(1Eso). the Barite Rock Is Fine-Grained and Has a Gray Color Owing to Varying Amounts of Interspersedshaly Matter

Total Page:16

File Type:pdf, Size:1020Kb

(1Eso). the Barite Rock Is Fine-Grained and Has a Gray Color Owing to Varying Amounts of Interspersedshaly Matter THE AMERICAN MINERALOGIST, VOL.47, MAY_JUNE, 1962 BENSTONITE, CazBa6(COr)tr,A NEW MINERAL FROM THE BARITE DEPOSIT IN HOT SPRING COUNTY, ARKANSAS Fnrrrnrcs Lrrruenw,l Mineralogische Anstohen der Uniaersildl, Gdttingen,Germany. Ansrnlcr Benstonite, (Ca,Mg,Mn)r(Ba,Sr)6(CO)s, was found at the barite mine in Hot Spring County, Arkansas, where it occurs in veins within the barite body associated with milky quartz, barite and calcite. It forms white cleavable masses which show cleavage faces up to 1 cm across.H:3-4; G 3.596 (meas.), 3.648 (calc.); good rhombohedral cleavagewith about the same angles as calcite. Uniaxial negative with o:1.690s and e:1.527. Single crystal r-ray studies revealed a rhombohedral lattice with the following characteristics: possible space groups RB or R3, the most probable being R3 because of -the symmetry of the CO3-groupand the available equipoints; hexagonal, o:18.28*0.01 A, c:8.67IO.02; rhombohedral, a,t:10.944, a:113.3o; volume 2509 Aa ftex.;, cell contents:3 [CazBao (COa)ul in the hexagonal unit. The index of the cleavageface is [3142] or [4132]. The hexagonal indices of the strongest r-ray reflections satisfy the relation Trzaftzlhk :13n, and they may be transformed to the indices of calcite reflections. The resulting "calcite-ceil" of benstonite has o!:a/t4i3:5.0? A, C':2c:17.34 A; volume 386.0 A3; calcite: a:4.990 A; c:17.06 A; volume 367.80 A3. Benstonite therefore has a structure which may be described as a superstructure derived from the calcite configuration. Ap- proximate parameters for the cation sites in benstonite are derived from the calcite ar- rangement, and four difierent models are proposed for the arrangement of the cations. The chemical analysis was carried out on selected material from which a small ad- mixture of calcite could not be separated. The formula Cae.lsMgo.zsrMno.ognBarzzsSro.zzz (COr)rs calculated after deduction of 2.23 weight per cent calcite may be generalized to CazBao(COa)raor possibly MgCaeBas(COr)n. Benstonite is named in honor of O. T. Benston. Malvern. Arkansas. who drew attention to the mineral. IurnonucrroN In Hot Spring County, Arkansas, abofi 2l miles ENE of the igneous complex of Magnet Cove, a large barite deposit is mined in an open pit operation.The bedsof the depositlie betweenthe Arkansasnovacu- lite (Devonian-Mississippian) and the Stanley shale (Pennsylvanian) at the eastern end of a syncline that follows the strike of the Ouachita mountains. The deposit was describedby Parks and Branner (1933), and the geology of the region is summarized by Fryklund and Holbrook (1eso). The barite rock is fine-grained and has a gray color owing to varying amounts of interspersedshaly matter. In certain placesit contains irregu- Iar white veins, from an inch to a few inches in thickness, in which the new barium calcium carbonate, benstonite, is found. It is associated with milky qvartz, barite and calcite. 1 Present address: Grabbeplatz 12, Dortmund, Germany. J6J FRIEDRICH LIPPMANN Benstoniteis named in honor of O. J. Benston,born 1901,ore dressing metallurgist, Baroid Division, National Lead Company, Malvern, Arkansas. Mr. Benston had guessedfrom qualitative chemical tests and from the specificgravity of about 3.60 that the mineral might be either alstonite or barytocalcite. During a visit to the mine on New Year's Eve, 1954, he kindly furnished the specimenson which the presentstudy is based. Pnvsrc.q.rPnoppnrrBs Benstonite occursas cleavablemasses with cleavagefaces up to one centimeteracross. Cleavage fragments are more or lessperfect rhombo- hedra of the same shape as calcite and the other rhombohedral car- bonates. The cleavageis not quite as perfect as that of calcite. The cleavagefaces are slightly curved, and, especiallyon the larger pieces, they are composite, with mosaic structure as in some dolomite and siderite.On the reflectinggoniometer extremely diffusesignals were ob- served.Values oI 44.7"and 44.3owere obtained for the polar distances (p angles) of the faces on two different cleavagerhombohedra (averages of a large number of readings).For these measuredp anglesthe calcu- lated cleavageangles (tr angles) are 75.I" and 74.4", respectively.