(12) United States Patent (10) Patent No.: US 8,545,608 B2 Sawada Et Al
Total Page:16
File Type:pdf, Size:1020Kb
USOO8545608B2 (12) United States Patent (10) Patent No.: US 8,545,608 B2 Sawada et al. (45) Date of Patent: Oct. 1, 2013 (54) SILICATE MATERIALS, METHOD FOR 6,068,682 A 5, 2000 Kuznicki et al. 6,129,846 A 10/2000 Gadkaree THEIR MANUFACTURE, AND METHOD FOR 6,387,159 B1 5, 2002 Butwell et al. USING SUCH SILICATE MATERALS FOR 6,610,124 B1 8, 2003 Dolan et al. ADSORPTIVE FLUID SEPARATIONS 6,632,767 B2 10/2003 Huo et al. 2003.0049200 A1 3/2003 Kuznicki et al. (75) Inventors: James A. Sawada, Vancouver (CA); 2006/0229466 A1 10/2006 Arhancet et al. Edward J. Rode, Surrey (CA); Steven 2008/0092737 A1 4/2008 Storbo et al. M. Kuznicki, Edmonton (CA); FOREIGN PATENT DOCUMENTS Christopher Chih Itao Lin, Edmonton EP O 068 796 A1 1, 1983 (CA) EP O 121 232 A2 10, 1984 WO 85/04855 A1 11, 1985 (73) Assignee: The Governors of the University of WO 85/0485.6 A1 11F1985 Alberta, Edmonton, Alberta (CA) WO WO99,32404 7, 1999 (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 Lin, “Synthesis and Structural Characterization of Microporous U.S.C. 154(b) by 0 days. Umbite, Penkvilksite, and Other Titanosilicates.” J. Phys. Chem. B 101:7114-7120, May 30, 1997. (21) Appl. No.: 13/327,331 International Search Report dated Jan. 18, 2008 in International Application No. PCT/US2007/014523, 3 pages. (22) Filed: Dec. 15, 2011 Written Opinion of International Searching Authority dated Jan. 18, 2008 in International Application No. PCT/US2007/014523, 4 (65) Prior Publication Data pageS. STIC Search titled “U.S. Appl. No. 12/308,550” dated Mar. 7, 2011. US 2013/0014644 A1 Jan. 17, 2013 D.W. Breck, Zeolite Molecular Sieves, 1974, Chapter 2. E.M. Flanigan et al. Aluminophosphate Molecular Sieves: A New Class of Microporous Crystalline Inorganic Solids, J. Am. ChemSoc. Related U.S. Application Data 1982, 104, pp. 1146-1147. (63) Continuation of application No. 12/308,550, filed as E.M. Flanigan et al. Aluminophosphate Molecular Sieves and the application No. PCT/US2007/014523 on Jun. 22, Periodic Table, Proceedings of the 7th International Zeolite Confer ence 1986, pp. 103-112. 2007, now abandoned. M. Taramasso et al. Moledular Sieve Borosilicates, Proceedings of (60) Provisional application No. 60/817,536, filed on Jun. the 5th International Zeolite Conference 1980, pp. 40-48. 28, 2006. W.J. Ball et al. The Synthesis and Characterisation of Iron Silicate Molecular Sieves Sieves, Proceedings of the 7th International Zeolite (51) Int. Cl. Conference 1986, pp. 137-144. BOLD 53/02 (2006.01) D.W. Break, Zeolite Molecular Sieves 1974. The Synthetic Zeolites, (52) U.S. Cl. p. 322. USPC ...... 96/108; 95/90; 95/96; 423/700; 423/718; (Continued) 502/60: 502/64: 502/67: 502/68 (58) Field of Classification Search Primary Examiner — Christopher P Jones USPC ................. 95/90, 96; 423/700, 718: 502/60, (74) Attorney, Agent, or Firm — Eric J. Schaal 502/64, 67, 68 See application file for complete search history. (57) ABSTRACT Embodiments of crystalline, titanium silicate molecular (56) References Cited sieves are described having a formula representing mole ratios of oxides of U.S. PATENT DOCUMENTS 2,882.243 A 4, 1959 Milton 2,882.244. A 4, 1959 Milton where M refers to a metal cation or mixture of metal cations: 3,329,481 A 7/1967 Young et al. n is from about 1 to about 2; y is from about 1 to about 10: Z 4,280,305 A 7, 1981 Logsdon is from 0 to about 100; X is a halide anion other than fluorine, 4.410,501 A 10, 1983 Taramasso et al. 4,524,055 A 6, 1985 Onodera et al. or combination of halide anions that excludes fluorine; and w 4,603,040 A 7, 1986 Kuznicki et al. is greater than 0. The pore size of the sieves can be adjusted by 4,606,899 A 8, 