New Mineral Names*

Total Page:16

File Type:pdf, Size:1020Kb

New Mineral Names* American Mineralogist, Volume 69, pages 810-815, 1984 NEW MINERAL NAMES* Pere J. DuuN. Mrcunel FLerscHEn, Cenl A. FneNcrs, Rrcgnno H. LnNcr-ey, SrepneN A. KlssrN, Jnur,s E. Snrcr-By. Devro A. VnNxo. AND JANETA. Zl-czen Ascharnalmite* 016 . 7.01 H2O. The ideal formula is CaMn?* Si3 016 . 7H2O. Mn valenceassigned the the relation- W. G. Mumme, G. Niedermayr,P. R. Kelly, and W. H. Paar on basisof Gladstone-Dale ship and the red color of the crystals. Bostwickite is readily (1983)Aschamalmite, Pb5.e2Bi2 66Se, from UntersulzbachVal- soluble in | : I HCl. to mineral ley in Salzburg,Austria-"monoclinic heyrovskyite". Neues It does not belong any known Jahrb.Mineral., Monat., 413444. family. Bostwickite crystals are not suitable for single crystal X-ray Microprobeanalysis yielded Pb 62.95,Bi 22.56,and S 14.89, study. The strongestlines (19 given) in the unindexedpowder sum 100.4%,which givesan empiricalformula (on the basisof S patternare: I l. 3(100), 3. 548(30), 2,898(30), 2.567 (40), 2.262(25), : 9) Pb58eBi2.osse. The normalized empirical formula (on the and,2.238(25\.D meas.2.93. basis of S : 8.96 to maintain charge balancefor the given metal Bostwickite was found at Franklin, New Jersey in 1874 as content) is Pb5e2Bi2.66Se. Single-crystal Weissenberg X-ray data divergent sprays of bladed crystals about 250 pm in length. It is from a small prismatic crystal showed it to be monoclinic. sp-ace opticallybiaxial negative,2V : 25", a = 1.775(5), = 1.798(3), " F grotp C2lm,Cm, or C2, with a : 13.71,b = 4.09,c : 3l .434,P y: 1.E00(3);strong dispersion r < y; stronglypleochroic X = f = 91.0",V = 1762.1.3.43.The strongestX-ray lines(32 given) are = red-brown, 7 : yellow-brown; absorption X = Y > Z. Optical 3.42(r00x209), 3.378(88X208),2.941(s4)(n7), 2.926ts4)Gtr, orientation describedonly relative to crystal shape:Zil length, Izll 2.861(48X20,m),and 3.s25(42XI t4). width, Xll thin dimension of laths. H approximately L The mineraloccurs as lead-gray,lathJike crystalsto 5 cm in The namehonors Richard C. Bostwick, a collectorof Franklin lengthor thick, slightlybent plates up to I cm2.Most crystalsare minerals. Type specimens are preserved in the collections of heavily altered to a mixture of bismutite and other as yet Harvard University and the United States National Museum unidentifiedphases. Exsolution lamellaeof galenaand cosalite (SmithsonianInstitution). arecommonly present. Luster metallic,cleavage (001) perfect, D Discussion: The optical data imply that the mineral is ortho- 7.33 derived from the normalized empirical formula. Creamy rhombic. C.A.F. white in reflectedlight without discerniblepleochroism in air. Moderatelyanisotropic gray to red-brown.Hardness (VHNzs) : 150-l8l kg/mm2.Reflectance in air (nm,Vo)470, 45.1-48.1; 546, 43.4-46.3;589, 42.9-46.3: 650. 