(The corresponding literature values of p and tr for calcite are: 44.6" and 74.9".) The hardnessis between 3 and 4. The specificgravity as determined by the pycnometer method is 3.596. The color is snow white to ivory. When irradiated with long or short wave ultraviolet radiation benstonite fluorescesred, which is almost identical with that of a glowing cigaret. The same fluorescenceoccurs when the mineral is exposedto r-rays. Phosphorescenceis perceptibleat 20 kilovolts. At 50 kilovolts the afterglowlasts a coupleof minutes. Oprrcer PnopBnrros In thin sectionbenstonite shows numerous bubbles of about a micron to a few microns diameter and other more irregularly shapedcavities of similar dimensions.These are responsiblefor the white overall appear- anceof the mineral which otherwisewould be translucent.Extinction of individual grainsis not uniform. Domains varying in sizefrom 0.1mm to over 1mm are displaceda few degrees.In somecases the boundariesare sharp, but usually the domains merge almost imperceptibly with each other. This phenomenon,which occurscommonly in siderite and dolo- mite correiateswith the composite nature of the cleavagefaces. It is similar to the undulatory extinction of deformedquartz grains in meta- morohic rocks. BENSTONITE 587 Benstonite yields a uniaxial negative interference figure. Even in thick sectionsthere is no indication that the mineral is biaxial with a small 2V. This is important for the distinction from alstoniteand barytocalcite,for which axial anglesof 6o and 150,respectively, are reported. The refractive indices were determined for sodium light by the im- mersion method: <o:1.690s*0.0005;e:1.527 +0.001. Cleavagefrac- tures 10-100 microns acrossmay be filled by another carbonate mineral, probably calcitebecause of its lower <,r. X-nev CnysrarrocRAPHY A well terminated cleavagerhombohedron about 0.2 mm in size was mounted parallel to its trigonal axis. After orientation by the oscillation method, a rotation photograph and equi-inclinationWeissenberg photo- graphs ol zero, first, and secondlevels were taken with Ni-filtered Cu-K" radiation. All reflections observed satisfy the condition of rhombohedral centering-h+k+l:3nlor hk.l. The lattice levelsymmetries G of the zero Iayer and Cg of the first and secondlayers yield the diffraction sym- bol 3 R- which includesthe spacegroups R3 and ft3. The lattice con- stants weredetermined to be o: 18.4A, from the zero-layerWeissenberg photograph,and c:8.75 A, from the layer-linespacings on the rotation photograph. In indexing the powder data obtained with NaCl as an internal standardo:18.28*0.01 A and c:8.67 +0.02 A gavethe closestfit of calculatedand measuredd-spacings (Table 1). For thesehexagonal lattice constantsthe axialratio is: a:c:l:0.4743. The calculateddimensions of the rhombohedralcell are: a,n:10.94 A and a:113.3o. The cleavage rhombohedronmust have the index {3 | 4 2l or {4 1 3 2}1. For these indicesthe calculatedp angleoI 44.6"(I : 75.0') is within the rangeof the two measuredones. The indicesof the cleavageface are substantiatedby the fact that the corresponding powder diffraction line, which is the strongestof the whole pattern, is of greatly variable intensity with more or less preferred orientation. The cleavage and the r-ray diffraction properties suggestedthat the structure of benstonitemight be related to calcite.It was found that the strongest reflectionsin the powder pattern have hexagonalindices which satisfythe