1986 Butter et al. ion exchanging M cations with a suitable amount of another 4,853,202 A 8, 1989 Kuznicki species. Embodiments of the invention are useful for various 4,938,939 A 7, 1990 Kuznicki adsorptive fluid separation processes, including pressure 4,994,191 A 2, 1991 Kuznicki et al. 5,208,006 A 5, 1993 Kuznicki et al. Swing adsorption processes. For example, disclosed embodi 5,244,650 A 9, 1993 Kuznicki et al. ments are useful for separating methane from air. 5,374,747 A 12/1994 Saxton et al. 5,989,316 A 11/1999 Kuznicki et al. 19 Claims, 12 Drawing Sheets US 8,545,608 B2 Page 2 (56) References Cited A.N. MerKov et al, New Minerals and First Finds in the USSR, Zapiski Vsesoyuznogo Mineralogichiskogo Obshchevstva 1973, Part C11, No. 1, pp. 54-62. OTHER PUBLICATIONS P.A. Sandomirskii et al. The OD Structure of Zorite, Sov. Phys. Crystallogr. 24(6), Nov.-Dec. 1979, pp. 686-693. R.M. Barrer, Hydrothermal Chemistry of Zeolites Isomorphous Hongbin Du et al., “Synthesis and characterization of titanium sili Replacements 1982, p. 292-293. cate molecular sieves with Zorite-type structure.” Microporous Mate G. Perego etal, Titanium-Silicalite: a Novel Derivative in the Pentasil rials, 7 (1996), pp. 73-80. Family, Proceedings of 7th International Zeolite Conference 1986, P. A. Sandomirskii et al., “The OD structure of Zorite.” Sov. Phys, pp. 129-136. Crystallogr. 24(6), Nov.-Dec. 1979, pp. 686-693. U.S. Patent Oct. 1, 2013 Sheet 1 of 12 US 8,545,608 B2 era.S 1 OOO 800 600 400 Fig 1 a 200 O 20 40 60 8O Degrees (2theta) 1600 1 2 O O 800 Fig 1b 400 O 20 40 6O 8O Degrees (2theta) 800 O O O O Fig 1c 2 O O O O 2O 40 60 8O Degrees (2theta) 6 O O 400 Fig 1d 200 O 20 40 60 8O Degrees (2theta) U.S. Patent Oct. 1, 2013 Sheet 2 of 12 US 8,545,608 B2 600 Fig 1e O 2O 4O 60 80 Degrees (2theta) 12000 era. 1 O O O O 8000 6OOO Fig 1f 4000 2OOO O 2O 40 60 80 Degrees (2theta) 1OOOO 80OO 6OOO Fi 9. 1 8 4000 2000 O 20 40 60 8O Degrees (2theta) U.S. Patent Oct. 1, 2013 Sheet 3 of 12 US 8,545,608 B2 3 5 ar Methane 2 S 25 s 15 FIG. 2a 5 Air -5 O 2 4 Retention time (min) 40 Methane g a 30 d 20 a FIG. 2b f 10 Air O O 2 4 Retention time (min) 11 Methane E 9 g e FIG. 2C ge 7 Oxygen Nitrogen O 2 4 Retention time (min) U.S. Patent Oct. 1, 2013 Sheet 4 of 12 US 8,545,608 B2 3. 8 ethane -4. 3 -4 8 FIG. 2d Oxygen Nitrogen 5. 3 -5, 8 O 2 4. Retention time (min) 25 FIG. 26 O O 2 4. Retention time (min) U.S. Patent Oct. 1, 2013 Sheet 5 of 12 US 8,545,608 B2 24 CH4 Fig 2f >g 108 Figs 2k in S 6 52 9 d 4 a O2 N2 is 2 O O O 1 2 3 4 5 O 1 2 3 4. 5 Retention time (min) Retention time (min) 15 > CH4 Fig 2g 22 68 Figsk 2 is 1 E O2 4 0.5- N2 E isto 2 O O O 1 2 3 4 5 O 1 2 3 4 5 Retention time (min) Retention time (min) a a2 1.5ficH4 Fig 2h g 6 CH4 Fig.2m is 54 O2 N2 () S 5 0.5 2 2 - O2 O O O 1 2 3 4. 5 O 2 3 4 5 Retention time (min) Retention time (min) 15 22 CH4 Fig 2i 2-n. CH4 FigD 2n 1 O2 N2 S 4 E 2 0.5 () - so 2 o2 O O - 0 1 2 3 4 5 O 1 2 3 4 5 Retention time (min) Retention time (min) 8 CH4 22.22.5 CH4 FigA 2jA 22 Fig 20 2 S 1.5 O2 N2 a 6 9 d. 1 4 F is 0.5 S is 2 O2 O O 3. on-w- O 1 2 3 4 5 O 1 2 3 4 5 Retention time (min) Retention time (min) U.S. Patent Oct. 1, 2013 Sheet 6 of 12 US 8,545,608 B2 w Fig 2u O 1 2 3 4 5 O 1 2 3 4 5 Retention time (min) Retention time (min) 2268 Ar/O2 Fig. 2d g 10. Fig 2v 2 5 4 25 9d 2d 5 E 2 E is O -- -ri- O O 1 2 3 4 5 O 1 2 3 4. 5 Retention time (min) Retention time (min) 2's10 "O Fig 2r 22 68 - AfNO2 Fig 2w is is 4 E 2 22 O O O 1 2 3 4 5 O 1 2 3 4. 5 Retention time (min) Retention time (min) 8 Ar/O2 Fi 8 e r2 6 idC 2ZS 22 6 ArO2 Fid9 2x 5 S P 4 P 4 - 9d 9d s 2 E is 2. O -- O - O 1 2 3 4. 5 O 1 2 3 4 5 Retention time (min) Retention time (min) 5 B 8 24 - AIO2 Fig.2t a 26 Fig 2y of 23 4 E 1 E 5 2 O O T- - O 1 2 3 4 5 O 1 2 3 4.