Nieuwe Vliegtuigen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aerospace Engine Data
AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16 -
Oxygen Systems
OXYGEN SYSTEMS AEROX HIGH-DURATION AVIATION AEROX PRO-O2 EMERGENCY OXYGEN SYSTEMS HANDHELD OXYGEN SYSTEMS Add to your flying comfort by using oxygen Provides oxygen until the aircraft can reach a lower at altitudes as low as 5000 ft. Aerox Oxygen altitude. And because Pro-O2 is refillable, there is no CM Systems include lightweight aluminum cyl in- need to purchase replacement O2 cartridges. During ders, regulators, all hardware, flow meter, short flights at altitudes between 12,500ft. MSL and and nasal cannulas (masks available as 14,000ft. MSL where maneuvering over mountains or turbulent weather option). Oxysaver oxygen saving cannulas is necessary, the Pro-O2 emergency handheld oxygen system provides & Aerox Flow Control Regulators increase oxygen to extend these brief legs. Included with the refillable Pro-O2 is WP the duration of oxygen supply about 4 times, a regulator with gauge, mask and a refillable cylinder. and prevent nasal irritation and dryness. Pro-O2-2 (2 Cu. Ft./1 mask)........................P/N 13-02735 .........$328.00 Aerox 2D Aerox 4M Complete brochure available on request. Pro-O2-4 (2 Cu. Ft./2 masks) ......................P/N 13-02736 .........$360.00 system system AEROX EMT-3 PORTABLE 500 SERIES REGULATOR – AN AIRCRAFT SPRUCE EXCLUSIVE! OXYGEN SYSTEM ME A small portable system designed for the occasional user • Low profile who wants something smaller and less costly than a full • 1, 2, & 4 place portable system. The EMT-3 is also ideal for use as an • Standard Aircraft filler for easy filling emergency oxygen system. The system lasts 25 minutes at • Convenient top mounted ON/OFF valve 2.5 LPM @ 25,000 FT. -
SP's Aviation June 2011
SP’s AN SP GUIDE PUBLICATION ED BUYER ONLY) ED BUYER AS -B A NDI I News Flies. We Gather Intelligence. Every Month. From India. 75.00 ( ` Aviationwww.spsaviation.net JUNE • 2011 ENGINE POWERPAGE 18 Regional Aviation FBO Services in India Interview with CAS No Slowdown in Indo-US Relationship LENG/2008/24199 Interview: Pratt & Whitney EBACE 2011 RNI NUMBER: DELENG/2008/24199 DE Show Report Our jets aren’t built tO airline standards. FOr which Our custOmers thank us daily. some manufacturers tout the merits of building business jets to airline standards. we build to an even higher standard: our own. consider the citation mustang. its airframe service life is rated at 37,500 cycles, exceeding that of competing airframes built to “airline standards.” in fact, it’s equivalent to 140 years of typical use. excessive? no. just one of the many ways we go beyond what’s required to do what’s expected of the world’s leading maker of business aircraft. CALL US TODAY. DEMO A CITATION MUSTANG TOMORROW. 000-800-100-3829 | WWW.AvIATOR.CESSNA.COM The Citation MUSTANG Cessna102804 Mustang Airline SP Av.indd 1 12/22/10 12:57 PM BAILEY LAUERMAN Cessna Cessna102804 Mustang Airline SP Av Cessna102804 Pub: SP’s Aviation Color: 4-color Size: Trim 210mm x 267mm, Bleed 277mm x 220mm SP’s AN SP GUIDE PUBLICATION TABLE of CONTENTS News Flies. We Gather Intelligence. Every Month. From India. AviationIssue 6 • 2011 Dassault Rafale along with EurofighterT yphoon were found 25 Indo-US Relationship compliant with the IAF requirements of a medium multi-role No Slowdown -
Cresis UAV Critical Design Review: the Meridian
