On Building Information Modeling: an Explorative Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Belgisch BIM-Protocol Nationaal Referentieprotocol Voor Gebouwen Versie 2, Oktober 2018
Belgisch BIM-protocol Nationaal referentieprotocol voor gebouwen Versie 2, oktober 2018 Belgisch BIM-protocol Nationaal referentieprotocol voor gebouwen Versie 2, oktober 2018 Dit document werd opgesteld in opdracht van het Technisch Comité BIM & ICT, in samenwerking met de Cluster BIM (met de steun van VLAIO) en in het kader van het prenormatieve onderzoek Codec (met de steun van de FOD economie). Auteurs: C. Euben (WTCB) en S. Boeykens (D-studio en KU Leuven) Met de medewerking van Confederatie Bouw, Netwerk Architecten Vlaanderen (NAV), Organisatie van Raadgevende Ingenieurs, Engineering- en Consultancybureaus (ORI), Bouwunie en de leden van Cluster BIM. Een werkgroep onder leiding van J. Ceyssens (Kumpen) en animator E. Van Overwaele (NCB) heeft specifiek bijgedragen aan de juridische aspecten in het BIM-protocol. Samenstelling van de werkgroep Voorzitter: R. Collard (BAM) Leden: M. Achten (AT Osborne), M. Baetens (BPC), K. Baggen (Hooyberghs) , S. Binnemans (SCIA), J. Bisschot (CFE), A. Boutemadja (Atelier AKB), M. Brochier (Tase), R. Collard (BAM), C. Dalhuizen (KUBUS), W. Dehuysser (Monument Vandekerckhove), C. Dequidt (NAV), A. Dubuisson (Assar Architects), R. Filomeno Coelho (Kabandy), D. Froyen (Kumpen), T. Gautot (Neanex), G. Girotto (CB/CC), B. Ingelaere (WTCB), R. Klein (KU Leuven), J. Kuppens (iNFRANEA), S. Leenknegt (Ney & Partners), P. Lenaerts (gemeente Anderlecht), M. Léonard (CCW), E. Maggio (Tractebel), V. Marbach (Derbigum), V. Martin (BSolutions), B. Marynissen (SECO), R. Meuleman (Wienerberger), R. Meurisse (NKKCLE/CFCRGE), K. Nys (D-studio), P. Orban (CERAU), J. Poncelet (Valens), A. Sagne (Association of Architects G30), S. Santosa (Willemen), E. Schaerlaecken (Stiersco), D. Schmitz (Knauf), S. Soupart (Art & Build Architect), B. Timmerman (AREMIS), A. -
BIM Tools and Parametric Modeling
CHAPTER2 BIM Tools and Parametric Modeling 2.0 EXECUTIVE SUMMARY This chapter provides an overview of the primary technology that distinguishes BIM design applications from other CAD systems. Object - based parametric modeling was originally developed in the 1980s. It does not represent objects with fi xed geometry and properties. Rather, it represents objects by parame- ters and rules that determine the geometry as well as some non - geometric properties and features. The parameters and rules allow the objects to auto- matically update according to user control or changing contexts. In other industries, companies use parametric modeling to develop their own object representations and to refl ect corporate knowledge and best practices. In architecture, BIM software companies have pre- defi ned a set of base building object families for users, which may be extended, modifi ed, or added to. An object family allows for the creation of any number of object instances, with forms that are dependent on parameters and relationships with other objects. Companies should have the capability of developing user - defi ned parametric objects and corporate object libraries for customized quality control and to establish their own best practices. Custom parametric objects allow for the modeling of complex geometries, which were previously not possible or simply impractical. Object attributes are needed to interface with analyses, cost estimations, and other applications, but these attributes must fi rst be defi ned by the fi rm or user. Current BIM tools vary in many ways: in the sophistication of their prede- fi ned base objects; in the ease with which users can defi ne new object families; BIM Handbook: A Guide to Building InformationModeling for Owners, Managers,Designers, Engineers, and Contractors. -
Download Summary Report
TRANSFORMING HOW WE BUILD HOMES Work package 5: Guide to Creating a BIM Housing Manual February 2021 www.aimch.co.uk Work package 5: Guide to Creating a BIM Housing Manual / February 2021 EXECUTIVE SUMMARY A Guide to Creating a BIM Housing Manual Building Information Modelling (BIM) is a process which can bring benefits to any construction project, but it brings new challenges to the way we work. In housebuilding it will require developers to adopt new design standards and processes, which have been historically developed with bespoke commercial projects in mind. This requires an understanding of those standards and processes, and how they can be applied in a practical way within the house building community. BIM brings many new terms and vocabulary into The UK and Scottish governments have mandated the working environment and navigating through within public procurement the adoption of BIM them can be daunting. There are many forums industry standards, to help cross sector and and guides to help industry transition over from international collaboration while driving efficiency 2D to BIM enabled 3D design processes and into the construction industry, which has been collaborative working practises. However, these lagging in adopting digital practices. tend to reflect bespoke one-off commercial For the housebuilding community to navigate the projects, where uptake has been greatest. They transition from 2D paper based design into BIM do not fully reflect the house building industries enabled 3D digital design, AIMCH has created processes, -