condition h2lk2lhh:13n. Thesemay be subdividedinto two groupswith 4hlk:13n and 3h-k:13n. If the first group is converted by the transformatior'4/fi t/13.0/-I/tt s/1t.0/0 0.2 the set of indices oI r-ray reflections of calcite is obtained. The same result is arrived at when the indices of the second group undergo the transformation I Right- or left-handed, respectively. TAsr.n 1. X-R,w Powonn Dlta lon CAr.crtn (SweNsoN aNo Fuval, 1953) eNn ror BrxsroNrtn,r CazBao(COa)u,Hrxncoxl.t-, o: 18.2810.01 A, c: 8.67+0.02 A, Pnoeanlr Sp.a.cnGnoup R3 (PnnsrN:r Srunv) Strong reflections are underlined. Relative d.oo,L fr Rel. int.a tlo,o, y ^fu do r. hh I3 calcite intensity2 measured synthetic calcite calculated cell 3 9.21 9.140 11.0 /.oJ 7 605 10 1 z 5.83 5.843 02.1 3 5.28 5.277 03.0 / 4.93 4.925 21.1 J 4.57 4.570 22.O t6 4.19 4.181 or.2 38 3.92 3.917 13.1 0t.2 3.86 I 3.80 3 .802 20.2 9 3.60 3 .601 40.r 3.511 12.2 4 3.45 3 .455 14.0 10 353 3 .350 32.1 95 3 085 3 085 3t.2 10.4 3 035 3.O47 33.0 T 2.98 2.974 05.1 2.923 0+.2 I 2.89 2.8q 00.3 00.6 2.845 2.828 24.r 2.784 232 2.755 2.756 11.3 2.702 51,1 I 2.637 2.639 06.0 2 2.557 2.557 50.2 28 2.536 2 535 25.O 11.0 2.495 2.535 03.3 1 2.495 2.493 43.1 1 2.46 2.462 Aa a 9 2.M5 2.M3 22.3 € N 2 .380 2.378 152 N 2.327 2.326 16.1 1 2.281 2.285 440 I Benstonite with NaCl as internal standard, Norelco X-ray spectrometer, ]o per minute, 1o slit, receiving slit 0.2 mm; CuKa radiation, Ni-filter.
Recommended publications
  • Barite (Barium)
    Barite (Barium) Chapter D of Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802–D U.S. Department of the Interior U.S. Geological Survey Periodic Table of Elements 1A 8A 1 2 hydrogen helium 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 lithium beryllium boron carbon nitrogen oxygen fluorine neon 6.94 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sodium magnesium aluminum silicon phosphorus sulfur chlorine argon 22.99 24.31 3B 4B 5B 6B 7B 8B 11B 12B 26.98 28.09 30.97 32.06 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.64 74.92 78.96 79.90 83.79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon 85.47 87.62 88.91 91.22 92.91 95.96 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 cesium barium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon 132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.5 204.4 207.2 209.0 (209) (210)(222) 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116
    [Show full text]
  • Infrare D Transmission Spectra of Carbonate Minerals
    Infrare d Transmission Spectra of Carbonate Mineral s THE NATURAL HISTORY MUSEUM Infrare d Transmission Spectra of Carbonate Mineral s G. C. Jones Department of Mineralogy The Natural History Museum London, UK and B. Jackson Department of Geology Royal Museum of Scotland Edinburgh, UK A collaborative project of The Natural History Museum and National Museums of Scotland E3 SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Firs t editio n 1 993 © 1993 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint of the hardcover 1st edition 1993 Typese t at the Natura l Histor y Museu m ISBN 978-94-010-4940-5 ISBN 978-94-011-2120-0 (eBook) DOI 10.1007/978-94-011-2120-0 Apar t fro m any fair dealin g for the purpose s of researc h or privat e study , or criticis m or review , as permitte d unde r the UK Copyrigh t Design s and Patent s Act , 1988, thi s publicatio n may not be reproduced , stored , or transmitted , in any for m or by any means , withou t the prio r permissio n in writin g of the publishers , or in the case of reprographi c reproductio n onl y in accordanc e wit h the term s of the licence s issue d by the Copyrigh t Licensin g Agenc y in the UK, or in accordanc e wit h the term s of licence s issue d by the appropriat e Reproductio n Right s Organizatio n outsid e the UK. Enquirie s concernin g reproductio n outsid e the term s state d here shoul d be sent to the publisher s at the Londo n addres s printe d on thi s page.
