Fluid Inclusions in Fibrous and Octahedrally-Grown Diamonds

Total Page:16

File Type:pdf, Size:1020Kb

Fluid Inclusions in Fibrous and Octahedrally-Grown Diamonds FLUID INCLUSIONS IN FIBROUS AND OCTAHEDRALLY-GROWN DIAMONDS by Evan Mathew Smith A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate and Postdoctoral Studies (Geological Sciences) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) March 2014 © Evan Mathew Smith, 2014 Abstract My thesis puts forth new models for diamond formation that explain the difference between octahedral and fibrous diamond growth, as well as the difference between octahedral diamond growth in the lithospheric and the sublithospheric mantle. Diamond growth in the mantle involves reactions between carbon-bearing fluid and the host rocks it infiltrates. This fluid is sometimes included in diamond. Fluids in dendritically-grown, fibrous diamonds from Wawa, Superior craton, were analysed in a novel way, using transmission X-ray diffraction. The technique allows bulk analysis of daughter minerals within fluid inclusions. The mineralogy, major and trace elements, Sr isotopes, volatiles, and nitrogen characteristics of the hydrous saline–high-Mg carbonatitic fluid in these Archean diamonds strongly resemble those of Phanerozoic fibrous diamonds. This implies that some mantle processes, including the formation of fibrous diamonds, can be extended unvaryingly back to 2.7 Ga. Fluid equilibrated with octahedrally-grown diamonds from the Siberian, Kaapvaal, and Congo cratons is trapped in healed fractures in the diamonds. They contain anhydrous CO2–N2 fluid inclusions with 40±4 mol% N2 and inclusions of former silicate melt that had an original N2 content of ~0.1 wt%, as shown by Raman, electron microprobe, and microthermometry analyses. The liberation of N2 from the convecting mantle is proposed to be controlled by increasing oxygen fugacity that destabilizes host phases. The observed distinct fluid compositions between hydrous fluids in fibrous and anhydrous fluids in octahedrally-grown diamond entail distinct processes of diamond formation that, ultimately, govern the growth habit. Water may trigger fibrous growth by inhibiting the expansion of {111} layers and lowering the interfacial energy between the diamond and fluid. Certain features in diamond fluids, such as Eu anomalies and potential carbonate–CO2 isotopic fractionation, show that several mantle processes can produce geochemical signatures that may be mistaken as input from subducted materials. The finding of N2 in diamond-forming fluids leads to an explanation for the characteristically low N content of sublithospheric diamonds. I propose this compositional trait is due to growth in a metal-saturated environment. Metallic Fe in the mantle below ~250 km should trap N and may be the largest mantle N reservoir. ii Preface The research program described herein began with the initial plan to analyse fibrous diamonds with X-ray diffraction, based on the preliminary work of my research supervisor, Dr. Kopylova. The subsequent directions taken in research were identified and designed principally by myself, with the help of Dr. Kopylova. I performed all parts of the primary research and led the analysis of data. Research results were written into 4 manuscripts, 2 of which are published, and the other 2 have been submitted. These 4 manuscripts form the chapters of this thesis. The published chapters are reproduced with permission of the copyright holders. Co-authorship details are summarized below along with related conference abstracts where this content was also presented. Chapter 2 is published as: Smith, E.M., Kopylova, M.G., Dubrovinsky, L., Navon, O., Ryder, J., and Tomlinson, E.L., 2011. Transmission X-ray diffraction as a new tool for diamond fluid inclusion studies. Mineralogical Magazine, 75(5): 2657-2675. Overall, I was responsible for 90% of the research and 80% of the writing. Kopylova provided the samples, the initial plan for this investigation and helped to identify implications of the work and also helped with the organization and editing of the written manuscript. Dubrovinsky helped oversee the majority of the analyses and verified the data interpretation. Navon and Tomlinson provided diamond samples and comments on the written manuscript. Ryder provided diamond samples. This work was also presented at 3 conferences: • Smith, E., Kopylova, M., Dubrovinsky, L., and Tomlinson, E., 2010. X-ray diffraction study of the mineral and fluid inclusions in fibrous diamond. Yellowknife Geoscience Forum 2010. (poster presentation) • Smith, E., Kopylova, M., and Dubrovinsky, L., 2010. X-ray diffraction study of the mineralogy of microinclusions in fibrous diamond. GAC MAC GeoCanada 2010. (oral presentation) • Smith, E., Kopylova, M., and Dubrovinsky, L., 2010. X-ray diffraction study of the mineralogy of microinclusions in fibrous diamond. Geophysical Research Abstracts. 