Asset Management in a BIM Environment
Asset Management in a BIM Environment Fulvio Re Cecconi1, Mario Claudio Dejaco2, Daniela Pasini3, Sebastiano Maltese4 1) Ph.D., Associate Professor, Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Milano, Italy. Email: [email protected] 2) Ph.D., Assistant Professor, Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Milano, Italy. Email: [email protected] 3) Ph.D. candidate, Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Milano, Italy. Email: [email protected] 4) Ph.D., Research fellow, Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Milano, Italy. Email: [email protected] Abstract: Nowadays construction projects are more and more delivered by Building Information Models instead of traditional 2D drawings. This allows for information rich projects but this information is, in many cases, accessible only for those who are able to use a BIM authoring software. In the current market, both the top levels (CEO and executives) and the low levels (on site and off site operators) of an asset or a facility management company are not able to use a BIM authoring tool, thus to use the valuable information stored in the model. Moreover, BIM models that work fine for the design stage will be of no use during the operational stage if not correctly created. A research has been carried on to cope with these problems and the preliminary results are shown in this paper. Asset managers’ work procedures and needs have been analyzed to identify what information is needed and when in the operational stage and then an IFC compliant standard has been adopted to store data. -
Chapter 1: Introduction
Chapter 1: Introduction 1.1 Preface In response to the fast growth in construction industries worldwide, design and construction firms, and professionals in Architecture, Engineering and Construction (ACE) sector, have great challenges to adopt more efficient and effective building tools to achieve client’s satisfaction by providing accurate and easier information and data more than traditional assembled 2D. Since 1992 the term of Building Information Building( BIM) appeared and started using widely as concept for digital representation of the physical and functional characteristics of a building displayed as a 3D model, with the added capability to integrate a whole array of design, and the term is changing from one developer to another such as Virtual Building by GraphiSoft and Integrated Project Models by Bentley Systems. According to The National Building Information Model Standard (NBIMS), Building Information Modeling (BIM) is a digital representation of physical and functional characteristics of a facility. A BIM is a shared knowledge resource for information about a facility forming a reliable basis for decisions during its life-cycle.In 2004, the National Institute of Standards and Technology (NIST) published a report stating that poor interoperability and data management costs the construction industry approximately $15.8 billion a year, or approximately 3 -4% of the total industry .A basic premise of BIM is collaboration by different stakeholders at different phases of the life cycle of a facility to insert, extract, update or modify information in the BIM process to support and reflect the roles of that stakeholder (Suremann, 2009) Addition to that, new dimension elements have been added to 3D concept such as 4D for time and 5D for cost to enhance the capability for life cycle management. -
BIM Handbook a Guide to Buil
BIM Handbook A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors Chuck Eastman Paul Teicholz Rafael Sacks Kathleen Liston John Wiley & Sons, Inc. BIM Handbook: A Guide to Building InformationModeling for Owners, Managers,Designers, Engineers, and Contractors. Chuck Eastman, Paul Teicholz, Rafael Sacks and Kathleen Liston Copyright © 2008 John Wiley & Sons, Inc. ffirs.indd i 1/3/08 12:32:13 PM This book is printed on acid-free paper. ϱ Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifi cally disclaim any implied warranties of merchantability or fi tness for a particular purpose. -