    [Show full text]
  • Thirty-Fourth List of New Mineral Names
    MINERALOGICAL MAGAZINE, DECEMBER 1986, VOL. 50, PP. 741-61 Thirty-fourth list of new mineral names E. E. FEJER Department of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD THE present list contains 181 entries. Of these 148 are Alacranite. V. I. Popova, V. A. Popov, A. Clark, valid species, most of which have been approved by the V. O. Polyakov, and S. E. Borisovskii, 1986. Zap. IMA Commission on New Minerals and Mineral Names, 115, 360. First found at Alacran, Pampa Larga, 17 are misspellings or erroneous transliterations, 9 are Chile by A. H. Clark in 1970 (rejected by IMA names published without IMA approval, 4 are variety because of insufficient data), then in 1980 at the names, 2 are spelling corrections, and one is a name applied to gem material. As in previous lists, contractions caldera of Uzon volcano, Kamchatka, USSR, as are used for the names of frequently cited journals and yellowish orange equant crystals up to 0.5 ram, other publications are abbreviated in italic. sometimes flattened on {100} with {100}, {111}, {ill}, and {110} faces, adamantine to greasy Abhurite. J. J. Matzko, H. T. Evans Jr., M. E. Mrose, lustre, poor {100} cleavage, brittle, H 1 Mono- and P. Aruscavage, 1985. C.M. 23, 233. At a clinic, P2/c, a 9.89(2), b 9.73(2), c 9.13(1) A, depth c.35 m, in an arm of the Red Sea, known as fl 101.84(5) ~ Z = 2; Dobs. 3.43(5), D~alr 3.43; Sharm Abhur, c.30 km north of Jiddah, Saudi reflectances and microhardness given.
    [Show full text]
  • Daqingshanite-(Ce) (Sr, Ca, Ba)3(Ce, La)(PO4)(CO3)3−X(OH, F)X C 2001-2005 Mineral Data Publishing, Version 1
    Daqingshanite-(Ce) (Sr, Ca, Ba)3(Ce, La)(PO4)(CO3)3−x(OH, F)x c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 3m (probable). As subhedral to rounded platy crystals, may be crudely rhombohedral, to 3 mm, in aggregates. Twinning: Complex polysynthetic twinning observed in some material. Physical Properties: Cleavage: Perfect on {1011}. Fracture: Conchoidal. Hardness = n.d. VHN = 335 (20 g load). D(meas.) = 3.81 D(calc.) = 3.71 Optical Properties: Semitransparent. Color: Pale yellow to nearly white; colorless in thin section. Streak: White. Luster: Vitreous to greasy. Optical Class: Uniaxial (–). ω = 1.708 = 1.609 Cell Data: Space Group: R3m, R3m, or R32. a = 10.058–10.073 c = 9.225–9.234 Z = 3 X-ray Powder Pattern: Bayan Obo deposit, China. 3.16 (10), 2.52 (7), 3.95 (6), 2.040 (6), 1.941 (6), 2.110 (5), 1.895 (4) Chemistry: (1) (2) (1) (2) (1) (2) P2O5 11.73 10.50 Fe2O3 0.21 K2O 0.03 CO2 16.19 n.d. MnO 0.02 F 0.80 0.29 ThO2 0.04 < 0.22 MgO 0.72 < 0.12 Cl 0.10 + Al2O3 0.18 < 0.12 CaO 6.17 0.94 H2O 0.68 n.d. La2O3 7.88 10.22 SrO 26.10 41.82 −O=F2 0.34 Ce2O3 10.16 12.24 BaO 15.98 4.57 Total [99.376] RE2O3 2.696 < 3.36 Na2O 0.13 < 0.16 (1) Bayan Obo deposit, China; CO2 and H2O by gas chromatography, original total given as 99.20%; RE2O3 =Pr6O11 0.70%, Nd2O3 1.59%, Sm2O3 0.106%, Eu2O3 0.02%, Gd2O3 0.12%, Tb4O7 0.05%, Dy2O3 0.03%, Ho2O3 0.03%, Er2O3 0.01%, Tm2O3 0.01%, Yb2O3 0.02%, Lu2O3 0.01%; corresponds to (Sr1.52Ca0.67Ba0.63Mg0.11Na0.03)Σ=2.96(Ce0.37La0.29RE0.10Al0.02 3+ Fe0.02)Σ=0.80(PO4)1.00(CO3)2.23[(OH)0.46F0.26]Σ=0.72.
