BIM Implementation Are Then Described, Emphasising on the Obstacles That Have to Be Overcome Beforehand

Total Page:16

File Type:pdf, Size:1020Kb

BIM Implementation Are Then Described, Emphasising on the Obstacles That Have to Be Overcome Beforehand PROJECTE O TESINA D’ESPECIALITAT Títol Estudi del potencial de la tecnologia BIM i la seva implementació dins l'àmbit de la construcció Autor/a Francesc Xavier Echegaray Jaile Tutor/a Climent Molins Borrell Departament Enginyeria de la Construcció (EC) Intensificació Data 13 de Maig de 2014 Title: Study of the potential of BIM technology and its implementation in construction Author: Francesc Xavier Echegaray Jaile Advisor: Climent Molins Borrell ABSTRACT The work presented herein is intended to treat the main theoretical and technical concepts that compose Building Information Modelling (BIM) in an organised and comprehensive way. In the initial parts of this work the very fundamentals of this new approach are addressed, putting special attention in the technological shifts that support BIM and the main efforts and challenges that are to be faced. In essence, BIM technology allows the generation of accurate virtual representations of a project, which include all of their physical and functional characteristics. These BIM models are then used to simulate the conception, design, construction, operation and eventual demolition of a facility. The combination of these models with specific simulation and analysis tools allows BIM users to take solid informed decisions throughout the whole lifecycle phases of the project. But beyond technology, BIM unfolds a whole new set of design and construction capabilities with regard to traditional practices. These workflows encourage all project stakeholders to collaborate from initial design stages, creating changes in roles and relationships amongst them. In this line, the work visits the path towards collaborative workflows, pointing out the main changes that appear at a business and organisational level. In order to contrast how BIM differs from traditional approaches, current AEC industry practices are overviewed. This puts in evidence the areas in which BIM provides new or improved capabilities. The advantages resulting of BIM implementation are then described, emphasising on the obstacles that have to be overcome beforehand. Finally, after an adequate knowledge base is acquired, a set of practical examples are developed in an attempt to contrast and evaluate the capabilities of BIM technology. In these examples, a generic building project is developed in a realistic and consistent way. The developed example emphasises on simulating a design process by exploring the roles of owners, structural engineers, architects and contractors. The concepts that have been reviewed throughout the length of the work are put into practice in this final part. To conclude, several lines of development for future works are proposed based on the gained experience. Keywords: Building Information Modelling, Building Information Model, parametric modelling, object based design, Interoperability, workflows, stakeholders, collaboration, Integrated Project Delivery. Título: Estudio del potencial de la tecnología BIM y su implementación en el ambito de la construcción Autor: Francesc Xavier Echegaray Jaile Tutor: Climent Molins Borrell ABSTRACT Esta tesina está enfocada a tratar los principales conceptos teóricos y técnicos que componen el Building Information Modelling (BIM) de una manera organizada y entendedora. En las primeras partes del trabajo se tratan los principios fundamentales del BIM, poniendo especial atención en los avances tecnológicos que lo hacen realidad y en los puntos clave que aún precisan desarrollo. En esencia, la tecnología BIM permite generar modelos virtuales de un proyecto que incluyan con precisión sus características físicas y funcionales. Estos modelos BIM permiten simular la concepción, el diseño, la construcción, la operación y la demolición de cualquier obra de construcción. Combinando estos modelos con herramientas de simulación y análisis, los usuarios BIM son capaces de tomar decisiones bien fundamentadas acerca del proyecto a lo largo de todo su ciclo de vida. Pero más allá de la tecnología, el BIM despliega toda una serie de nuevas capacidades en el ámbito del diseño y la construcción en comparación con los métodos tradicionales. Estos nuevos flujos de trabajo alientan a todos los agentes involucrados en un proyecto a colaborar a partir de los estadios iniciales de su diseño. Esto implica cambios importantes en las relaciones que se dan entre estos agentes y los papeles que éstos desempeñan. En esta línea, la tesina explora el camino a recorrer hacia los flujos de trabajo basados en la colaboración, indicando los cambios más importantes que surgen a nivel organizativo y empresarial. Para resaltar estos cambios, las prácticas que actualmente caracterizan al sector