CReSIS UAV Critical Design Review: The Meridian William Donovan University of Kansas 2335 Irving Hill Road Lawrence, KS 66045-7612 http://cresis.ku.edu Technical Report CReSIS TR 123 June 25, 2007 This work was supported by a grant from the National Science Foundation (#ANT-0424589). Executive Summary This report briefly describes the development of the three preliminary configuration designs proposed for the Meridian UAV. This report details the selection of the primary configuration and further, more detailed, analysis including Class II weight and Balance, Class II Stability and Control, Performance Analyses, Systems Design, Class II landing gear, structural arrangement, a manufacturing breakdown and a cost analysis. The design mission for this aircraft is to takeoff from a snow or ice runway, fly to a designated area, then use low frequency radar to perform measurements of ice sheets in Greenland and Antarctica. Three designs were developed: • A Monoplane with Structurally Integrated Antennas • A Monoplane with Antennas Hanging from the Wing • A Biplane with Antennas Structurally Integrated Into the Lower Wing The monoplane with antennas hanging from the wing was selected as the primary configuration for further development. This report describes the Class II design and analysis of that vehicle. i Acknowledgments This material is based upon work supported by the National Science Foundation under Grant No. AST-0424589. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and -
Proyecto Fin De Carrera Ingeniería Aeronáutica Desarrollo De Un
Proyecto Fin de Carrera Ingeniería Aeronáutica Desarrollo de un modelo de turbohélice de tres ejes. Análisis y evaluación de prestaciones en diferentes aplicaciones. Autor: Luca García Hernández Tutor: Francisco J. Jiménez-Espadafor Aguilar Dep. Ingeniería Energética Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2017 Proyecto Fin de Carrera Ingeniería Aeronáutica Desarrollo de un modelo de turbohélice de tres ejes. Análisis y evaluación de prestaciones en diferentes aplicaciones. Autor: Luca García Hernández Tutor: Francisco J. Jiménez-Espadafor Aguilar Catedrático Dep. Ingeniería Energética Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2017 Proyecto Fin de Carrera: Desarrollo de un modelo de turbohélice de tres ejes. Análisis y evaluación de prestaciones en diferentes aplicaciones. Autor: Luca García Hernández Tutor: Francisco J. Jiménez-Espadafor Aguilar El tribunal nombrado para juzgar el trabajo arriba indicado, compuesto por los siguientes profesores: Presidente: Vocal/es: Secretario: acuerdan otorgarle la calificación de: El Secretario del Tribunal Fecha: Agradecimientos Los proyectos finales de carrera encierran muchas historias de constancia y superación a lo largo del tiempo. Con este proyecto, pongo fin a una etapa muy importante de mi vida. Escribir estas palabras supone una gran satisfacción por la meta alcanzada y una gran alegría, pues supone el inicio de la etapa como ingeniero, en la que aplicar todo lo aprendido a lo largo de la carrera. Este proyecto me ha hecho profundizar considerablemente en el campo de los motores aeronáuticos y las herramientas para su modelado matemático. Ha sido muy enriquecedor para mí y seguro que los conocimientos aquí adquiridos, me serán de gran utilidad. Este logro no es sólo personal, pues sin la ayuda y el acompañamiento de muchas personas no podría haberlo conseguido. -
POLITECNICO DI MILANO Thermodynamic Analysis of A
POLITECNICO DI MILANO School of Industrial and Information Engineering Department of Aerospace Science and Technology Master of Science in Aeronautical Engineering Thermodynamic analysis of a turboprop engine with regeneration and intercooling Advisor: Prof. Roberto ANDRIANI M.Sc. Dissertation of: Rasheed Michael ISHOLA Matr. 895396 April 2020 Academic Year 2019-2020 Contents Introduction 1 1 Turbopropeller engines overview 2 1.1 Turbopropeller characteristics . .4 1.2 Comparison with turbojets and piston-powered engines . .4 1.3 Turbopropeller-powered aircrafts . .5 1.4 Turbopropeller manufacturers . .9 1.4.1 Pratt & Whitney Canada (PWC) [1] . .9 1.4.2 Rolls-Royce [2] . 