42.946.1. Clinokurchatovite* Aschamalmiteis found in mineralized,alpine-cleft veins cut- S. V. Malinko and N. N. Pertsev (1983)Clinokurchatovite, a ting through gneiss near Ascham Alm in the Untersulzbach new structural modification of kurchatovite. Zapiski Vses. Valley associatedwith quartz, albite, adularia,calcite, chlorite, Mineralog.Obshch., ll2, 483487. andgalena. It is closelyrelated to heyrovskyiteand severalother naturaland syntheticphases in the Bi2S3-PbSsystem. It is not Analyses of several grains of the mineral by electron rnicro- thought to be a dimorph of heyrovskyitebecause the latter is probe showed variable composition CaO 32.29-32.5, MgO alwaysAg-substituted. 21.21-22.6,MnO 0.4-1.82, FeO 6.16-8.2, BzOr Oy difference The nameis for the locality.Type materialis in the Museumof from 1007a)37.1-38.52. sum 100.002o.The ideal formula is Natural History in Vienna, Austria, and at the Division of Ca(Mg,Fe,Mn)B2O5.Analyses of kurchatovite are given for Mineral Chemistry,csrRo, Port Melbourne,Victoria, Australia. companson. J.E.S. X-ray study shows the mineral to be monoclinic, unit cell a = 12.19+0.074,D = 10.95+0.05A,c : 5.59+0.02A.The strongest lines (49 given) are 3.093(S0X230),3.045(t00X221), 2.799(100) Bostwickite* (102); 2.586(50)(231), 2.027(s0)(3tz), 1.937(80X042), 1.236(s0)(s72). P. J. Dunn and P. B. Leavens(1983) Bostwickite, a new calcium The mineral occurs as a modification of earlier formed kurcha- manganesesilicate hydrate from Franklin, New Jersey.Miner- tovite, and forms polysynthetically-twinnedcrystals several al. Mag., 47 387-389. tenths to 2 mm in size. It is associated with kurchatovite, An electron microprobe analysisgave MgO 0.9, CaO 5.1, suanite, ludwigite, szaibelyite, magnetite, pyroxene, harkerite, Mn2O356.3, Fe2O3 0.5, Al2O3 1.0, As2O5 1.0, SiOr 20.l, HrO l5.l sakhaite,calcite, vesuvianite, clinohumite, svabite and sphaler- (by difference), sum 100 wt.Valeading to the empirical formula ite in borate-bearingrocks in a numberof areas.H 4.5. D 3.07- 3.08 (hydrostaticsuspension). (ca6 75Mg6'n)>o ,s(Mn3lnrFealor)>u 02(Si2 roAlo ,uAsSlor)>,o, Optically biaxial, zs a: 1.642- 1.U4, B : 1.674-1.675,"y = 1.699-1.704(all +0.002),2V : E2- E8'meas., t0l0l n Z: 52",t0l0l n IZ= 38", tl00l n Z = 26", * Minerals marked with asteriskswere approved before publica- tl00lnY=64". tion by the Commissionon New Minerals and Mineral Names of Samplesof clinokurchatoviteare at the MineralogicalMuse- the International Mineralogical Association. um,Acad. Sci. USSR, Moscow. D.A.V, 0003-004x/84/0708-08l 0$0. 50 810 NEW MINERAL NAMES 8il Daqingshanite* 5.2e(I00)( rT l ), 4.47 (30)(rt1 ,200 ,zTD , 3.4s2(3o)(1T2) , 3.277 (40)(012,320,2r r), 3.2 r 3(30X l 30). R. Yingchen,X. Lulu, and P. Zhizhong(1983) Daqingshanite, a Ferrostrunzite occurs as flattened prisms to 0.5 mm that are new mineral recently discovered in China. Geochemistry elongated parallel to and are flattened parallel to the (China),2, 180-184(in English). [001] pinacoid {100}.Light brown color and streak. H (est.) about 4. D Analysis by wet chemical (?) methods and gas chromatogra- calc.2.57, meas. 2.50. Very brittle. Luster vitreous.Cleavages: phy gaveBaO 15.9E,SrO 26.10, CaO 6.17, MnO 0.02,MgO 0.72, parallel to the length of the crystal; a secondperpendicular to the RE oxides 20.736,'lho2 0.04, Al2q 