    [Show full text]
  • NOTICE New Mineratr Names Has Been Prepared by Michael
    NOTICE New Mineratr Names has been prepared by Michael Fleischer for many years with extraordinary coverage and critical evaluation, and remains one of the most important sections ol The Americon Mineral,ogist. Dr. Fleischer con- tinues to find the task enjoyable but increasingly burdensome. This is a call for volunteers to assist him in combing and reviewing the literature for clescrip- tions of new minerals and new mineral data Mineralogists interested, please contact Dr. M. Fleischer, U, S. Geological Survey, Washington 25, D. C., and specify the language(s) and journals you can ancl are willing to cover. Es- pecially helpful would be the services of three good mineralogists to cover Minerologicol Magazine, Bulletin Soci.6t6 Franqaise Minlralogie, and Neues Jahrbuch J* Minerologie etc., Monatshefte NEW MINERAL NAMES Farringtonite E. R' DurnnsNa aNo s. K. Rov. A new phosphate mineral from the springwater pallasite: Geocltim.et Cosmocltim.Acta,24, 198 205 (1961). The mineral was found in the springn'ater pallasite, from near Springwater, Sas- katchewan. rt occurs as colorless to wax-white to yellon' material peripheral to olivine nodules. The meteorite also contains metallic iron (kamacite) ancl troilite. Spectrographic analyses were made on two 25 mg. samples; the first rn'ascleaned magnetically, the second by gravity separation in a centrifuge as we1l. These gave: pror 37.6+0.6,49.7 + 1.0;MgO 49.2+O.2,4t.6I1.3; SiO, 11.1+0.2,2.9 +0.1; Fe 5.4+0.1,3.7 ,,quite +0.2ok. The final content of metallic iron in the samples was negligible,,; the Fe reported must be present as FeO or FezO: or both.
    [Show full text]
  • Fluid Inclusions in Fibrous and Octahedrally-Grown Diamonds
    FLUID INCLUSIONS IN FIBROUS AND OCTAHEDRALLY-GROWN DIAMONDS by Evan Mathew Smith A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate and Postdoctoral Studies (Geological Sciences) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) March 2014 © Evan Mathew Smith, 2014 Abstract My thesis puts forth new models for diamond formation that explain the difference between octahedral and fibrous diamond growth, as well as the difference between octahedral diamond growth in the lithospheric and the sublithospheric mantle. Diamond growth in the mantle involves reactions between carbon-bearing fluid and the host rocks it infiltrates. This fluid is sometimes included in diamond. Fluids in dendritically-grown, fibrous diamonds from Wawa, Superior craton, were analysed in a novel way, using transmission X-ray diffraction. The technique allows bulk analysis of daughter minerals within fluid inclusions. The mineralogy, major and trace elements, Sr isotopes, volatiles, and nitrogen characteristics of the hydrous saline–high-Mg carbonatitic fluid in these Archean diamonds strongly resemble those of Phanerozoic fibrous diamonds. This implies that some mantle processes, including the formation of fibrous diamonds, can be extended unvaryingly back to 2.7 Ga. Fluid equilibrated with octahedrally-grown diamonds from the Siberian, Kaapvaal, and Congo cratons is trapped in healed fractures in the diamonds. They contain anhydrous CO2–N2 fluid inclusions with 40±4 mol% N2 and inclusions of former silicate melt that had an original N2 content of ~0.1 wt%, as shown by Raman, electron microprobe, and microthermometry analyses. The liberation of N2 from the convecting mantle is proposed to be controlled by increasing oxygen fugacity that destabilizes host phases.