de la construcción son analizadas brevemente. Esto permite desvelar las mejoras y nuevas capacidades aportadas por el BIM. A continuación, el trabajo se centra en las ventajas de implementar el BIM, poniendo énfasis en los obstáculos que deben superarse previamente. Finalmente, después de asentar los conocimientos propicios, se desarrollan una serie de ejemplos prácticos para contrastar y evaluar las capacidades de la tecnología BIM. Los ejemplos constan del desarrollo de un proyecto de edificación de una manera realista y técnicamente consistente. El ejercicio pone especial ahínco en simular un proceso de diseño desde el punto de vista del cliente, el ingeniero estructural, el arquitecto y el contratista. Los conceptos que se han ido viendo a lo largo del trabajo se ponen en práctica en esta última parte. Para concluir, se exponen unas líneas de desarrollo para futuros trabajos basadas en la experiencia adquirida. Palabras clave: Building Information Modelling, Building Information Model, modelado paramétrico, diseño basado en objetos, Interoperabilidad, flujos de trabajo, partes implicadas, colaboración, Integrated Project Delivery. TABLE OF CONTENTS INTRODUCTION AND OBJECTIVES ........................................................................................ 9 CHAPTER 1 – INTRODUCTION TO BIM ................................................................................. 12 1.1. Definition .............................................................................................................................. 12 1.2. BIM History ........................................................................................................................... 14 1.2.1. Origins ........................................................................................................................ 14 1.2.2. Graphical representation .......................................................................................... 15 1.2.3. Data based design ..................................................................................................... 16 1.2.4. From research projects to commercial software ...................................................... 18 1.2.5. Interoperability and collaborative building construction .......................................... 21 1.2.6. Simulation and assisted design ................................................................................. 22 1.2.7. Current practices ....................................................................................................... 23 1.2.8. Building Information Modelling as a term ................................................................ 24 1.3. Implementation in the AEC industry .................................................................................... 25 1.3.1. BIM: A growing reality ............................................................................................... 25 1.3.2. North America: Industry reports and BIM surveys .................................................... 26 1.3.3. Western Europe: Industry reports and BIM surveys ................................................. 29 1.3.4. Spain: BIM awareness ............................................................................................... 32 CHAPTER 2 – BIM FUNDAMENTAL PRINCIPLES .................................................................... 33 2.1. Introduction ......................................................................................................................... 33 2.2. Setting a BIM knowledge framework ................................................................................... 33 2.2.1. Introduction ............................................................................................................... 33 2.2.2. BIM fields ................................................................................................................... 33 2.2.3. BIM implementation stages ...................................................................................... 35 2.2.4. Measuring BIM implementation ............................................................................... 38 2.3. BIM Technology .................................................................................................................... 39 2.3.1. Introduction ............................................................................................................... 39 2.3.2. Object oriented design .............................................................................................. 39 2.3.3. Parametric modelling beyond design ........................................................................ 44 2.3.4. Building Information Models ..................................................................................... 46 2.3.5. BIM software platforms ............................................................................................