0.18, Fe2O30.21, P2O5 optic normal; and a third perpendicular to Bra. Optically biaxial 11.73,CO216.19,K2O 0.03, NazO 0.13, H2O+ 0.68, F 0.80,sum (-),2V: 80(5)',a = 1.628(2),B: r.682(calc.),y = l.7B@), 99.716 - (O-Fr) = 9.376Vo. This corresponds to an empirical Znc - 3-4". Dispersion moderate and asymmetric. Absorption formula of (Srr 53Ca667Baa 53Mg6 I 1Na6or)z su (REo ,"Alo oz minimum parallel to Z. PleochroismX : faint yellow-green,Z : Fe8ir)o eo(por)roo(Co:)z 23(oH)o 46ForuUo or)o rn, or ideally (Sr, faint red-yellow. Ca,Ba)3RE(PO4XCO3)3-*(OH,F)"whereSr)Ca, BaandOH > F, Ferrostrunzite is found as radiating spraysoffibrous prismatic and x = y : 0.8. The rare earth oxideswere La2O37.88, CezOr crystals encrusting rockbridgeite which has replaced fossil bel- 10.16,PruOtt 0.70, Nd2O3 1.59, Sm2O3 0.106, Eu2O3 0.02, Gd2O3 emnites. These fossils occur in Cretaceoussediments along 0.12,Tb4O7 0.05, Dy2O30.03, Ho2O30.03, Er2O30.01, Tm2O3 Raccoon Creek near Mullica Hill. The mineral is named for its 0.01,Yb2Or 0.02, and LuzOr0.01. isostructural relationship with strunzite and its unique chemis- X-ray study (Weissenberg,oscillating crystal) shows the min- try. Samples are preserved at the Smithsonian Institution in eral to be trigonal with a rhombohedrallattice, spacegroup R3m, Washington.J.E.S. R3m, or R32. Unifcell^parameters (hexagonalorientation) a : 10.05E(3),c:9.225(3)4, y:808.2026A3,2 = 3, and(rhombo- : : = hedralorientation) cs 6.570(3)4,an 9.87(3)", V 26934A3. Hingganite-(Yb)* Strongest powder diffraction lines (for FeKa; 25 given) are 3.95(60X202T).3. I6( | 00X2022),2.52(70)Q24U. 2. I I (50X303-3), A. V. Voloshin,Ya. A. Pakhomovskii,Yu. P. Men'shikov,A. S. (1983) 2.04(60)(202-4,| .94 | (6qQ4B ). U ni t -ce I I parameters confirmed Povarennyk,E. N. Matvinenko,and O. V. Yakubovich by both ditrraction and single-crystalmethods. Hingganite-(Yb), a new mineral from amazonitepegmatites of Daqingshanite occurs as small, rhombohedral crystals with the Kola Peninsula,Doklady Akad. Nauk S.S.S.R.270,ll88- rounded edgesabout 0.05 mm in size. Color pale yellow, luster ll92 (in Russian). greasy-glassy,streak white, cleavage{l0Tl} perfect,conchoidal Electron microprobe analyses of hingganite and hingganite- fracture. MicrohardnessVHN29 335, D calc. 3.71, meas. 3.81. (Yb) gave,respectively, Y2Og 24.E3,8.56 ; YbzOr 17.02,34.07; Optically uniaxial (-), = = e 1.609,r.r 1.708,colorless in thin Er20 7 6. 47, 8.22 ; D yzO t 2. 13,2. 47 ; LuzOt I .87, 4. 50 ; TmzO3I .38, section, non-fluorescentin UV light. Exhibits infrared absorp- 3.10;HozOg 0.21, 1.03; Tb2O3 0.33, 0.05; CaO 2.3E,1.14; PbO tion bandsfor CO2, POa,and HzO. Hardly soluble in ammonium 0.52,- ; Fe2O31.46, - ; AlzOr0.10, - ; SiO226.43, 22.11 ;BeO acetate but readily dissolved in dilute hydrochloric acid. 10.50,10.90 ; HzO (by difference)3.92,3.74%. For hingganite- The mineral occurs in monomineralic aggregatesin veins (Yb), this gives (Yb6 a5Yg26Er6.11Lu6.65,Cas 65Tm6 *Dyo or cutting dolomite in the footwall zone of the Bayan Obo iron ore Ho6,61)H1e6Be1 13Si6e6Os, or (Yb,Y)BeSiO+(OH) (for hing- deposit.