17 1.4.3 General Electric Aviation [3] . 22 1.4.4 JSC Kuznetsov [4] . 26 1.4.5 JSC \UEC-Klimov" [5] . 27 1.4.6 Ivchenko-Progress ZMKB [6] . 28 1.4.7 Honeywell Aerospace [7] . 33 1.4.8 PBS Aerospace [8] . 34 2 Thermodynamics of a turbopropeller engine with heat exchange 36 2.1 Intercooling and regeneration . 36 2.2 Thermodynamic cycle . 39 2.2.1 Assumptions . 39 2.2.2 The cycle . 42 2.3 Performances . 48 3 The code 53 3.1 Assumptions and data used . 54 3.1.1 Efficiencies and pressure losses . 54 3.1.2 Fuel properties . 54 3.1.3 Specific heat values . 55 3.2 Code Structure . 57 3.2.1 Input file . 57 3.2.2 Output files . 58 3.2.3 Code details . 62 4 Numerical simulation 78 4.1 Results . 78 4.1.1 Determination of the best βn condition . 79 4.1.2 Performances vs βc .......................... -
Assembly Manual
MS:160 ASSEMBLY MANUAL “Graphics and specifications may change without notice”. Specifications: Wing span ------------------------------70.9in (180cm). Wing area -----------------613.8sq.in (39.6sq dm). Weight ------------------------9.7-10.6lbs (4.4-4.8kg). Length ------------------------------58.8in (149.3cm). Engine ------------------ 0.75-0.91cu.in -----2-stroke. 1.00-1.25cu.in -----4-stroke. Radio ------------------- 6 channels with 11 servos. Electric conversion: optional LANCAIR LEGACY Instruction Manual. INTRODUCTION. Thank you for choosing the LANCAIR LEGACY ARTF by SEAGULL MODELS COMPANY LTD. The LANCAIR LEGACY was designed with the intermediate/advanced sport flyer in mind. It is a semi scale airplane which is easy to fly and quick to assemble. The airframe is conventionally built using balsa, plywood to make it stronger than the average ARTF , yet the design allows the aeroplane to be kept light. You will find that most of the work has been done for you already.The motor mount has been fitted and the hinges are pre-installed . Flying the LANCAIR LEGACY is simply a joy. This instruction manual is designed to help you build a great flying aeroplane. Please read this manual thoroughly before starting assembly of your LANCAIR LEGACY . Use the parts listing below to identify all parts. WARNING. Please be aware that this aeroplane is not a toy and if assembled or used incorrectly it is capable of causing injury to people or property. WHEN YOU FLY THIS AEROPLANE YOU ASSUME ALL RISK & RESPONSIBILITY. If you are inexperienced with basic R/C flight we strongly recommend you contact your R/C supplier and join your local R/C Model Flying Club. -
Tutorial IEEE PHM SAFRAN AIRCRAFT ENGINES Dallas 2017
Tutorial IEEE PHM SAFRAN AIRCRAFT ENGINES Dallas 2017 Marion Jedruszek, François Demaison, Jerome Lacaille, Josselin Coupard, Guillaume Bastard, Yacine Stouky Prognostics & Health Monitoring @ Safran Safran Aircraft Engines, 77550 Moissy-Cramayel, France This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran SAFRAN AIRCRAFT ENGINES PHM / TUTORIAL CONTENTS Global PHM System Architecture Operational realizations System perimeter PHM Systems on CFM56 & Silvercrest engine Engine dysfunction analysis Gaining in confidence in a PHM System Engine wear modes Predictive & Effective maintenance System architecture 1 2 3 4 Introduction & Context Embedding a PHM System Why PHM for Aircraft Engines ? Constraints on airborne systems Harsh environment & monitoring Chapter progress bar 2 June 2017 / R& T 1 2 3 4 Q This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran 443 0,121 0,062 ABOUT US 0,062 3 June 2017 / R& T 1 2 3 4 Q This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran About us SAFRAN GROUP IN BRIEF 1/4 More than 70 successful 1 single-aisle commercial jet takes Ariane5 launches in a raw off every 2 seconds, powered by our engines 1 out of 3 helicopter Over 35,000 turbine engines sold power worlwide 17,300 nacelle transmissions, components in totaling over 850 service million flight-hours More than 40,000 500km of electrical wiring on an landings a day using our Airbus A380 equipment 4 June 2017 / R& T 2 3 4 Q This document and the information therein are the property of Safran. -