    [Show full text]
  • New Mineral Names
    NEW MINERAL NAMES Mrcrrlrr Flrrscsnn Sibirskite N. N. V.rsrr,rovA, A new calcium borate, sibirskite. Zapishi Vses. Mineral'og. Obshch,9l, 4554& (1962) (in Russian). Analysis of a mixture of the mineral with calcite, a chlorite, and a little pyrite gave 5iO27.72, TiO, 0.03, L12O82.43,FeO 1.01, MgO 10.06, MnO 0.29, CaO 41.78, NarO 0.04' K2O none, CO216.72,B2O3 13.51, C 0.12,HrO- 0.36,H2O+ 6.38,S 0.48:100.93-(0: S) 0.24:100.697o. Separate analyses were made of the material soluble in acetic acid (calcite *sibirskite) and the insoluble. Recalculation indicates CaO:BzOa:HzO:2.07:1:1.02 or CauBzOr(OH)z or CaHBOa. The mineral is insoluble in boiling HzO, soluble in cold acetic or hydrochloric acid. DTA curves showed strong endothermic peaks at 870" (due to calcite) and at 430o, and a weak endothermic peak at 670" (due to chlorite). X-ray powder data by G. A. Sidorenko (19 lines) are givenl the strongest lines are 2.93 (5),2.58 (5), 1.878 (3). (The data are inadequate for comparison with the r-ray clata of Lehmann etr ol'., Zeits. onorg. allgem. Ckem. 2968, 202-203 (1958) on synthetic CaHBOa.MF). Sibirskite occurs as diamond-shaped forms of size 1.0-1.5 mm or as aggregates of irregular grains colored dark gray by chlorite. The rhombs show angles of 110" and 70". Measurements on the Federov stage show that the symmetry approximates orthorhombic. Biaxial (-); indices measured by Yu.
    [Show full text]
  • Barytocalcite Baca(CO3)2 C 2001-2005 Mineral Data Publishing, Version 1
    Barytocalcite BaCa(CO3)2 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Typically as elongated crystals, short to long prismatic and striated parallel [101], to 5 cm, or equant, showing large {100}, {111}, {131}, {210}, minor {001},{110}, {101}; may be massive, cleavable. Physical Properties: Cleavage: On {210}, perfect; on {001}, imperfect. Fracture: Uneven to subconchoidal. Hardness = 3.5–4 D(meas.) = 3.66–3.71 D(calc.) = 3.72 Pale yellowish to red fluorescence under SW and LW UV. Optical Properties: Transparent to translucent. Color: Colorless to white, pale gray, bright to pale green, pale yellow; colorless in transmitted light. Luster: Vitreous to resinous. Optical Class: Biaxial (–). Orientation: Z = b; X ∧ c =64◦; Y ∧ c = –26◦. Dispersion: r> v, weak. α = 1.525 β = 1.684 γ = 1.686 2V(meas.) = 15◦ Cell Data: Space Group: P 21/m. a = 8.092(1) b = 5.2344(6) c = 6.544(1) β = 106.05(1)◦ Z=2 X-ray Powder Pattern: Alston, England. (ICDD 15-285). 3.125 (100), 3.140 (90), 4.018 (40), 4.345 (25), 2.157 (25), 2.512 (20), 2.379 (20) Chemistry: (1) (2) CO2 29.95 29.59 MgO 0.50 CaO 18.75 18.85 SrO 1.81 BaO 48.92 51.56 Total 99.93 100.00 (1) Vuoriyarvi massif, Russia; corresponds to Ba0.92Ca1.03Sr0.08Mg0.03(CO3)2.00. (2) BaCa(CO3)2. Polymorphism & Series: Trimorphous with alstonite and paralstonite. Occurrence: A relatively uncommon accessory mineral in metallic veins, formed by reaction of hydrothermal fluids with limestone; however it may be the dominant barium-bearing species; rarely in carbonatites and Alpine veins.
