3D,4D and 5D Building Information Modeling for Commercial Building Projects

Total Page:16

File Type:pdf, Size:1020Kb

3D,4D and 5D Building Information Modeling for Commercial Building Projects International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072 3D,4D and 5D Building Information Modeling for Commercial Building Projects Somnath D. Khochare1 , Ashish P. Waghmare2 1,2 PG-Student,Dr .D. Y. Patil School of Engineering and Technology,Lohegaon,Pune-412105 ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - The use of building information modeling has progressive program for mandated use of fully provided a means of increasing total product quality, collaborative BIM for government projects by 2016 to providing accurate quantity takeoff and improving reduce project delays and cost overruns as part of the scheduling, consequently diminishing total project overall economic development (UK Government, 2011). In contingencies and costs. Building Information Modeling Singapore, the government provides BIM funds to promote (BIM) has recently attained widespread attention in the a broader usage of BIM technology (Singapore Construction industry. BIM represents the development and Government, 2013). use of computer-generated 5-dimensional (5-D) models to simulate the planning, design, construction and operation of Building Information Modeling (BIM) is the a facility. It helps architects, engineers and constructors to documentation process consisting of information about visualize what is to be built in simulated environment and to different phases of any project like design, construction identify potential design, construction or operational planning, construction, facility management and operation. problems. It is one holistic documentation process beneficial for operational visualization, and construction application In this paper, we had discussed What is BIM ? History of BIM such as estimating, scheduling and design coordination. development? How BIM works and process with Data Main advantage of implementing BIM application is the requires and Data flow. Also benefits and Drawbacks of BIM visual coordination of the building systems such as MEP are also discussed. (Mechanical, Electrical, and Plumbing) systems and it also identifies the possible conflicts between the building Key Words: BIM ,background, requirements, systems. By detecting the conflicts, problems can be limitation and benefits. resolved before actual construction which in turn saves money and time invested. 1.INTRODUCTION BUILDING INFORMATION MODELING Building information modeling (BIM) is an intelligent 3D model based process that gives in architecture engineer History of BIM and construction professional the insite and tools to more efficient plan design construct and manage the building To trace the history of BIM and BIM systems, we have to and infrastructure. BIM is a complex multiphase process go back to the early days of computing and dig through the that gathers input from team members to model the conceptual underpinnings. Computer-aided design and components and tools that will be used during the computer-aided manufacturing (then machining) construction process to create a unique perspective of the developed as two separate technologies roughly at the building process. same time going into the 60s. At the time, no one foresaw that both CAM and CAD would eventually intertwine In India, the BIM application is not widely practiced till and emerge as powerful force in industrial world now has scope to use this technology in a much wider scale. In near future BIM is expected to change the whole Year Progress of BIM development scenario of Architecture, Engineering and Construction First commercial Software [Computer (AEC) industry. The existing infrastructure at present is 1957 sufficient to cater to the needs of only two-third of India’s aided Manufacturing] used population and the quality of this existing infrastructure is Design automated by computer system has 1961 too poor to withstand natural calamities. So, there is a developed greater need for better and more infrastructure facilities in Computer aided design with graphical user near future. BIM is likely to emerge as one of the most 1963 interface “Skechpad” was developed. revolutionary advancements that would transform the Indian real estate and construction sector. According to a 1975 Building Description system developed. recent McGraw-Hill Construction Report (2012), BIM Graphical language for interactive design adoption in the USA expanded from 49% in 2009 to over 1977 (GLIDE) 71% in 2012. In the UK, the government introduced a © 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 132 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072 Graphisoft is developed which is 3D CAD Eastman designed a program that gave the user access to a 1985 application. sortable database information can be retrieved categorically by attributes (including material and Concept of Building Modeling published in 1986 supplier); it also used a graphical user interface, papers. orthographic and perspective views . The BDS was one of Really Universal computer Aided the first projects in BIM history to successfully create this 1986 Production system has building database; it described individual library elements developed.(RUCAPS) which can be retrieved and added to a model (Bergin, 2011). Eastman concluded that BDS would improve 1987 First use of ArchiCAD in computers. drafting and analysis efficiencies and cut the cost of design the International Foundation Class (IFC) by more than fifty percent. BDS was the experiment that file format was developed to allow data to identified the most fundamental problems in architectural 1995 flow across platforms basically making a design for the next five decades. file compatible with different BIM programs In 1977, Charles Eastman created GLIDE (Graphical Language for Interactive Design) in the CMU Lab and it ArchiCAD released its first file exchange 1997 exhibited most of the characteristics of the modern BIM based Teamwork solution platform.The 80s came and several systems were being 1999 in Japan, Onuma allowed virtual developed everywhere. They quite gained popularity teams to work on BIM through the Internet within the industry and some were even applied to 1999 and created a database-driven BIM construction projects. It was in 1986 when RUCAPS planning system. (Really Universal Computer-Aided Production System) was used to assist the renovation of Heathrow Airport’s Naviswork developed which is 3D review Terminal 3. It was the first CAD program in the history of 2001 software for navigation, collaboration and BIM to be used in prefab construction (or temporal phase co-ordination. construction, if you want to be technical). It is regarded as Autodesk acquired Revit, Naviswork and a forerunner to today’s BIM software (Eastman et al, 2002 other small softwares. 