Recommended publications
  • Paralaurionite Pbcl(OH) C 2001-2005 Mineral Data Publishing, Version 1
    Paralaurionite PbCl(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals are thin to thick tabular k{100}, or elongated along [001], to 3 cm; {100} is usually dominant, but may show many other forms. Twinning: Almost all crystals are twinned by contact on {100}. Physical Properties: Cleavage: {001}, perfect. Tenacity: Flexible, due to twin gliding, but not elastic. Hardness = Soft. D(meas.) = 6.05–6.15 D(calc.) = 6.28 Optical Properties: Transparent to translucent. Color: Colorless, white, pale greenish, yellowish, yellow-orange, rarely violet; colorless in transmitted light. Luster: Subadamantine. Optical Class: Biaxial (–). Pleochroism: Noted in violet material. Orientation: Y = b; Z ∧ c =25◦. Dispersion: r< v,strong. Absorption: Y > X = Z. α = 2.05(1) β = 2.15(1) γ = 2.20(1) 2V(meas.) = Medium to large. Cell Data: Space Group: C2/m. a = 10.865(4) b = 4.006(2) c = 7.233(3) β = 117.24(4)◦ Z=4 X-ray Powder Pattern: Laurium, Greece. 5.14 (10), 3.21 (10), 2.51 (9), 2.98 (7), 3.49 (6), 2.44 (6), 2.01 (6) Chemistry: (1) (2) (3) Pb 78.1 77.75 79.80 O [3.6] 6.00 3.08 Cl 14.9 12.84 13.65 H2O 3.4 3.51 3.47 insol. 0.09 Total [100.0] 100.19 100.00 (1) Laurium, Greece. (2) Tiger, Arizona, USA. (3) PbCl(OH). Polymorphism & Series: Dimorphous with laurionite. Occurrence: A secondary mineral formed through alteration of lead-bearing slag by sea water or in hydrothermal polymetallic mineral deposits.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Its Crystal Structure and Relationship to A-Pbf2
    American Mineralogist, Volume 81, pages 1277-1281, 1996 Laurelite: Its crystal structure and relationship to a-PbF2 STEFANO MERLINO,! MARCO PASERO,! NATALE PERCHIAZZI,! AND ANrHONY R. KAMPF2 lDipartimento di Scienze della Terra, UniversitA di Pisa, via S. Maria 53, 1-56126 Pisa, Italy 2Mineralogy Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A. ABSTRACT Laurelite, Pb7F12CI2, from the Grand Reefmine, Graham County, Arizona, is hexagonal, Po, with a = 10.267(1) and c = 3.9844(4) A and Z = 1. The crystal structure was solved by direct methods and refined to R = 0.035 and RW2= 0.089 for 693 measured reflections (Fo > 9O'Fo)' The structure is related to that of a-PbF2. Both are based upon ninefold-coordinated Pb as tricapped trigonal prisms (TCTPs), which share edges and faces. The two structures can be described with respect to the face-sharing linkages of their TCTPs. The structure of a-PbF2 consists of corrugated sheets of face-sharing TCTPs that interlock by edge-sharing perpendicular to the c axis. In laurelite, the Pb2 TCTPs form three-membered face-sharing clusters about the threefold axis that are propagated into trigonal cylinders by sharing faces in the direction of the c axis. The Pb 1 and Pb3 TCTPs are linked by face-sharing into a three-dimensional framework with corresponding cylindrical voids. Asymmetric coordi- nations about Pbl and Pb2 are attributed to the stereoactive lone-pair effect. Although the coordinations about the anions appear to disallow substitution of OH for F, stacking defects along the c axis provide a mechanism for accommodating limited OH or H20 for F substitution.
