff and consultants, working with local Turkish consultants and stakeholders in close collaboration.2 The team would like to acknowledge the efforts of UDA Consulting in Turkey for the survey’s design and implementation. The team would like to acknowledge the support and design contributions of the Program for Forests (PROFOR), who also funded this study. Additionally, the team would like to acknowledge the cooperation of the General Directorate of Forestry (GDF), who provided guidance and the oversight of information that led to the construction of the survey and sample design. The findings from this paper form an integral part of a much broader engagement with the Turkish GDF through a jointly-produced Forest Policy Note. 1 The Team comprised: Craig M. Meisner (World Bank, Task Team Leader and Sr Environmental Economist), Limin Wang (World Bank, Consultant), Raisa Chandrashekhar Behal (World Bank, Consultant), and Priya Shyamsundar (World Bank, Consultant), Andrew Mitchell (World Bank, Sr Forestry Specialist), and Esra Arikan (World Bank, Sr Environmental Specialist). 2 Local Turkish collaborators included: UDA Consulting for survey implementation and the Central Union of Turkish Forestry Cooperatives (OR-KOOP). CONTENTS Executive Summary ........................................................................................................................................... 3 1. Introduction .................................................................................................................................................
    [Show full text]
  • Habitat Selection of Small Mammals in a Mixed Forest in Turkey - 133
    Bulut et al.: Habitat selection of small mammals in a mixed forest in turkey - 133 - HABITAT SELECTION OF SMALL MAMMALS IN A MIXED FOREST IN TURKEY BULUT, Ş.1* – KARATAŞ, A.2 – AYAŞ, Z.3 1Hitit University, Faculty of Art and Science, Department of Molecular Biology and Genetics, Çorum, Turkey 2Niğde Ömer Halisdemir University, Department of Biology, Niğde, Turkey 3Hacettepe University, Faculty of Science, Department of Biology, Ankara, Turkey *Corresponding author e-mail: [email protected]; phone: +90-364-227-7000 (Received 25th May 2020; accepted 19th Nov 2020) Abstract. Small mammals is a non-taxonomic subgroup named on the basis of body size of individuals. This study was created from data obtained through the mark-recapture method of small terrestrial mammals in Populus tremula, thermophilic deciduous, steppes, conifer plantations and Abies sp. forest habitats in Turkey. Field studies were performed for a total of 14 months in 2014 and 2015. 758 individuals from seven species were captured in a total of 5250 days in trapping grid studies conducted in a total of 5 different types of habitat by a grid of 5 × 5 traps system. The average capture success in all was calculated as 14.44%. The species affected by temperature data were M. glareolus and D. nitedula. It was found that M. subterraneus showing increasing populations was negatively correlated with temperature. When considering the sex ratios, M. glareolus was under intense male pressure in steppe habitat. Indicator species were determined numerically and M. glareolus, M. subterraneus and D. nitedula were found to be decisive species for different habitats.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Biological Conservation 144 (2011) 2752–2769 Contents lists available at SciVerse ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Review Turkey’s globally important biodiversity in crisis ⇑ Çag˘an H. Sßekerciog˘lu a,b, , Sean Anderson c, Erol Akçay d, Rasßit Bilgin e, Özgün Emre Can f, Gürkan Semiz g, Çag˘atay Tavsßanog˘lu h, Mehmet Baki Yokesß i, Anıl Soyumert h, Kahraman Ipekdal_ j, Ismail_ K. Sag˘lam k, Mustafa Yücel l, H. Nüzhet Dalfes m a Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA b KuzeyDog˘a Derneg˘i, Ismail_ Aytemiz Caddesi 161/2, 36200 Kars, Turkey c Environmental Science and Resource Management Program, 1 University Drive, California State University Channel Islands, Camarillo, CA 93012, USA d National Institute
    [Show full text]
  • Timber Legality Risk Assessment Turkey
    Timber Legality Risk Assessment Turkey Version 1.0 l September 2018 <MONTH> <YEAR> COUNTRY RISK ASSESSMENTS This risk assessment has been developed by NEPCon with support from the LIFE programme of the European Union, UK aid from the UK government and FSCTM. www.nepcon.org/sourcinghub NEPCon has adopted an “open source” policy to share what we develop to advance sustainability. This work is published under the Creative Commons Attribution Share-Alike 3.0 license. Permission is hereby granted, free of charge, to any person obtaining a copy of this document, to deal in the document without restriction, including without limitation the rights to use, copy, modify, merge, publish, and/or distribute copies of the document, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the document. We would appreciate receiving a copy of any modified version. Disclaimers This Risk Assessment has been produced for educational and informational purposes only. NEPCon is not liable for any reliance placed on this document, or any financial or other loss caused as a result of reliance on information contained herein. The information contained in the Risk Assessment is accurate, to the best of NEPCon’s knowledge, as of the publication date The European Commission support for the production of this publication does not constitute endorsement of the contents which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. This material has been funded by the UK aid from the UK government; however, the views expressed do not necessarily reflect the UK government’s official policies.