12: EGU 2010-4741-1 (European Geosciences Union – oral presentation) iii Chapter 3 is published as: Smith, E.M., Kopylova, M.G., Nowell, G.M., Pearson, D.G. and Ryder, J., 2012. Archean mantle fluids preserved in fibrous diamonds from Wawa, Superior craton. Geology, 40(12): 1071-1074. Overall, I was responsible for 60% of the research and 80% of the writing. Kopylova helped with sample acquisition, data interpretation, as well as manuscript editing and restructuring. Nowell oversaw the extensive procedures for data collection. Pearson provided help with data quality and interpretation. Ryder provided diamond samples. This work was also presented at 3 conferences: • Smith, E.M. and Kopylova, M.G., 2013. A fresh look at Eu anomalies: The effect of Cl- rich fluids. GAC MAC Winnipeg 2013. Abstract No. 142 (oral presentation) • Smith, E.M. et al., 2012. The contrast in trace element chemistry and volatile composition between fluid inclusions in fibrous and octahedral diamonds. 10th International Kimberlite Conference, Extended Abstract No. 10IKC-102. (poster presentation) • Smith, E.M., Kopylova, M.G. and Ryder, J., 2011. Fluid inclusions in Archean diamonds from Wawa, Ontario. GAC MAC Ottawa 2011, Abstract No. 95. (oral presentation) Chapter 4 is published as: Smith, E.M., Kopylova, M.G., Frezzotti, M.L. and Afanasiev, V.P., 2014. N-rich fluid inclusions in octahedrally-grown diamond. Earth and Planetary Science Letters, 393(0): 39-48. Overall, I was responsible for 70% of the research and 80% of the writing. Kopylova helped with sample acquisition and the organization and editing of the manuscript. Frezzotti oversaw the data collection and interpretation. Afanasiev provided diamond samples. This work was also presented at 3 conferences: • Smith, E.M., Kopylova, M.G., Frezzotti, M.L. and Afanasiev, V.P., 2013. Diamond inclusions reveal fugitive mantle nitrogen. Goldschmidt 2013, Abstract ID 1601. (oral presentation - invited speaker) • Smith, E.M., Kopylova, M.G., Frezzotti, M.L. and Afanasiev, V.P., 2013. “Vapour” vs. melt inclusions in Siberian placer diamonds. GEM (Geoscience for Energy and Minerals) Geological Survey of Canada, Diamond Project Workshop, Vancouver. (oral presentation) iv • Smith, E.M., Kopylova, M.G., Frezzotti, M.L. and Afanasiev, V.P., 2013. Nitrogen bubbles in the mantle: Evidence from diamond inclusions. GAC MAC Winnipeg 2013. Abstract No. 141 (oral presentation) Chapter 5 has been accepted (March 2014) for publication in the Canadian Journal of Earth Sciences as: Smith, E.M., and Kopylova, M.G., Implications of metallic iron for diamonds and nitrogen in the sublithospheric mantle. Overall, I was responsible for 90% of the research and 70% of the writing. Kopylova provided significant help with the structure and presentation of the text and figures, as well as help with editing. v Table of contents Abstract ........................................................................................................................................... ii Preface............................................................................................................................................ iii Table of contents ............................................................................................................................ vi List of tables ................................................................................................................................... ix List of figures .................................................................................................................................. x Acknowledgments......................................................................................................................... xii 1 Introduction ............................................................................................................................. 1 1.1 The importance of diamond research ............................................................................... 1 1.2 What is known about diamond and related fluids ............................................................ 2 1.2.1 Metasomatic fluid as an agent of diamond growth ................................................... 2 1.2.2 Diamond growth habits ............................................................................................. 3 1.2.3 Mantle host rocks for diamond ................................................................................. 7 1.2.4 Fluid inclusions in fibrous diamond ......................................................................... 9 1.2.5 Fluid inclusions in octahedrally-grown diamond ................................................... 11 1.2.6 Temporal evolution of diamond-forming