Early Implementation of Building Information Modeling Into a Cold-Formed Steel Company: Providing Novel Project Management Techniques and Solutions to Industry
American Journal of Civil Engineering and Architecture, 2013, Vol. 1, No. 6, 164-173 Available online at http://pubs.sciepub.com/ajcea/1/6/6 © Science and Education Publishing DOI:10.12691/ajcea-1-6-6 Early Implementation of Building Information Modeling into a Cold-Formed Steel Company: Providing Novel Project Management Techniques and Solutions to Industry Samuel A. Barrett1, John P. Spillane1,*, James B. P. Lim2 1School of Planning, Architecture & Civil Engineering, Queen’s University Belfast, Belfast, United Kingdom 2Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand *Corresponding author: [email protected] Received October 12, 2013; Revised November 04, 2013; Accepted November 13, 2013 Abstract The ability of building information modeling (BIM) to positively impact projects in the AEC through greater collaboration and integration is widely acknowledged. This paper aims to examine the development of BIM and how it can contribute to the cold-formed steel (CFS) building industry. This is achieved through the adoption of a qualitative methodology encompassing a literature review, exploratory interviews with industry experts, culminating in the development of e-learning material for the sector. In doing so, the research team have collaborated with one of the United Kingdom’s largest cold-formed steel designer/fabricators. By demonstrating the capabilities of BIM software and providing technical and informative videos in its creation, this project has found two key outcomes. Firstly, to provide invaluable assistance in the transition from traditional processes to a fully collaborative 3D BIM as required by the UK Government under the “Government Construction Strategy” by 2016 in all public sector projects. -
BIM and Its Envisioned Use in Engineering Infrastructure
BIM and its Envisioned Use in Engineering Infrastructure Graduation Thesis Author Jan-Peter Ter Maaten Date September 1, 2015 Version 1.0 Status Final ‘If you don’t know where you’re going, any road will get you there’ Quote derived from Lewis Carroll’s Alice in Wonderland Figure 1 | Corporate Vision E2CS (E2CS Partners LLC., 2007) © Copyright 2015 by J. Ter Maaten, TU Delft and Grontmij Nederland B.V. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilised in any way or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without the prior permission from the proprietors. Research Title BIM’s Horizon Research Sub Title BIM and its Envisioned Use in Engineering Infrastructure Document Type Graduation Thesis Date of Completion September 1, 2015 Date of Presentation September 16, 2015 Author Jan-Peter Ter Maaten Hoofdweg 115 6744 WJ Ederveen 06-57240749 [email protected] [email protected] Student number 4098951 University Delft University of Technology Faculty Civil Engineering and Geosciences Master Track Construction Management and Engineering Graduation Committee Prof.dr.ir. M.J.C.M. Hertogh CEG, TU Delft Dr.ir. G.A. van Nederveen CEG, TU Delft Dr. S.G. Lukosch TBM, TU Delft Ing. M.B.J. de Kroon Grontmij, Nederland Grontmij Nederland B.V. De Holle Bilt 22 3732 HM, De Bilt Delft University of Technology Faculty of Civil Engineering and Geosciences Stevinweg 1 2628, CN, Delft J. Ter Maaten iii Writing a report often ends with the first textual part of it, and so it does in this case as well. -
9783030335694.Pdf
Research for Development Bruno Daniotti Marco Gianinetto Stefano Della Torre Editors Digital Transformation of the Design, Construction and Management Processes of the Built Environment Research for Development Series Editors Emilio Bartezzaghi, Milan, Italy Giampio Bracchi, Milan, Italy Adalberto Del Bo, Politecnico di Milano, Milan, Italy Ferran Sagarra Trias, Department of Urbanism and Regional Planning, Universitat Politècnica de Catalunya, Barcelona, Barcelona, Spain Francesco Stellacci, Supramolecular NanoMaterials and Interfaces Laboratory (SuNMiL), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Vaud, Switzerland Enrico Zio, Politecnico di Milano, Milan, Italy; Ecole Centrale Paris, Paris, France The series Research for Development serves as a vehicle for the presentation and dissemination of complex research and multidisciplinary projects. The published work is dedicated to fostering a high degree of innovation and to the sophisticated demonstration of new techniques or methods. The aim of the Research for Development series is to promote well-balanced sustainable growth. This might take the form of measurable social and economic outcomes, in addition to environmental benefits, or improved efficiency in the use of resources; it might also involve an original mix of intervention schemes. Research for Development focuses on the following topics and disciplines: Urban regeneration and infrastructure, Info-mobility, transport, and logistics, Environment and the land, Cultural heritage and landscape, Energy, Innovation in processes and technologies, Applications of chemistry, materials, and nanotech- nologies, Material science and biotechnology solutions, Physics results and related applications and aerospace, Ongoing training and continuing education. Fondazione Politecnico di Milano collaborates as a special co-partner in this series by suggesting themes and evaluating proposals for new volumes. -