Recommended publications
  • BIM Tools and Parametric Modeling
    CHAPTER2 BIM Tools and Parametric Modeling 2.0 EXECUTIVE SUMMARY This chapter provides an overview of the primary technology that distinguishes BIM design applications from other CAD systems. Object - based parametric modeling was originally developed in the 1980s. It does not represent objects with fi xed geometry and properties. Rather, it represents objects by parame- ters and rules that determine the geometry as well as some non - geometric properties and features. The parameters and rules allow the objects to auto- matically update according to user control or changing contexts. In other industries, companies use parametric modeling to develop their own object representations and to refl ect corporate knowledge and best practices. In architecture, BIM software companies have pre- defi ned a set of base building object families for users, which may be extended, modifi ed, or added to. An object family allows for the creation of any number of object instances, with forms that are dependent on parameters and relationships with other objects. Companies should have the capability of developing user - defi ned parametric objects and corporate object libraries for customized quality control and to establish their own best practices. Custom parametric objects allow for the modeling of complex geometries, which were previously not possible or simply impractical. Object attributes are needed to interface with analyses, cost estimations, and other applications, but these attributes must fi rst be defi ned by the fi rm or user. Current BIM tools vary in many ways: in the sophistication of their prede- fi ned base objects; in the ease with which users can defi ne new object families; BIM Handbook: A Guide to Building InformationModeling for Owners, Managers,Designers, Engineers, and Contractors.
    [Show full text]
  • Chapter 1: Introduction
    Chapter 1: Introduction 1.1 Preface In response to the fast growth in construction industries worldwide, design and construction firms, and professionals in Architecture, Engineering and Construction (ACE) sector, have great challenges to adopt more efficient and effective building tools to achieve client’s satisfaction by providing accurate and easier information and data more than traditional assembled 2D. Since 1992 the term of Building Information Building( BIM) appeared and started using widely as concept for digital representation of the physical and functional characteristics of a building displayed as a 3D model, with the added capability to integrate a whole array of design, and the term is changing from one developer to another such as Virtual Building by GraphiSoft and Integrated Project Models by Bentley Systems. According to The National Building Information Model Standard (NBIMS), Building Information Modeling (BIM) is a digital representation of physical and functional characteristics of a facility. A BIM is a shared knowledge resource for information about a facility forming a reliable basis for decisions during its life-cycle.In 2004, the National Institute of Standards and Technology (NIST) published a report stating that poor interoperability and data management costs the construction industry approximately $15.8 billion a year, or approximately 3 -4% of the total industry .A basic premise of BIM is collaboration by different stakeholders at different phases of the life cycle of a facility to insert, extract, update or modify information in the BIM process to support and reflect the roles of that stakeholder (Suremann, 2009) Addition to that, new dimension elements have been added to 3D concept such as 4D for time and 5D for cost to enhance the capability for life cycle management.
    [Show full text]
  • BIM Handbook a Guide to Buil
    BIM Handbook A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors Chuck Eastman Paul Teicholz Rafael Sacks Kathleen Liston John Wiley & Sons, Inc. BIM Handbook: A Guide to Building InformationModeling for Owners, Managers,Designers, Engineers, and Contractors. Chuck Eastman, Paul Teicholz, Rafael Sacks and Kathleen Liston Copyright © 2008 John Wiley & Sons, Inc. ffirs.indd i 1/3/08 12:32:13 PM This book is printed on acid-free paper. ϱ Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifi cally disclaim any implied warranties of merchantability or fi tness for a particular purpose.
    [Show full text]
  • BIM and Its Envisioned Use in Engineering Infrastructure
    BIM and its Envisioned Use in Engineering Infrastructure Graduation Thesis Author Jan-Peter Ter Maaten Date September 1, 2015 Version 1.0 Status Final ‘If you don’t know where you’re going, any road will get you there’ Quote derived from Lewis Carroll’s Alice in Wonderland Figure 1 | Corporate Vision E2CS (E2CS Partners LLC., 2007) © Copyright 2015 by J. Ter Maaten, TU Delft and Grontmij Nederland B.V. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilised in any way or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without the prior permission from the proprietors. Research Title BIM’s Horizon Research Sub Title BIM and its Envisioned Use in Engineering Infrastructure Document Type Graduation Thesis Date of Completion September 1, 2015 Date of Presentation September 16, 2015 Author Jan-Peter Ter Maaten Hoofdweg 115 6744 WJ Ederveen 06-57240749 [email protected] [email protected] Student number 4098951 University Delft University of Technology Faculty Civil Engineering and Geosciences Master Track Construction Management and Engineering Graduation Committee Prof.dr.ir. M.J.C.M. Hertogh CEG, TU Delft Dr.ir. G.A. van Nederveen CEG, TU Delft Dr. S.G. Lukosch TBM, TU Delft Ing. M.B.J. de Kroon Grontmij, Nederland Grontmij Nederland B.V. De Holle Bilt 22 3732 HM, De Bilt Delft University of Technology Faculty of Civil Engineering and Geosciences Stevinweg 1 2628, CN, Delft J. Ter Maaten iii Writing a report often ends with the first textual part of it, and so it does in this case as well.