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • List of New Mineral Names: with an Index of Authors
    415 A (fifth) list of new mineral names: with an index of authors. 1 By L. J. S~v.scs~, M.A., F.G.S. Assistant in the ~Iineral Department of the,Brltish Museum. [Communicated June 7, 1910.] Aglaurito. R. Handmann, 1907. Zeita. Min. Geol. Stuttgart, col. i, p. 78. Orthoc]ase-felspar with a fine blue reflection forming a constituent of quartz-porphyry (Aglauritporphyr) from Teplitz, Bohemia. Named from ~,Xavpo~ ---- ~Xa&, bright. Alaito. K. A. ~Yenadkevi~, 1909. BuU. Acad. Sci. Saint-P6tersbourg, ser. 6, col. iii, p. 185 (A~am~s). Hydrate~l vanadic oxide, V205. H~O, forming blood=red, mossy growths with silky lustre. Founi] with turanite (q. v.) in thct neighbourhood of the Alai Mountains, Russian Central Asia. Alamosite. C. Palaehe and H. E. Merwin, 1909. Amer. Journ. Sci., ser. 4, col. xxvii, p. 899; Zeits. Kryst. Min., col. xlvi, p. 518. Lead recta-silicate, PbSiOs, occurring as snow-white, radially fibrous masses. Crystals are monoclinic, though apparently not isom0rphous with wol]astonite. From Alamos, Sonora, Mexico. Prepared artificially by S. Hilpert and P. Weiller, Ber. Deutsch. Chem. Ges., 1909, col. xlii, p. 2969. Aloisiite. L. Colomba, 1908. Rend. B. Accad. Lincei, Roma, set. 5, col. xvii, sere. 2, p. 233. A hydrated sub-silicate of calcium, ferrous iron, magnesium, sodium, and hydrogen, (R pp, R',), SiO,, occurring in an amorphous condition, intimately mixed with oalcinm carbonate, in a palagonite-tuff at Fort Portal, Uganda. Named in honour of H.R.H. Prince Luigi Amedeo of Savoy, Duke of Abruzzi. Aloisius or Aloysius is a Latin form of Luigi or I~ewis.
    [Show full text]
  • Barite (Barium)
    Barite (Barium) Chapter D of Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802–D U.S. Department of the Interior U.S. Geological Survey Periodic Table of Elements 1A 8A 1 2 hydrogen helium 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 lithium beryllium boron carbon nitrogen oxygen fluorine neon 6.94 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sodium magnesium aluminum silicon phosphorus sulfur chlorine argon 22.99 24.31 3B 4B 5B 6B 7B 8B 11B 12B 26.98 28.09 30.97 32.06 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.64 74.92 78.96 79.90 83.79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon 85.47 87.62 88.91 91.22 92.91 95.96 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 cesium barium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon 132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.5 204.4 207.2 209.0 (209) (210)(222) 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116
    [Show full text]
  • A Review on Historical Earth Pigments Used in India's Wall Paintings
    heritage Review A Review on Historical Earth Pigments Used in India’s Wall Paintings Anjali Sharma 1 and Manager Rajdeo Singh 2,* 1 Department of Conservation, National Museum Institute, Janpath, New Delhi 110011, India; [email protected] 2 National Research Laboratory for the Conservation of Cultural Property, Aliganj, Lucknow 226024, India * Correspondence: [email protected] Abstract: Iron-containing earth minerals of various hues were the earliest pigments of the prehistoric artists who dwelled in caves. Being a prominent part of human expression through art, nature- derived pigments have been used in continuum through ages until now. Studies reveal that the primitive artist stored or used his pigments as color cakes made out of skin or reeds. Although records to help understand the technical details of Indian painting in the early periodare scanty, there is a certain amount of material from which some idea may be gained regarding the methods used by the artists to obtain their results. Considering Indian wall paintings, the most widely used earth pigments include red, yellow, and green ochres, making it fairly easy for the modern era scientific conservators and researchers to study them. The present knowledge on material sources given in the literature is limited and deficient as of now, hence the present work attempts to elucidate the range of earth pigments encountered in Indian wall paintings and the scientific studies and characterization by analytical techniques that form the knowledge background on the topic. Studies leadingto well-founded knowledge on pigments can contribute towards the safeguarding of Indian cultural heritage as well as spread awareness among conservators, restorers, and scholars.