    [Show full text]
  • An Improved Approach to Crystal Symmetry and the Derivation And
    71-22,530 SHANKLIN, Robert Elstone, 1915- AN IMPROVED APPROACH TO CRYSTAL SYMMETRY AND THE DERIVATION AND DESCRIPTION OF THE THIRTY- TWO CRYSTAL CLASSES BY MEANS OF THE STEREOGRAPHIC PROJECTION AND GROUP THEORY. The Ohio State University, Ph.D., 1971 Mineralogy University Microfilms, A XEROX Company , Ann Arbor, Michigan ©Copyright by Robert Elstone Shanklin 1971 AN IMPROVED APPROACH TO CRYSTAL SYMMETRY AND THE DERIVATION AND DESCRIPTION OF THE THIRTY-TNO CRYSTAL CLASSES BY MEANS OF THE STEREOGRA.PHIC PROJECTION AND GROUP THEORY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Robert Elstone Shanklin, A. B., M.S ★ * * * * Approved By Department of Mineralogy PLEASE NOTE: Some pages have indistinct print. Filmed as received. UNIVERSITY MICROFILMS. PREFACE The subject of order in the natural world is a favorite topic of scientists and philosophers alike. If there is any order in the universe, the crystalline state seems to be an excellent place to find it. That which is orderly should be comprehensible. There is no reason why a subject as rich in educational value, as reward­ ing in intellectual content, and as full of aesthetic satisfaction as crystallography should remain behind a veil of obscurity, the property of a few specialists. As a teacher of crystallography and mineralogy for many years, it has become apparent to me that existing textbooks often do not serve the needs of either students or instructors. The material generally available on elementary crystallography seems to vary between excessively abstruse and involved on the one hand, or too brief on the other.
    [Show full text]
  • Alphab Etical Index
    ALPHAB ETICAL INDEX Names of authors are printed in SMALLCAPITALS, subjects in lower-case roman, and localities in italics; book reviews are placed at the end. ABDUL-SAMAD, F. A., THOMAS, J. H., WILLIAMS, P. A., BLASI, A., tetrahedral A1 in alkali feldspar, 465 and SYMES, R. F., lanarkite, 499 BORTNIKOV, N. S., see BRESKOVSKA, V. V., 357 AEGEAN SEA, Santorini I., iron oxide mineralogy, 89 Boulangerite, 360 Aegirine, Scotland, in trachyte, 399 BRAITHWAITE, R. S. W., and COOPER, B. V., childrenite, /~kKERBLOM, G. V., see WILSON, M. R., 233 119 ALDERTON, D. H. M., see RANKIN, A. H., 179 Braunite, mineralogy and genesis, 506 Allanite, Scotland, 445 BRESKOVSKA, V. V., MOZGOVA, N. N., BORTNIKOV, N. S., Aluminosilicate-sodalites, X-ray study, 459 GORSHKOV, A. I., and TSEPIN, A. I., ardaite, 357 Amphibole, microstructures and phase transformations, BROOKS, R. R., see WATTERS, W. A., 510 395; Greenland, 283 BULGARIA, Madjarovo deposit, ardaite, 357 Andradite, in banded iron-formation assemblage, 127 ANGUS, N. S., AND KANARIS-SOTIRIOU, R., autometa- Calcite, atomic arrangement on twin boundaries, 265 somatic gneisses, 411 CANADA, SASKATCHEWAN, uranium occurrences in Cree Anthophyllite, asbestiform, morphology and alteration, Lake Zone, 163 77 CANTERFORD, J. H., see HILL, R. J., 453 Aragonite, atomic arrangements on twin boundaries, Carbonatite, evolution and nomenclature, 13 265 CARPENTER, M. A., amphibole microstructures, 395 Ardaite, Bulgaria, new mineral, 357 Cassiterite, SW England, U content, 211 Arfvedsonite, Scotland, in trachyte, 399 Cebollite, in kimberlite, correction, 274 ARVlN, M., pumpellyite in basic igneous rocks, 427 CHANNEL ISLANDS, Guernsey, meladiorite layers, 301; ASCENSION ISLAND, RE-rich eudialyte, 421 Jersey, wollastonite and epistilbite, 504; mineralization A TKINS, F.