    [Show full text]
  • Turkey’S Globally Important Biodiversity in Crisis
    Biological Conservation 144 (2011) 2752–2769 Contents lists available at SciVerse ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Review Turkey’s globally important biodiversity in crisis ⇑ Çag˘an H. Sßekerciog˘lu a,b, , Sean Anderson c, Erol Akçay d, Rasßit Bilgin e, Özgün Emre Can f, Gürkan Semiz g, Çag˘atay Tavsßanog˘lu h, Mehmet Baki Yokesß i, Anıl Soyumert h, Kahraman Ipekdal_ j, Ismail_ K. Sag˘lam k, Mustafa Yücel l, H. Nüzhet Dalfes m a Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA b KuzeyDog˘a Derneg˘i, Ismail_ Aytemiz Caddesi 161/2, 36200 Kars, Turkey c Environmental Science and Resource Management Program, 1 University Drive, California State University Channel Islands, Camarillo, CA 93012, USA d National Institute for Mathematical and Biological Synthesis (NIMBioS), University of Tennessee, 1534 White Ave., Suite 400, Knoxville, TN 37996, USA e Institute of Environmental Sciences, Bog˘aziçi University, 34342 Bebek, Istanbul,_ Turkey f WildCRU, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, OXON.OX13 5QL, Oxford, UK g Department of Biology, Pamukkale University, Kınıklı Campus, 20017 Kınıklı, Denizli, Turkey h Division of Ecology, Department of Biology, Hacettepe University, 06800 Beytepe, Ankara, Turkey i Department of Molecular Biology and Genetics, Haliç University, Sıracevizler Cd. No: 29, 34381 Bomonti, Istanbul,_ Turkey j Department of Biology, Ahi Evran University, Asßık Pasßa Kampüsü, Kırsßehir, Turkey k Ecological Sciences Research Laboratories, Department of Biology, Hacettepe University, 06800 Beytepe, Ankara, Turkey l Université Pierre et Marie Curie – Paris 6, Observatoire Océanologique, 66650 Banyuls-sur-mer, France m Eurasia Institute of Earth Sciences, Istanbul_ Technical University, 34469 Sarıyer, Istanbul,_ Turkey article info abstract Article history: Turkey (Türkiye) lies at the nexus of Europe, the Middle East, Central Asia and Africa.
    [Show full text]
  • Effects of Canopy on Soil Erosion and Carbon Sequestration Seite 45
    Effects of canopy on soil erosion and carbon sequestration Seite 45 136. Jahrgang (2019), Heft 1, S. 45–66 E ects of canopy on soil erosion and carbon sequestration in a Pedunculate Oak (Quercus robur L. subsp. robur L.) coppice stand during the conversion process into high forest Auswirkungen des Kronenschlussgrades auf Bodenerosion und Kohlensto speicherung in einem Stieleiche (Quercus robur L. subsp. robur L.) Niederwald während der Umwandlung in Hochwald Zafer Yücesan*, Sezgin Hacisalihoğlu, Uğur Kezik, Hakan Karadağ Keywords: Canopy density, Soil Loss Predicting, Carbon storage, manage- ment, Coppice stand, High stand, Turkey Schlüsselbegri e: Kronenschlussgrad, Prognose des Bodenverlustes, Kohlen- sto -Sequestrierung, Management, Ausschlagwald, Türkei Abstract Many of the coppice stands in Turkey are in the process of conversion into high fo- rest because of decreasing demand for fuel wood and negative e ects of frequent clearcutting on soil, landscape and biodiversity. Most of these coppice stands are composed of pure and mixed oak stands. Main goal of this study is to determine the e ects of canopy on soil erosion and carbon sequestration in a pure Pedunculate oak (Quercus robur L. subsp. robur L.) coppice stand during the conversion process into high forest. Obtained results showed that average soil loss amounts were 0.35, 0.70 and 0.93 t/ha/yr and total carbon stock amounts were 80.07, 77.86 and 64.2 tC/ha re- spectively under high, moderate and low canopy. In other words, decrease of canopy Karadeniz Technical University, Faculty of Forestry, 61080 Trabzon, Turkey *Corresponding Author: Assoc. Prof. Dr. Zafer Yücesan Seite 46 Zafer Yücesan, Sezgin Hacisalihoğlu, Uğur Kezik, Hakan Karadağ density increase soil losses and decreases carbon stocks (p<0.05) and in turn if the canopy get reduced during the conversion process, C stocks are at risk.