    [Show full text]
  • EPR, UV-Visible, and Near-Infrared Spectroscopic Characterization of Dolomite
    Hindawi Publishing Corporation Advances in Condensed Matter Physics Volume 2008, Article ID 175862, 8 pages doi:10.1155/2008/175862 Research Article EPR, UV-Visible, and Near-Infrared Spectroscopic Characterization of Dolomite S. Lakshmi Reddy,1 R. L. Frost,2 G. Sowjanya,1 N. C. G. Reddy,3 G. Siva Reddy,3 andB.J.Reddy2 1 Department of Physics, S.V.D. College, Kadapa 516003, India 2 Inorganic Materials Research Program, Queensland University of Technology, 2 George Street, Brisbane, GPO Box 2434, Queensland 4001, Australia 3 Department of Chemistry, Yogi Vemana University, Kadapa 516003, India Correspondence should be addressed to R. L. Frost, [email protected] Received 17 June 2008; Accepted 21 October 2008 Recommended by David Huber Dolomite mineral samples having white and light green colors of Indian origin have been characterized by EPR, optical, and NIR spectroscopy. The optical spectrum exhibits a number of electronic bands due to presence of Fe(III) ions in the mineral. From EPR studies, the parameters of g for Fe(III) and g, A,andD for Mn(II) are evaluated and the data confirm that the ions are in distorted octahedron. Optical absorption studies reveal that Fe(III) is in distorted octahedron. The bands in NIR spectra are due to the overtones and combinations of water molecules. Thus EPR and optical absorption spectral studies have proven useful for the study of the solid state chemistry of dolomite. Copyright © 2008 S. Lakshmi Reddy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Alstonite Baca(CO3)2 C 2001-2005 Mineral Data Publishing, Version 1
    Alstonite BaCa(CO3)2 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Triclinic, pseudo-orthorhombic. Point Group: 1or1. Steep pseudohexagonal dipyramids bounded by pseudohexagonal prisms, to 6 mm, striated strongly ⊥ pseudohexagonal [0001] and commonly exhibiting a medial re-entrant k pseudohexagonal [0001]. Twinning: Common on pseudo-orthorhombic {110} and {310}, forming pseudohexagonal groups. Physical Properties: Cleavage: On pseudo-orthorhombic {110}, imperfect. Fracture: Uneven. Hardness = 4–4.5 D(meas.) = 3.707(4) D(calc.) = 3.69 Fluoresces yellow under SW and LW UV. Optical Properties: Transparent to translucent. Color: Colorless to snow-white; also pale gray, pale cream, pink to pale rose-red, which may fade on exposure to light; colorless in transmitted light, showing six or twelve domains. Streak: White. Luster: Vitreous. Optical Class: Biaxial (–). Orientation: X = c; Y = a; Z = b. Dispersion: r> v,weak. α = 1.526 β = 1.671 γ = 1.672 2V(meas.) = 6◦ Cell Data: Space Group: C1orC1. a = 30.14 b = 17.40 c = 6.12 α =90◦ β =90◦ γ =90◦ Z=24 X-ray Powder Pattern: Alston, England; essentially identical to paralstonite. 3.55 (100), 2.507 (35), 2.050 (23), 1.941 (19), 1.846 (15), 2.835 (10), 1.589 (8) Chemistry: (1) (2) CO2 29.41 29.59 CaO 17.60 18.85 SrO 4.25 BaO 48.54 51.56 Total 99.80 100.00 (1) Alston, England. (2) CaBa(CO3)2. Polymorphism & Series: Trimorphous with barytocalcite and paralstonite. Occurrence: Typically in low-temperature hydrothermal Pb–Zn deposits; rare in carbonatites. Association: Calcite, barite, ankerite, siderite, benstonite, galena, sphalerite, pyrite, quartz.