    [Show full text]
  • Barite (Barium)
    Barite (Barium) Chapter D of Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802–D U.S. Department of the Interior U.S. Geological Survey Periodic Table of Elements 1A 8A 1 2 hydrogen helium 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 lithium beryllium boron carbon nitrogen oxygen fluorine neon 6.94 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sodium magnesium aluminum silicon phosphorus sulfur chlorine argon 22.99 24.31 3B 4B 5B 6B 7B 8B 11B 12B 26.98 28.09 30.97 32.06 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.64 74.92 78.96 79.90 83.79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon 85.47 87.62 88.91 91.22 92.91 95.96 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 cesium barium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon 132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.5 204.4 207.2 209.0 (209) (210)(222) 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116
    [Show full text]
  • Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway: Zr and Ti Mineral Assemblages in Miaskitic and Agpaitic Pegmatites in the Larvik Plutonic Complex
    MINERALOGIA, 44, No 3-4: 61-98, (2013) DOI: 10.2478/mipo-2013-0007 www.Mineralogia.pl MINERALOGICAL SOCIETY OF POLAND POLSKIE TOWARZYSTWO MINERALOGICZNE __________________________________________________________________________________________________________________________ Original paper Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic Complex Tom ANDERSEN1*, Muriel ERAMBERT1, Alf Olav LARSEN2, Rune S. SELBEKK3 1 Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N-0316 Oslo Norway; e-mail: [email protected] 2 Statoil ASA, Hydroveien 67, N-3908 Porsgrunn, Norway 3 Natural History Museum, University of Oslo, Sars gate 1, N-0562 Oslo, Norway * Corresponding author Received: December, 2010 Received in revised form: May 15, 2012 Accepted: June 1, 2012 Available online: November 5, 2012 Abstract. Agpaitic nepheline syenites have complex, Na-Ca-Zr-Ti minerals as the main hosts for zirconium and titanium, rather than zircon and titanite, which are characteristic for miaskitic rocks. The transition from a miaskitic to an agpaitic crystallization regime in silica-undersaturated magma has traditionally been related to increasing peralkalinity of the magma, but halogen and water contents are also important parameters. The Larvik Plutonic Complex (LPC) in the Permian Oslo Rift, Norway consists of intrusions of hypersolvus monzonite (larvikite), nepheline monzonite (lardalite) and nepheline syenite. Pegmatites ranging in composition from miaskitic syenite with or without nepheline to mildly agpaitic nepheline syenite are the latest products of magmatic differentiation in the complex. The pegmatites can be grouped in (at least) four distinct suites from their magmatic Ti and Zr silicate mineral assemblages.
    [Show full text]
  • Infrare D Transmission Spectra of Carbonate Minerals
    Infrare d Transmission Spectra of Carbonate Mineral s THE NATURAL HISTORY MUSEUM Infrare d Transmission Spectra of Carbonate Mineral s G. C. Jones Department of Mineralogy The Natural History Museum London, UK and B. Jackson Department of Geology Royal Museum of Scotland Edinburgh, UK A collaborative project of The Natural History Museum and National Museums of Scotland E3 SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Firs t editio n 1 993 © 1993 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint of the hardcover 1st edition 1993 Typese t at the Natura l Histor y Museu m ISBN 978-94-010-4940-5 ISBN 978-94-011-2120-0 (eBook) DOI 10.1007/978-94-011-2120-0 Apar t fro m any fair dealin g for the purpose s of researc h or privat e study , or criticis m or review , as permitte d unde r the UK Copyrigh t Design s and Patent s Act , 1988, thi s publicatio n may not be reproduced , stored , or transmitted , in any for m or by any means , withou t the prio r permissio n in writin g of the publishers , or in the case of reprographi c reproductio n onl y in accordanc e wit h the term s of the licence s issue d by the Copyrigh t Licensin g Agenc y in the UK, or in accordanc e wit h the term s of licence s issue d by the appropriat e Reproductio n Right s Organizatio n outsid e the UK. Enquirie s concernin g reproductio n outsid e the term s state d here shoul d be sent to the publisher s at the Londo n addres s printe d on thi s page.