    [Show full text]
  • Download This PDF File
    REDIA, XCIX, 2016: 163-170 http://dx.doi.org/10.19263/REDIA-99.16.21 ÖZLEM DOSTBİL (*) - SELMA ÜLGENTÜRK (**) BIO-ECOLOGY OF CEDAR SCALE INSECT TOROSASPIS CEDRICOLA (BALACHOWSKY & ALKAN) (HEMIPTERA DIASPIDIDAE) IN ANKARA, TURKEY (1) (*) Ministry of Forestry and Water Affairs, General Directorate of Forestry, Central Anatolia Forestry Research Institute, Ankara, Turkey (**) Ankara University Faculty of Agriculture, Department of Plant Protection, 06110 Dışkapı, Ankara, Turkey; e-mail: [email protected] Dostbil Ö., Ülgentürk S. – Bio-ecology of cedar scale insect Torosaspis cedricola (Balachowsky & Alkan) (Hemiptera Diaspididae) in Ankara, Turkey. Lebanon cedar, Cedrus libani A. Rich. (Pinaceae) is a significant tree from the historical, cultural, aesthetic, scientific and economic perspectives. It is presently found primarily in the Taurus Mountains with extensive and magnificent forests. Also, it has been frequently used as ornamental tree in urban areas in Turkey and abroad. Cedar scale, Torosaspis cedricola, (Balachowsky & Alkan) (Hemiptera: Diaspididae) is one of the important pests of cedar trees particularly in urban ecosystem. The bio-ecology of T. cedricola on C. libani is examined four localities during the years 2008 and 2009 in Ankara. T. cedricola has two generations in a year and overwinters as mated females. The sex ratio of T. cedricola is changed 1.8:1-4.8:1 (♀:♂) all study areas in both generation and the sex ratio is strongly biased towards female that occur on cedar needles only. The first generation crawlers emerged in late May but the second brood L1 in late July. Adalia bipunctata (L.), Chilocorus bipustulatus (L.), Exochomus quadripustulatus (L.), Harmonia quadripunctata (Pont) (Coleoptera: Coccinellidae) and Cybocephalus fodori minor (Endrödy) (Coleoptera: Cybocephalidae) were determined as predator of the scale, while Diaspiniphagus moeris (Walker) (Hymenoptera: Aphelinidae) was only parasitioid species as natural enemy of T.
    [Show full text]
  • Communicationes 25.Indb
    GENETIC RESOURCES OF BEECH (FAGUS SYLVATICA) IN THE REPUBLIC OF MOLDOVA GHEORGHE POSTOLACHE – DRAGOS POSTOLACHE Botanical Garden (Institute), Academy of Sciences, Department of Geobotany and Forestry, Padurii 18, MD-2002 Chisinau, Republic of Moldova ABSTRACT This paper presents data about the natural distribution, establishment of natural distribution maps, diversity analysis, forest regeneration applications, inventory of genetic resources, in situ conservation and rational use of forest genetic resources of beech (Fagus sylvatica) in the Republic of Moldova. Key words: European beech (Fagus sylvatica), fag (in Moldavian), beech diversity, plant associations, natural species composition, natural distribution, maps of natural distribution, inventories of genetic resources, in situ conservation GENERAL CHARACTERISTICS Forests are the most inestimable, renewable natural resources and all forests belong to the first functional group, which means that the function of these forests is a protective one, according to Art. 14 of the Forest Code. The National Forest Fund of the Republic of Moldova covers 400,900 ha (11.0% of the country territory) including 362,700 ha covered by forests (10.7%) (Galupa et al. 2006). State forests are subject to forest management plans that provide the description of the state of forest biodiversity parameters: typological diversity of forests, species composition of forest sub-compartments, state of grassy cover, regeneration, etc. Deciduous species cover 97.8% and conifers 2.2%. The natural forests in Moldova consist of broadleaved formations of the Central European type. The main species components of the forest are pedunculate oak (Quercus robur), sessile oak (Q. petraea), pubescent oak (Q. pubescens) and beech (Fagus sylvatica). Their distribution depends on the altitudinal levels, on the exposure level and the degree of slope inclination, on the soil and other conditions.