Lancair Legacy RG
Legacy PILOT’S OPERATING HANDBOOK and AIRPLANE FLIGHT MANUAL for the LEGACY Mfgr’s Serial No. ___________________________ Registration No. ___________________________ Owners will need to develop a Pilot’s Operating Handbook as part of the aircraft airworthiness process, and are encouraged to modify this document to help in that process. Legacy Legacy Published by Lancair International Inc. Redmond, Oregon 97756 Authorized Dealer Neico Aviation Inc. 2244 Airport Way Redmond, Oregon 97756 February 2008 iii Legacy Legacy PILOT’S OPERATING HANDBOOK and AIRPLANE FLIGHT MANUAL February 2008 Log of Revisions PAGES DESCRIPTION February 2008 iii Legacy Legacy INTRODUCTION This Lancair International Pilot’s Operating Handbook and Airplane Flight Manual is in the format and contains most data recommended in the GAMA (General Aviation Manufacturers Association) Handbook Specification Number 1. Use of this specification provides the pilot the same type data in the same place in all of the handbooks. For example, attention is called to Section X, SAFETY INFORMATION. We feel it is very important to have this information in a condensed and readily available location and format for the pilots immediate use when needed. This SAFETY INFORMATION should be read and studied by all opera- tors of the Lancair Legacy aircraft and will provide a periodic review of good piloting techniques for this aircraft. This manual will not replace safe flight instruction or good piloting techniques. NOTE Owner modifications to your Lancair may alter the applicability of this handbook which meets the GAMA specification #1 for pilots operating handbooks. WARNING Use only genuine Lancair approved parts obtained from authorized Lancair dealers when repairing and maintaining your Lancair Legacy. -
New Homebuilts No Renum 2013 to 2014 Xlsx
N# Registered Manufacturer Registered Model Name Catalog Name S/N 2214 JUNGSTER 1 1 130 440SS SEGA GARY E 5 5 S 94040013 482FD DAVID R DANTONIO 404 404 X69 66EM MATHERNE EWELL P 582 582 158 2428L SALTERS DANIEL L 7B-15 7B-15 001 498NS SHOWKER JAMES S A26 A26 A2610 495PA DANIEL K SAUL ADE RZ-7 ADE RZ-7 1001 967RJ WATKINS ROBERT M AEROBAT 100 AEROBAT 100 1001 101E NELSON ROGER AERONICA T AERONICA T 1 72417 MERLIN D. PEAY HOBBY-COPTER AH 1 AH 1 2001 503NS SHEKLETON NOEL AIR COMMAND 503 AIR COMMAND 503 S-1 175EC CHARLES D REICHERT AL3 AL3 TX-1033 49AX DENNY ROGER A ALASKA 18 ALASKA 18 0050 312TJ BALENTINE THOMAS J ALLIED T J ALLIED T J 023 504WM MARTIN WILLIAM S ALLIED T J ALLIED T J 022 914AG ABID FAROOQUI APOLLO AG1 APOLLO AG1 USA220713 58835 MCKINSTRY JIM H ARESTI GANADOR ARESTI GANADOR JM-4AG 805PV PEACHEY SAM ARION LIGHTNING ARION LIGHTNING 160 87HC JOHN FRANKLIN AURORA BUTTERFLY AURORA BUTTERFLY B146 342DZ DANIEL ZELAZO AUTOGYRO CALIDUS AUTOGYRO CALIDUS C00342 509PH JOSHUA HUMPHREYS AUTOGYRO CAVALON AUTOGYRO CAVALON V00139 509QB MICHAEL BURTON AUTOGYRO CAVALON AUTOGYRO CAVALON V00138 832TX JASON KNIGHT AUTOGYRO GMBH MTO SP AUTOGYRO GMBH MTO SP M01088 271SF JOHN CHEDESTER AUTOGYRO MTO SPORT AUTOGYRO MTO SPORT M01050 504RD RODNEY L DRISKELL AUTOGYRO MTO SPORT AUTOGYRO MTO SPORT M01072 508FM CRAIG MCPHERSON AUTOGYRO MTO SPORT AUTOGYRO MTO SPORT M01096 502NP ALEXANDER ROLINSKI AVENTURA II AVENTURA II AA2A0166 2378E AVIOTEC SRL AVIASTOL AVIASTOL 001 846WT NOBLE TRAVIS E AVID C AVID C 846 341RP PRANGE RICHARD L AVID C PLUS AVID C PLUS 001 -