    [Show full text]
  • Chemical Composition and Petrogenetic Implications of Eudialyte-Group Mineral in the Peralkaline Lovozero Complex, Kola Peninsula, Russia
    minerals Article Chemical Composition and Petrogenetic Implications of Eudialyte-Group Mineral in the Peralkaline Lovozero Complex, Kola Peninsula, Russia Lia Kogarko 1,* and Troels F. D. Nielsen 2 1 Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia 2 Geological Survey of Denmark and Greenland, 1350 Copenhagen, Denmark; [email protected] * Correspondence: [email protected] Received: 23 September 2020; Accepted: 16 November 2020; Published: 20 November 2020 Abstract: Lovozero complex, the world’s largest layered peralkaline intrusive complex hosts gigantic deposits of Zr-, Hf-, Nb-, LREE-, and HREE-rich Eudialyte Group of Mineral (EGM). The petrographic relations of EGM change with time and advancing crystallization up from Phase II (differentiated complex) to Phase III (eudialyte complex). EGM is anhedral interstitial in all of Phase II which indicates that EGM nucleated late relative to the main rock-forming and liquidus minerals of Phase II. Saturation in remaining bulk melt with components needed for nucleation of EGM was reached after the crystallization about 85 vol. % of the intrusion. Early euhedral and idiomorphic EGM of Phase III crystalized in a large convective volume of melt together with other liquidus minerals and was affected by layering processes and formation of EGM ore. Consequently, a prerequisite for the formation of the ore deposit is saturation of the alkaline bulk magma with EGM. It follows that the potential for EGM ores in Lovozero is restricted to the parts of the complex that hosts cumulus EGM. Phase II with only anhedral and interstitial EGM is not promising for this type of ore.
    [Show full text]
  • Refinement of the Crystal Structure of Ushkovite from Nevados De Palermo, República Argentina
    929 The Canadian Mineralogist Vol. 40, pp. 929-937 (2002) REFINEMENT OF THE CRYSTAL STRUCTURE OF USHKOVITE FROM NEVADOS DE PALERMO, REPÚBLICA ARGENTINA MIGUEL A. GALLISKI§ AND FRANK C. HAWTHORNE¶ Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ABSTRACT The crystal structure of ushkovite, triclinic, a 5.3468(4), b 10.592(1), c 7.2251(7) Å, ␣ 108.278(7), ␤ 111.739(7), ␥ 71.626(7)°, V 351.55(6) Å3, Z = 2, space group P¯1, has been refined to an R index of 2.3% for 1781 observed reflections measured with MoK␣ X-radiation. The crystal used to collect the X-ray-diffraction data was subsequently analyzed with an electron microprobe, 2+ 3+ to give the formula (Mg0.97 Mn 0.01) (H2O)4 [(Fe 1.99 Al0.03) (PO4) (OH) (H2O)2]2 (H2O)2, with the (OH) and (H2O) groups assigned from bond-valence analysis of the refined structure. Ushkovite is isostructural with laueite. Chains of corner-sharing 3+ 3+ {Fe O2 (OH)2 (H2O)2} octahedra extend along the c axis and are decorated by (PO4) tetrahedra to form [Fe 2 O4 (PO4)2 (OH)2 3+ (H2O)2] chains. These chains link via sharing between octahedron and tetrahedron corners to form slabs of composition [Fe 2 (PO4)2 (OH)2 (H2O)2] that are linked by {Mg O2 (H2O)4} octahedra. Keywords: ushkovite, crystal-structure refinement, electron-microprobe analysis. SOMMAIRE Nous avons affiné la structure cristaline de l’ushkovite, triclinique, a 5.3468(4), b 10.592(1), c 7.2251(7) Å, ␣ 108.278(7), ␤ 111.739(7), ␥ 71.626(7)°, V 351.55(6) Å3, Z = 2, groupe spatial P¯1, jusqu’à un résidu R de 2.3% en utilisant 1781 réflexions observées mesurées avec rayonnement MoK␣.