    [Show full text]
  • Jbimfall 2007 Your Not Parents’ Way of Doing Business
    Journal of Building Information Modeling An official publication of the National BIM Standard (NBIMS) and the National Institute of Building Sciences (NIBS) JBIMFall 2007 Your Not Parents’ Way of Doing Business Approaches to Transforming the Construction Industry Permit No. 14 No. Permit Pembina, ND Pembina, PAID U.S. Postage U.S. PRSRT STD PRSRT Feature Building Information Models and Model Views By Richard See, Managing Director, Digital Alchemy IN THE LAST FEW YEARS, we have seen government funded research in this area in designing buildings and integrated data- a great deal of marketing and press about that ultimately led to early building model- base techniques to support more sophisti- Building Information Modeling (BIM). By ing systems including BDS (Building De- cated models and extending the association now, most people in the industry must sign System) and RUCAPS which were of data with geometric representations1. have a vague understanding of what BIM used by early adopters in the UK and U.S. These techniques were later adopted or is, but may find some additional back- through the mid 1980s. Even these first emulated in commercial products. ground, some specific examples, and generation building modeling systems in- These early systems were generally more detail about how BIMs will improve cluded some of the concepts central to developed by people in the building indus- quality, reduce costs, and enable new today’s BIM authoring software. Concepts try that had a vision of using the computer business processes should be of interest including parametric element definition, to prototype buildings as assemblies of to most.
    [Show full text]
  • On Building Information Modeling: an Explorative Study
    Use of BIM for existing Buildings On Building Information Modeling: an explorative study Erika JOHANSSON Darek M. HAFTOR Bengt MAGNUSSON Jan ROSVALL 1 Use of BIM for existing Buildings On Building Information Modeling: an explorative study © Erika JOHANSSON Darek M. HAFTOR Bengt MAGNUSSON Jan ROSVALL Department of Informatics and Department of Construction Technology, Linnaeus University, Växjö, Sweden Linnaeus University Press Växjö, Sweden June, 2014 ISBN 978-91-87925-02-3 2 Use of BIM for existing Buildings Abstract Building Information Model (BIM) is now a well-established notion in the context of built environment management, which includes the construction industry and the facility management industry. At first sight, BIM represents the various tools that support formulation and usage of models of built environments. Vendors that develop and provide BIM technologies typically offer bold promises regarding the positive effects of the usage of BIM. These positive effects include increased efficiency, quality and safety, in the context of the whole lifecycle of a built environment. However, the main emphasis of that rhetoric is placed on the benefits gained from using BIM in the construction and maintenance of new built environments. As the overwhelming majority of built environments are made up of already existing constructions, rather than projected buildings, a key question is: what are the practices for the use of BIM for existing buildings? An explorative research study has been conducted to respond to that question. The main
    [Show full text]
  • BIM Handbook
    BIM Handbook A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors Chuck Eastman Paul Teicholz Rafael Sacks Kathleen Liston John Wiley & Sons, Inc. BIM Handbook: A Guide to Building InformationModeling for Owners, Managers,Designers, Engineers, and Contractors. Chuck Eastman, Paul Teicholz, Rafael Sacks and Kathleen Liston Copyright © 2008 John Wiley & Sons, Inc. ffirs.indd i 1/3/08 12:32:13 PM This book is printed on acid-free paper. ϱ Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifi cally disclaim any implied warranties of merchantability or fi tness for a particular purpose.