    [Show full text]
  • Infrare D Transmission Spectra of Carbonate Minerals
    Infrare d Transmission Spectra of Carbonate Mineral s THE NATURAL HISTORY MUSEUM Infrare d Transmission Spectra of Carbonate Mineral s G. C. Jones Department of Mineralogy The Natural History Museum London, UK and B. Jackson Department of Geology Royal Museum of Scotland Edinburgh, UK A collaborative project of The Natural History Museum and National Museums of Scotland E3 SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Firs t editio n 1 993 © 1993 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint of the hardcover 1st edition 1993 Typese t at the Natura l Histor y Museu m ISBN 978-94-010-4940-5 ISBN 978-94-011-2120-0 (eBook) DOI 10.1007/978-94-011-2120-0 Apar t fro m any fair dealin g for the purpose s of researc h or privat e study , or criticis m or review , as permitte d unde r the UK Copyrigh t Design s and Patent s Act , 1988, thi s publicatio n may not be reproduced , stored , or transmitted , in any for m or by any means , withou t the prio r permissio n in writin g of the publishers , or in the case of reprographi c reproductio n onl y in accordanc e wit h the term s of the licence s issue d by the Copyrigh t Licensin g Agenc y in the UK, or in accordanc e wit h the term s of licence s issue d by the appropriat e Reproductio n Right s Organizatio n outsid e the UK. Enquirie s concernin g reproductio n outsid e the term s state d here shoul d be sent to the publisher s at the Londo n addres s printe d on thi s page.
    [Show full text]
  • Thirty-Fourth List of New Mineral Names
    MINERALOGICAL MAGAZINE, DECEMBER 1986, VOL. 50, PP. 741-61 Thirty-fourth list of new mineral names E. E. FEJER Department of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD THE present list contains 181 entries. Of these 148 are Alacranite. V. I. Popova, V. A. Popov, A. Clark, valid species, most of which have been approved by the V. O. Polyakov, and S. E. Borisovskii, 1986. Zap. IMA Commission on New Minerals and Mineral Names, 115, 360. First found at Alacran, Pampa Larga, 17 are misspellings or erroneous transliterations, 9 are Chile by A. H. Clark in 1970 (rejected by IMA names published without IMA approval, 4 are variety because of insufficient data), then in 1980 at the names, 2 are spelling corrections, and one is a name applied to gem material. As in previous lists, contractions caldera of Uzon volcano, Kamchatka, USSR, as are used for the names of frequently cited journals and yellowish orange equant crystals up to 0.5 ram, other publications are abbreviated in italic. sometimes flattened on {100} with {100}, {111}, {ill}, and {110} faces, adamantine to greasy Abhurite. J. J. Matzko, H. T. Evans Jr., M. E. Mrose, lustre, poor {100} cleavage, brittle, H 1 Mono- and P. Aruscavage, 1985. C.M. 23, 233. At a clinic, P2/c, a 9.89(2), b 9.73(2), c 9.13(1) A, depth c.35 m, in an arm of the Red Sea, known as fl 101.84(5) ~ Z = 2; Dobs. 3.43(5), D~alr 3.43; Sharm Abhur, c.30 km north of Jiddah, Saudi reflectances and microhardness given.
    [Show full text]
  • Daqingshanite-(Ce) (Sr, Ca, Ba)3(Ce, La)(PO4)(CO3)3−X(OH, F)X C 2001-2005 Mineral Data Publishing, Version 1
    Daqingshanite-(Ce) (Sr, Ca, Ba)3(Ce, La)(PO4)(CO3)3−x(OH, F)x c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 3m (probable). As subhedral to rounded platy crystals, may be crudely rhombohedral, to 3 mm, in aggregates. Twinning: Complex polysynthetic twinning observed in some material. Physical Properties: Cleavage: Perfect on {1011}. Fracture: Conchoidal. Hardness = n.d. VHN = 335 (20 g load). D(meas.) = 3.81 D(calc.) = 3.71 Optical Properties: Semitransparent. Color: Pale yellow to nearly white; colorless in thin section. Streak: White. Luster: Vitreous to greasy. Optical Class: Uniaxial (–). ω = 1.708 = 1.609 Cell Data: Space Group: R3m, R3m, or R32. a = 10.058–10.073 c = 9.225–9.234 Z = 3 X-ray Powder Pattern: Bayan Obo deposit, China. 3.16 (10), 2.52 (7), 3.95 (6), 2.040 (6), 1.941 (6), 2.110 (5), 1.895 (4) Chemistry: (1) (2) (1) (2) (1) (2) P2O5 11.73 10.50 Fe2O3 0.21 K2O 0.03 CO2 16.19 n.d. MnO 0.02 F 0.80 0.29 ThO2 0.04 < 0.22 MgO 0.72 < 0.12 Cl 0.10 + Al2O3 0.18 < 0.12 CaO 6.17 0.94 H2O 0.68 n.d. La2O3 7.88 10.22 SrO 26.10 41.82 −O=F2 0.34 Ce2O3 10.16 12.24 BaO 15.98 4.57 Total [99.376] RE2O3 2.696 < 3.36 Na2O 0.13 < 0.16 (1) Bayan Obo deposit, China; CO2 and H2O by gas chromatography, original total given as 99.20%; RE2O3 =Pr6O11 0.70%, Nd2O3 1.59%, Sm2O3 0.106%, Eu2O3 0.02%, Gd2O3 0.12%, Tb4O7 0.05%, Dy2O3 0.03%, Ho2O3 0.03%, Er2O3 0.01%, Tm2O3 0.01%, Yb2O3 0.02%, Lu2O3 0.01%; corresponds to (Sr1.52Ca0.67Ba0.63Mg0.11Na0.03)Σ=2.96(Ce0.37La0.29RE0.10Al0.02 3+ Fe0.02)Σ=0.80(PO4)1.00(CO3)2.23[(OH)0.46F0.26]Σ=0.72.