    [Show full text]
  • Thirty-Fourth List of New Mineral Names
    MINERALOGICAL MAGAZINE, DECEMBER 1986, VOL. 50, PP. 741-61 Thirty-fourth list of new mineral names E. E. FEJER Department of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD THE present list contains 181 entries. Of these 148 are Alacranite. V. I. Popova, V. A. Popov, A. Clark, valid species, most of which have been approved by the V. O. Polyakov, and S. E. Borisovskii, 1986. Zap. IMA Commission on New Minerals and Mineral Names, 115, 360. First found at Alacran, Pampa Larga, 17 are misspellings or erroneous transliterations, 9 are Chile by A. H. Clark in 1970 (rejected by IMA names published without IMA approval, 4 are variety because of insufficient data), then in 1980 at the names, 2 are spelling corrections, and one is a name applied to gem material. As in previous lists, contractions caldera of Uzon volcano, Kamchatka, USSR, as are used for the names of frequently cited journals and yellowish orange equant crystals up to 0.5 ram, other publications are abbreviated in italic. sometimes flattened on {100} with {100}, {111}, {ill}, and {110} faces, adamantine to greasy Abhurite. J. J. Matzko, H. T. Evans Jr., M. E. Mrose, lustre, poor {100} cleavage, brittle, H 1 Mono- and P. Aruscavage, 1985. C.M. 23, 233. At a clinic, P2/c, a 9.89(2), b 9.73(2), c 9.13(1) A, depth c.35 m, in an arm of the Red Sea, known as fl 101.84(5) ~ Z = 2; Dobs. 3.43(5), D~alr 3.43; Sharm Abhur, c.30 km north of Jiddah, Saudi reflectances and microhardness given.
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 106, pages 1360–1364, 2021 New Mineral Names*,† Dmitriy I. Belakovskiy1, and Yulia Uvarova2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia In this issue This New Mineral Names has entries for 11 new species, including 7 minerals of jahnsite group: jahnsite- (NaMnMg), jahnsite-(NaMnMn), jahnsite-(CaMnZn), jahnsite-(MnMnFe), jahnsite-(MnMnMg), jahnsite- (MnMnZn), and whiteite-(MnMnMg); lasnierite, manganflurlite (with a new data for flurlite), tewite, and wumuite. Lasnierite* the LA-ICP-MS analysis, but their concentrations were below detec- B. Rondeau, B. Devouard, D. Jacob, P. Roussel, N. Stephant, C. Boulet, tion limits. The empirical formula is (Ca0.59Sr0.37)Ʃ0.96(Mg1.42Fe0.54)Ʃ1.96 V. Mollé, M. Corre, E. Fritsch, C. Ferraris, and G.C. Parodi (2019) Al0.87(P2.99Si0.01)Ʃ3.00(O11.41F0.59)Ʃ12 based on 12 (O+F) pfu. The strongest lines of the calculated powder X-ray diffraction pattern are [dcalc Å (I%calc; Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompany- ing lazulite from Mt. Ibity, Madagascar: an example of structural hkl)]: 4.421 (83; 040), 3.802 (63, 131), 3.706 (100; 022), 3.305 (99; 141), characterization from dynamic refinement of precession electron 2.890 (90; 211), 2.781 (69; 221), 2.772 (67; 061), 2.601 (97; 023). It diffraction data on submicrometer sample. European Journal of was not possible to perform powder nor single-crystal X-ray diffraction Mineralogy, 31(2), 379–388.
    [Show full text]