    [Show full text]
  • Modelagem Da Informação Da Construção Estudo De Caso - Inspetoria Da Receita Federal Em Jaguarão - Rs
    UNIVERSIDADE DE BRASÍLIA FACULDADE DE ARQUITETURA E URBANISMO PROGRAMA DE PESQUISA E PÓS-GRADUAÇÃO MESTRADO EM ARQUITETURA E URBANISMO ÁREA DE CONCENTRAÇÃO: TECNOLOGIA MODELAGEM DA INFORMAÇÃO DA CONSTRUÇÃO ESTUDO DE CASO - INSPETORIA DA RECEITA FEDERAL EM JAGUARÃO - RS MARIA DA CONCEIÇÃO MENDES DINIZ BRASÍLIA – DF JULHO/2013 II UNIVERSIDADE DE BRASÍLIA FACULDADE DE ARQUITETURA E URBANISMO PROGRAMA DE PESQUISA E PÓS-GRADUAÇÃO MESTRADO EM ARQUITETURA E URBANISMO ÁREA DE CONCENTRAÇÃO: TECNOLOGIA MODELAGEM DA INFORMAÇÃO DA CONSTRUÇÃO ESTUDO DE CASO - INSPETORIA DA RECEITA FEDERAL EM JAGUARÃO - RS MARIA DA CONCEIÇÃO MENDES DINIZ ORIENTADOR: PROF. DR. NEANDER FURTADO DA SILVA Dissertação apresentada no Curso de Pós-graduação em Arquitetura e Urbanismo da Universidade Federal de Brasília, como parte dos requisitos para obtenção do título de Mestre em Arquitetura e Urbanismo. BRASÍLIA – DF JULHO/2013 III FOLHA DE APROVAÇÃO Candidato: Maria da Conceição Mendes Diniz Dissertação defendida e aprovada Prof. Dr. Neander Furtado da Silva Faculdade de Arquitetura e Urbanismo de Brasília - Universidade de Brasília Prof. Dr. Márcio Augusto Roma Buzar Faculdade de Arquitetura e Urbanismo de Brasília - Universidade de Brasília Prof. Dr. David Rodney Lionel Pennington Faculdade de Comunicação – Universidade de Brasília BRASÍLIA – DF JULHO/2013 IV AGRADECIMENTOS A Deus que sempre me sustentou e guiou, por ter me permitido mais uma conquista. Aos meus pais, pela dedicação e incentivo à nossa educação. Aos meus irmãos e sobrinhos pela motivação e carinho nos momentos mais difíceis. Ao meu orientador, Professor Doutor Neander Furtado da Silva pelos conhecimentos transmitidos e auxílio na análise de dados necessários à elaboração desta dissertação. Ao Professor Doutor Márcio Augusto Roma Buzar pelos ensinamentos e preciosas contribuições nas bancas de qualificação e de defesa da dissertação.
    [Show full text]
  • BIM Handbook: a Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors
    www.EngineeringBooksPdf.com www.EngineeringBooksPdf.com BIM Handbook A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors Second Edition Chuck Eastman Paul Teicholz Rafael Sacks Kathleen Liston John Wiley & Sons, Inc. ffirs.indd i 3/8/11 10:53:45 PM www.EngineeringBooksPdf.com This book is printed on acid-free paper. ϱ Copyright © 2011 by John Wiley & Sons, Inc.. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifi cally disclaim any implied warranties of merchantability or fi tness for a particular purpose.