    [Show full text]
  • Subsolidus Phase Relations in Aragonite-Type Carbonates. Lll. The
    American Mineralogist, Volume 58, pages 979-985, 1973 SubsolidusPhase Relations in Aragonite-typeCarbonates. lll. The SystemsMgCO'-CaCO,-BaCOB, MgOO,-CaGO,-SrCO,, and MgCO,-SrCO,-BaCO, Wrtr,reu R. BnrcE Department ol Earth and Planeta:rySciences, Uniuersity of Pittsburgh at lohttstown, Iohnstown, Pennsylaania 15901 Lurn L. Y. CnaNc Department ol Geology, Miqmi Uniuersity, Oxford, Ohio 45056 Abstract Subsolidus phase relations in the three ternary systems were studied at 650"C and at both 5 and 15 kbar using high-pressure, opposed-anvil apparatus. Phases found in the systems, in addition to the end members, are dolomite (MgCa(COa),), norsethite (MgBa(COo),), MgSr(CO")a and two forms of CaBa(COs),, a monoclinic barytocalcite and a rhombohedral form with disordered calcite structure. In the system MgCOrCaCOrBaCO", both norsethite and disordered calcite have detectable ranges of solid solution at 650'C and 5 kbar, and six two-phase areas and four three-phase triangles are observed. In the system MgCO-CaCO-SrCOI, a complete series of solid solution along the join MgCa(CO")-MgSr(COg)z and a significantregion of calcite-typesolid solution exist at 650"C and 5 kbar, whereas at 650'C and 15 kbar, aragonite is the stable form of CaCO" and forms a complete series of solid solution with SrCO". Two complete solid solution series, SrCO-BaCO* and MgSr(CO")-MgBa(COo)a were found in the system MgCO- SrCO-BaCOa, and the system is represented by two large immiscibility gaps between the two solid solution series and between the dolomite seriesand MgCOa. Introduction Experimental Procedures As the third part of a study on the subsolidus Starting materials used were Baker analyzedrea- phase relations in aragonite-type carbonates, the gent grade CaCO3,SrCO3, BaCOs, and basic mag- systems MgCO3-CaCO3-BaCO3,MgCO3-CaCO3- nesium carbonate.The MgCO3 was prepared by SrCOs, and MgCOB-SrCOs-BaCOswere investi- hydrothermallytreating the basic magnesiumcar- gated at 650"C and two pressures,5 and 15 kbar.
    [Show full text]
  • Benstonite (Ba, Sr)6Ca6mg(CO3)13 C 2001-2005 Mineral Data Publishing, Version 1
    Benstonite (Ba, Sr)6Ca6Mg(CO3)13 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 3. Rhombohedral crystals, to 1 cm; typically as cleavable masses with a fine mosaic structure. Physical Properties: Cleavage: On {3142}, good. Hardness = 3–4 D(meas.) = 3.596–3.66 D(calc.) = 3.695 Fluoresces red or yellow under LW UV, SW UV, and X-rays; strong red phosphorescence. Optical Properties: Translucent. Color: Snow-white, ivory, very pale yellow, pale yellowish brown. Optical Class: Uniaxial (–). ω = 1.690(1) = 1.527(1) Cell Data: Space Group: R3. a = 18.280(9) c = 8.652(8) Z = 3 X-ray Powder Pattern: Magnet Cove, Arkansas, USA. 3.08 (95), 3.92 (38), 2.536 (28), 2.127 (23), 1.905 (17), 4.19 (16), 3.53 (10) Chemistry: (1) (2) CO2 31.35 30.61 MnO 0.35 MgO 1.69 2.16 CaO 19.52 18.00 SrO 4.02 BaO 43.05 49.23 Total 99.98 100.00 (1) Magnet Cove, Arkansas, USA; corresponds to (Ba5.27Sr0.73)Σ=6.00Ca6.00(Mg0.79 Ca0.12Mn0.09)Σ=1.00(CO3)13.00. (2) Ba6Ca6Mg(CO3)13. Occurrence: In a barite deposit (Magnet Cove, Arkansas, USA); in Alpine veins cutting a carbonatite (Bayan Obo deposit, China). Association: Barite, calcite, quartz (Magnet Cove, Arkansas, USA); calcite, alstonite, fluorite, sphalerite (Cave-in-Rock, Illinois, USA); huntite, barytocalcite, strontianite, pyrite, phlogopite, monazite, daqingshanite (Bayan Obo deposit, China). Distribution: In the USA, from the Baroid barite mine about four km east-northeast of Magnet Cove, Hot Spring Co., Arkansas, and in the Minerva No.
    [Show full text]