Jbimfall 2007 Your Not Parents’ Way of Doing Business
Journal of Building Information Modeling An official publication of the National BIM Standard (NBIMS) and the National Institute of Building Sciences (NIBS) JBIMFall 2007 Your Not Parents’ Way of Doing Business Approaches to Transforming the Construction Industry Permit No. 14 No. Permit Pembina, ND Pembina, PAID U.S. Postage U.S. PRSRT STD PRSRT Feature Building Information Models and Model Views By Richard See, Managing Director, Digital Alchemy IN THE LAST FEW YEARS, we have seen government funded research in this area in designing buildings and integrated data- a great deal of marketing and press about that ultimately led to early building model- base techniques to support more sophisti- Building Information Modeling (BIM). By ing systems including BDS (Building De- cated models and extending the association now, most people in the industry must sign System) and RUCAPS which were of data with geometric representations1. have a vague understanding of what BIM used by early adopters in the UK and U.S. These techniques were later adopted or is, but may find some additional back- through the mid 1980s. Even these first emulated in commercial products. ground, some specific examples, and generation building modeling systems in- These early systems were generally more detail about how BIMs will improve cluded some of the concepts central to developed by people in the building indus- quality, reduce costs, and enable new today’s BIM authoring software. Concepts try that had a vision of using the computer business processes should be of interest including parametric element definition, to prototype buildings as assemblies of to most. -
BIM Handbook
BIM Handbook A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors Chuck Eastman Paul Teicholz Rafael Sacks Kathleen Liston John Wiley & Sons, Inc. BIM Handbook: A Guide to Building InformationModeling for Owners, Managers,Designers, Engineers, and Contractors. Chuck Eastman, Paul Teicholz, Rafael Sacks and Kathleen Liston Copyright © 2008 John Wiley & Sons, Inc. ffirs.indd i 1/3/08 12:32:13 PM This book is printed on acid-free paper. ϱ Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifi cally disclaim any implied warranties of merchantability or fi tness for a particular purpose. -
A Study of Building Information Modeling Usage Through The
A STUDY OF BUILDING INFORMATION MODELING USAGE THROUGH THE PERCEIVED UTILIZATION OF FACILITIES MANAGEMENT TRAINING, BUILDING INFORMATION MODELING TECHNICAL SPECIFICATIONS, AND A QUALITY BUILDING INFORMATION MODEL FOR FACILITIES MANAGEMENT AT HIGHER EDUCATIONAL INSTITUTIONS IN TEXAS A Dissertation by DARRELL ERNEST THOMPSON Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Edelmiro Escamilla Committee Members, Mark Clayton Wei Yan Boong-Yeol Ryoo Head of Department, Ward Wells December 2014 Major Subject: Architecture Copyright 2014 Darrell Thompson ABSTRACT The research for this study investigated the correlation between the perceived usage of Building Information Modeling in Facilities Management and; the perceived training level of the FM personnel, the perceived specification requirement and the influence of it by FM personnel, and the perceived quality of the building information model to be used by FM personnel, by the respective institution. The study began, Phase I, with a diligent review of literature and a scrutinous selection of case studies that provided an identifying mechanism for those elements that possessed the potential to impact the perceived usage of BIM for facilities management in a contained environment. Upon the completion of Phase I, the pilot study and interview process began in Phase II. The interview coupled with the Fault Tree Analysis tool obtained in the literature review derived the conceptual model of the study that ultimately acted as the driver for the generation of the general hypothesis and the subset hypotheses of the study. Once the conceptual model and hypotheses were established, the methodology of the study was outlined.