    [Show full text]
  • NOTICE New Mineratr Names Has Been Prepared by Michael
    NOTICE New Mineratr Names has been prepared by Michael Fleischer for many years with extraordinary coverage and critical evaluation, and remains one of the most important sections ol The Americon Mineral,ogist. Dr. Fleischer con- tinues to find the task enjoyable but increasingly burdensome. This is a call for volunteers to assist him in combing and reviewing the literature for clescrip- tions of new minerals and new mineral data Mineralogists interested, please contact Dr. M. Fleischer, U, S. Geological Survey, Washington 25, D. C., and specify the language(s) and journals you can ancl are willing to cover. Es- pecially helpful would be the services of three good mineralogists to cover Minerologicol Magazine, Bulletin Soci.6t6 Franqaise Minlralogie, and Neues Jahrbuch J* Minerologie etc., Monatshefte NEW MINERAL NAMES Farringtonite E. R' DurnnsNa aNo s. K. Rov. A new phosphate mineral from the springwater pallasite: Geocltim.et Cosmocltim.Acta,24, 198 205 (1961). The mineral was found in the springn'ater pallasite, from near Springwater, Sas- katchewan. rt occurs as colorless to wax-white to yellon' material peripheral to olivine nodules. The meteorite also contains metallic iron (kamacite) ancl troilite. Spectrographic analyses were made on two 25 mg. samples; the first rn'ascleaned magnetically, the second by gravity separation in a centrifuge as we1l. These gave: pror 37.6+0.6,49.7 + 1.0;MgO 49.2+O.2,4t.6I1.3; SiO, 11.1+0.2,2.9 +0.1; Fe 5.4+0.1,3.7 ,,quite +0.2ok. The final content of metallic iron in the samples was negligible,,; the Fe reported must be present as FeO or FezO: or both.
    [Show full text]
  • Book Reviews
    1127 The Canadian Mineralogist Vol. 43, pp. 1127-1128 (2005) BOOK REVIEWS Crystals: Growth, Morphology and Perfection by I. Chapter 5 (Surface microtopography of crystal faces). Sunagawa, Cambridge University Press, Cambridge, Chapter 6 (Perfections and homogeneity of single U.K., 2005, 295 + xii pages. CAN $127.95. Hardbound. crystals) gives a condensed exposition on the subject, ISBN 0–521–841–895. including “anatomy” phenomena in crystals, i.e., growth banding, growth sectors, and dislocations. Special The English version of this book has been prepared interest is paid in Chapter 7 (Regular intergrowth of based on the authorʼs translation, with a few modi- crystals) to twinning, parallel intergrowth, epitaxy, fications, of the Japanese version (2003; Kyoritsu exsolution, and some other cases of regular crystallo- Publishing Co.). The main purpose is to treat the subject graphic orientation between two or more single crystals of perfection and variability of crystal forms in the of the same or of different species. A short Chapter 8 mineral kingdom based on the laws of symmetry and (Forms and textures of polycrystalline aggregates) gives the conditions and mechanisms of crystal growth. The an overview of the rich variety of mineral aggregates, monograph includes 14 chapters incorporated in two including development of texture in multicomponent parts: Part I covers Fundamental Concepts (chapters 1– systems. 8, 163 pages), and Part II covers Application to Compli- cated and Complex Systems; Case Studies (chapters The case studies in Part II deal with single mineral 9–14, 112 pages). After each chapter, the author cites species such as diamond (Chapter 9), rock-crystal references to fundamental works.