    [Show full text]
  • 3D,4D and 5D Building Information Modeling for Commercial Building Projects
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072 3D,4D and 5D Building Information Modeling for Commercial Building Projects Somnath D. Khochare1 , Ashish P. Waghmare2 1,2 PG-Student,Dr .D. Y. Patil School of Engineering and Technology,Lohegaon,Pune-412105 ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - The use of building information modeling has progressive program for mandated use of fully provided a means of increasing total product quality, collaborative BIM for government projects by 2016 to providing accurate quantity takeoff and improving reduce project delays and cost overruns as part of the scheduling, consequently diminishing total project overall economic development (UK Government, 2011). In contingencies and costs. Building Information Modeling Singapore, the government provides BIM funds to promote (BIM) has recently attained widespread attention in the a broader usage of BIM technology (Singapore Construction industry. BIM represents the development and Government, 2013). use of computer-generated 5-dimensional (5-D) models to simulate the planning, design, construction and operation of Building Information Modeling (BIM) is the a facility. It helps architects, engineers and constructors to documentation process consisting of information about visualize what is to be built in simulated environment and to different phases of any project like design, construction identify potential design, construction or operational planning, construction, facility management and operation. problems. It is one holistic documentation process beneficial for operational visualization, and construction application In this paper, we had discussed What is BIM ? History of BIM such as estimating, scheduling and design coordination. development? How BIM works and process with Data Main advantage of implementing BIM application is the requires and Data flow.
    [Show full text]
  • The Roots of Bim
    Műszaki Tudományos Közlemények vol. 12. (2020) 42–49. DOI English: https://doi.org/10.33894/mtk-2020.12.06 Hungarian: https://doi.org/10.33895/mtk-2020.12.06 THE ROOTS OF BIM Ferdinánd-Zsongor GOBESZ Technical University of Cluj-Napoca, Facultyof Civil Engineering, Department of Structural Mechanics, Cluj-Napoca, Romania, [email protected] Abstract Today's architectural and civil engineering design is almost inconceivable without collaborative tools. Build- ing Information Modeling supports this with a set of collaboratively usable data. The roots of this concept go back in the past, thus the present paper attempts to depict some of the milestones in its evolution. Keywords: building, information, modeling, history. 1. Introduction 2. Product data evolution In most simple terms, BIM (Building Informa- The first technical drawing book [7] was pub- tion Modeling) is a digital representation of the lished in France towards the end of the 18th physical and functional characteristics of a build- century, opening the way for technical graph- ics. Technical drawing has become one of the ing [1] in a unified model which can be applied, pillars of engineering design. On the one hand, managed and used in collaboration by all the it was able to show the structures in parts, and actors in the construction industry. Its practical on the other hand, it provided a more detailed application is through computer-aided software product description (specifying more accurately packages, be it planning, construction manage- the product data). Computer-aided design was ment, valuation, operation and maintenance, or also based on graphic design at first.
    [Show full text]
  • Building Information Modeling Two Years Later – Huge Potential, Some Success and Several Limitations Written By: Ian Howell and Bob Batcheler
    Building Information Modeling Two Years Later – Huge Potential, Some Success and Several Limitations Written by: Ian Howell and Bob Batcheler Introduction Since the great Building Information Modeling (BIM) debate facilitated by Jerry Laiserin in April 2003, and reported on here in the Laiserin Letter, much has transpired with regard to building information modeling. Pilot projects have been completed, BIM systems have evolved through several versions of software upgrades, and industry leading firms are adopting BIM on live projects. Given the number of companies we have met during our research that have indicated some intention to seriously consider adopting BIM, we felt that it would be useful to document our findings to provide a basis for evaluating BIM and to examine what has been learned. First, for the uninitiated, a brief recap. CAD versus BIM – A Quick Refresher of the Basics [Regular readers of the Laiserin Letter should feel fee to skip this section and get straight to the exciting stuff below] The original premise of a CAD system was to automate the task of drafting. As such, the original focus of CAD applications was to represent 2D geometry via graphical elements, such as lines, arcs, symbols, et al. In this context, walls, for example, are merely represented as parallel lines. To establish some meaning behind these graphical elements, the concept of layering was introduced to group related elements, such as the lines used to represent walls on a given ‘wall layer.’ By doing so, discrete 2D drawing files could be generated and plotted from CAD, but more complex information, such as the relationships between elements could not be represented.
    [Show full text]