    [Show full text]
  • Analysis of the Distribution of Epiphytic Lichens on Cedrus Libani in Elmali
    © Triveni Enterprises, Lucknow (India) J. Environ. Biol. ISSN : 0254-8704 30(2), 205-212 (2009) http : //www.jeb.co.in [email protected] Analysis of the distribution of epiphytic lichens on Cedrus libani in Elmali Research Forest (Antalya, Turkey) Gulsah Cobanoglu* 1 and Orhan Sevgi 2 1Department of Biology,Faculty of Arts and Science, University of Marmara, Goztepe Campus, TR-34722 Kadikoy-Istanbul, Turkey 2Department of Soil Science and Ecology, Faculty of Forestry, Istanbul University, TR-34473 Bahçekoy-Istanbul, Turkey (Received: August 16, 2007; Revised received: November 28, 2007; Accepted: December 10, 2007) Abstract: In order to evaluate environmental factors limiting distribution of species, diversity of epiphytic lichens was studied in 34 sites along an altitudinal gradient from 1300 to 1900 m on north-facing and south-facing slopes of Elmali Cedar Research Forest (Antalya province, Turkey) regarding the dispersion of lichens in different tree-diameter classes (0-15 cm, 15-30 cm, 30-45 cm, 45-60 cm and >75 cm). The results showed that the relationship between diameter classes with the number of lichen species was R 2=0.6022. The highest number of species was in the diameter class of 30-45 cm. There was a clear relationship between all parameters, diameter, altitude and aspect, with species richness. Changes in the community structure of the epiphytic lichen vegetation were detected along an altitudinal gradient revealing the highest species richness in the highest zone. The elevation affected both the number and the composition of the lichen communities and the relationship between the altitudinal zones with number of lichen species was designated as R 2=0.6462.
    [Show full text]
  • Forestry Activities in Turkey (In the Context of Climate Change)
    Forestry Activities in Turkey (In the Context of Climate Change) Ismail Belen Forest Engineer Deputy Director General General Directorate of Forestry Ministry of Environment and Forestry Republic of Turkey Email: [email protected] Web Page: www.ogm.gov.tr International Conference: Role of Forest in Climate Management 4-7 October 2008 St. Petersburg Russia Contents • About Turkey • Forest and Forestry in Turkey • Forestry Activities in the Context of Climate Change About Turkey Turkey, officially known as the Republic of Turkey, is located in the northern hemisphere where the two continents, Europe and Asia meet. The majority of its territory extends over the Anatolian peninsula, whereas the rest lies on the Thrace, the edge of the Balkan peninsula. Three sides of the country is surrounded by sea. Greece, Bulgaria, Georgia, Armenia, Azerbaijan, Iran, Iraq and Syria are its neighbors. About Turkey Official Language Turkish Capital Ankara Government Parliamentary Republic Area 779.452 km2 Population 70 million Forest Resources in urkey • Turkey is a rich country in terms of plant diversity. While there are nearly 12.000 plant species in the whole European continent, there are 10.000 species,3.500 of which are endemic, in Turkey. • Turkey’s forests are generally located in coastal and near the coastal area. Totally 21 million hectares area of land covered with forests and this comprises some 27% of national territory. But according to FAO’s figures only 13% of land covered with forests. • Over 99 % of the forests belong to the State. Intuitional Structure of Forestry GD of Env. Management GD of Env.
    [Show full text]
  • Compatible Volume and Taper Models for Economically Important Tree Species of Turkey Özçelik, John Brooks
    Compatible volume and taper models for economically important tree species of Turkey Özçelik, John Brooks To cite this version: Özçelik, John Brooks. Compatible volume and taper models for economically important tree species of Turkey. Annals of Forest Science, Springer Nature (since 2011)/EDP Science (until 2010), 2012, 69 (1), pp.105-118. 10.1007/s13595-011-0137-4. hal-00930708 HAL Id: hal-00930708 https://hal.archives-ouvertes.fr/hal-00930708 Submitted on 1 Jan 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annals of Forest Science (2012) 69:105–118 DOI 10.1007/s13595-011-0137-4 ORIGINAL PAPER Compatible volume and taper models for economically important tree species of Turkey Ramazan Özçelik & John R. Brooks Received: 27 June 2011 /Accepted: 9 September 2011 /Published online: 7 October 2011 # INRA and Springer-Verlag, France 2011 Abstract • Conclusion Based on our results, the taper equation of • Introduction The accurate estimation of stem taper and Clark et al. (1991) is recommended for estimating diameter at volume are crucial for the efficient management of the a specific height, height to a specific diameter, merchantable forest resources.
    [Show full text]