    [Show full text]
  • New Mineral Names
    NEW MINERAL NAMES Mrcrrlrr Flrrscsnn Sibirskite N. N. V.rsrr,rovA, A new calcium borate, sibirskite. Zapishi Vses. Mineral'og. Obshch,9l, 4554& (1962) (in Russian). Analysis of a mixture of the mineral with calcite, a chlorite, and a little pyrite gave 5iO27.72, TiO, 0.03, L12O82.43,FeO 1.01, MgO 10.06, MnO 0.29, CaO 41.78, NarO 0.04' K2O none, CO216.72,B2O3 13.51, C 0.12,HrO- 0.36,H2O+ 6.38,S 0.48:100.93-(0: S) 0.24:100.697o. Separate analyses were made of the material soluble in acetic acid (calcite *sibirskite) and the insoluble. Recalculation indicates CaO:BzOa:HzO:2.07:1:1.02 or CauBzOr(OH)z or CaHBOa. The mineral is insoluble in boiling HzO, soluble in cold acetic or hydrochloric acid. DTA curves showed strong endothermic peaks at 870" (due to calcite) and at 430o, and a weak endothermic peak at 670" (due to chlorite). X-ray powder data by G. A. Sidorenko (19 lines) are givenl the strongest lines are 2.93 (5),2.58 (5), 1.878 (3). (The data are inadequate for comparison with the r-ray clata of Lehmann etr ol'., Zeits. onorg. allgem. Ckem. 2968, 202-203 (1958) on synthetic CaHBOa.MF). Sibirskite occurs as diamond-shaped forms of size 1.0-1.5 mm or as aggregates of irregular grains colored dark gray by chlorite. The rhombs show angles of 110" and 70". Measurements on the Federov stage show that the symmetry approximates orthorhombic. Biaxial (-); indices measured by Yu.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • The Crystal Structure of the Mineral Scholzite and a Study of the Crystal
    \ I 7'1,71 ¡1 :), THE CRYSTAL STRUCTURE OF THE MINERAL SCHOLZITE AND A STUDY OF THE CRYSTAL CHEMISTRY OF SOME RELATED PHOSPHATE AND ARSENATE MINERALS A thesis submitted for the Degree of Doctor of PhilosoPhY at the University of Adelaide in April, 1975 by R0DERICK JEFFREY HILL, B.Sc. (Hons.) Department of Geology and Mineralogy Au/¿tr¡'t ,,! /'/,".'','-'"' ' TABLE OF CONTENTS Page SUMMARY (i) STATEMENT OF ORIGINATITY (ii) ACKNOWLEDGEMENTS (iii) GENERAL INTRODUCTION I CHAPTER 1 TIIE GEOI.OGY AbID MINERALOGY OF REAPHOOK HILL, SOUTTI AUSTR.ALIA 2 1.1 ABSTR,ACT 2 r.2 INTRODUCTTON 2 1.3 GEOIÐGICAL SETTING 3 I.4 EXPERTMENTAI TECHNIQT ES 5 1.5 THE MAJOR PHOSPHATE MTNERALS 6 1.5.1 Tarbuttite - Znr(po4) (OH) 6 1.5.2 Parahopeite ZnrZn(pOn) - Z.4HZo 9 I.5.3 Scholzite CaZnU(pO4) - 2.2H2O 9 1.5.4 Zincian Collinsite Car(Mg,Zn) (pO4) - 2.2H2O 15 1.6 ASPECTS OF EHE CRYSTA¡ CHEMISTRY OF THE MAJOR PHOSPHATE MINERALS 19 L.7 PARAGENESIS 23 1.7.1 Major Minerals 23 L.7.2 Other lvlinerals 26 1.7.3 Conclusions 27 CHAPTER 2 TIIE CRYSTAI STRUCTURE OF SCHOLZITE 30 2.L ABSTRACT 30 2.2 INTRODUCTION 32 2.3 DATA COLLECTION AND ÐATA REDUCTION 32 2.4 DISCUSSION OF TITE INTENSITY DISTRIBUTION 35 2.4.L Subcell Structure and pseudosynunetry 35 2.4.2 Dete::mination of the True Syrnmetry 4L 2.4.3 Structural Disorder 4l 2.5 STRUqrURE SOLUTION AND REFINEMENT OF THE AVER.AGE ST'BCELL 52 2.6 DESCRIPTION AND DISCUSSION OF THE AVERAGE ST]BCELL STRUCTURE 60 2.6.I Topology 60 2.6.2 Disorder 65 2.6.3'iThermal" parameters 67 2.7 STRUCTURE SOLUTION AND REFTNEMENT OF TITE },IAIN CELL
    [Show full text]