Revised Listing of Amateur Built Aircraft Kits
REVISED LISTING OF AMATEUR-BUILT AIRCRAFT KITS Updated on: June 22, 2021 The following is a revised listing of aircraft kits that have been evaluated and found eligible in meeting the “major portion” requirement of Title 14, Code of Federal Regulations (14 CFR) Part 21, Certification Procedures for Products and Parts, specifically, § 21.191(g). • This listing is only representative of those kits where the kit manufacturer or distributor requested an evaluation by the Federal Aviation Administration (FAA) for eligibility and should not be construed as meaning the kit(s) are FAA “certified,” “certificated,” or “approved.” • There are other aircraft kits that may allow a builder to meet the “major portion” requirement of § 21.191(g), but those manufacturers or distributors have not requested an FAA evaluation. • The placement of an aircraft kit on this list is not a prerequisite for airworthiness certification. • The primary purpose of this listing is to assist FAA Inspectors/Designees and other interested individuals by eliminating the duplication of evaluations for “major portion” determination when the aircraft is presented for airworthiness certification as an “Amateur-Built Experimental.” • Kit manufacturers or distributors whose status is unknown are identified with a question (?) mark and their address has been deleted. Additional Information and Guidance • Advisory Circular (AC) 20-27G, Certification and Operation of Amateur-Built Aircraft. • FAA Order 8130.35B, Amateur-Built Aircraft National Kit Evaluation Team • Contact your local FAA Flight Standards District Office (FSDO) or Manufacturing Inspection District Office (MIDO). Those publications and other information pertaining to amateur-built experimental aircraft are available online at http://www.faa.gov/aircraft. -
Airman Transition to Experimental Or Unfamiliar Airplanes
U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Airmen Transition to Experimental or Date: 3/30/11 AC No: 90-109 Unfamiliar Airplanes Initiated by: AFS-800 Change: 1. PURPOSE. This advisory circular (AC) provides information and guidance to owners and pilots of experimental airplanes and to flight instructors who teach in these airplanes. This information and guidance contains recommendations for training experience for pilots of experimental airplanes in a variety of groupings based on performance and handling characteristics. This AC does not address the testing of newly built experimental airplanes. The current edition of AC 90-89, Amateur-Built Aircraft and Ultralight Flight Testing Handbook, provides information on such testing. However, if a pilot is planning on participating in a flight- test program in an unfamiliar experimental airplane, this AC should be used to develop the skills and knowledge necessary to safely accomplish the test program using AC 90-89. This AC may also be useful in planning the transition to any unfamiliar fixed-wing airplanes, including type- certificated (TC) airplanes. 2. BACKGROUND. a. Experimental Airplanes. The experimental airplane community is an important part of the civil aviation industry in the United States; some of aviation’s greatest technological achievements were developed by amateur airplane builders. The amateur builder community is foundational to General Aviation (GA) in the United States (U.S.); however, recent trends in experimental airplane accidents have indicated a need for increased effort to ensure the preparation of pilots for the challenges of these airplanes. Historically, experimental airplane flight operations represent a small component of flight hours, but a significant percentage of GA accidents.