2008). Mobile application developed,enables the In 1982, Gabor Bojar started developing ArchiCAD. With 2012 conception of a BIM on mobile as similar technology as the BDS, Bojar released Graphisoft’s appication. Radar CH in 1984 for the Apple Lisa OS. This was later relaunched in 1987 as ArchiCAD, making ArchiCAD the In 1957, Pronto, the first commercial software computer- first BIM software available on a personal computer aided manufacturing (CAM) was developed by Dr. Patrick J. (Bergin, 2011.Backtrack to 1985, in the US, Diehl Hanratty. It was a numerical control machining technology Graphsoft was developing Vector works, one of the first that later grew into computer-aided manufacturing. A short CAD programs, one of the first 3D modeling software time after that, he dabbled into computer-generated programs, and the first cross-platform CAD application. graphics and in 1961 developed DAC (Design Automated Vector works was one of the first to introduce BIM by Computer) which became the first CAM/CAD system capabilities. At the same time (1985), Parametric that used interactive graphics and was used for General Technology Corporation (PTC) was founded in 1985 and Motors’ complex die molds. they released Pro/ENGINEER in 1988, considered to be the first ever marketed parametric modeling design In 1963, the first computer-aided design (CAD) with software in BIM history. graphical user interface, “Sketchpad”, was developed at the MIT Lincoln Labs by Ivan Sutherland. In the 70s and By 2000, the program had introduced Revit. Revit 80s, the two main methods born out of this revolutionized BIM by using a parametric change engine were constructive solid geometry (CSG) and boundary made possible through object-oriented programming, and representation (brep). The whole design process for this by creating a platform that allowed time attribute to be necessitated an intuitive connection to the design medium added. Robert Aish first documented the use of the term and presented the challenge of commanding the computer “Building Modelling” in a published paper in 1986. In this in a simple way. paper, he argued for what we now know as BIM and the technology to implement it. A few years after that, the first In 1975, Charles Eastman published a paper describing documented use of the term “Building Information a prototype called Building Description System (BDS). It Model” appeared in a paper by G.A. Van Nederveen and F. discussed ideas of parametric design, high quality Tolman in the December 1992 Automation
Recommended publications
  • BIM Tools and Parametric Modeling
    CHAPTER2 BIM Tools and Parametric Modeling 2.0 EXECUTIVE SUMMARY This chapter provides an overview of the primary technology that distinguishes BIM design applications from other CAD systems. Object - based parametric modeling was originally developed in the 1980s. It does not represent objects with fi xed geometry and properties. Rather, it represents objects by parame- ters and rules that determine the geometry as well as some non - geometric properties and features. The parameters and rules allow the objects to auto- matically update according to user control or changing contexts. In other industries, companies use parametric modeling to develop their own object representations and to refl ect corporate knowledge and best practices. In architecture, BIM software companies have pre- defi ned a set of base building object families for users, which may be extended, modifi ed, or added to. An object family allows for the creation of any number of object instances, with forms that are dependent on parameters and relationships with other objects. Companies should have the capability of developing user - defi ned parametric objects and corporate object libraries for customized quality control and to establish their own best practices. Custom parametric objects allow for the modeling of complex geometries, which were previously not possible or simply impractical. Object attributes are needed to interface with analyses, cost estimations, and other applications, but these attributes must fi rst be defi ned by the fi rm or user. Current BIM tools vary in many ways: in the sophistication of their prede- fi ned base objects; in the ease with which users can defi ne new object families; BIM Handbook: A Guide to Building InformationModeling for Owners, Managers,Designers, Engineers, and Contractors.
    [Show full text]
  • Chapter 1: Introduction
    Chapter 1: Introduction 1.1 Preface In response to the fast growth in construction industries worldwide, design and construction firms, and professionals in Architecture, Engineering and Construction (ACE) sector, have great challenges to adopt more efficient and effective building tools to achieve client’s satisfaction by providing accurate and easier information and data more than traditional assembled 2D. Since 1992 the term of Building Information Building( BIM) appeared and started using widely as concept for digital representation of the physical and functional characteristics of a building displayed as a 3D model, with the added capability to integrate a whole array of design, and the term is changing from one developer to another such as Virtual Building by GraphiSoft and Integrated Project Models by Bentley Systems. According to The National Building Information Model Standard (NBIMS), Building Information Modeling (BIM) is a digital representation of physical and functional characteristics of a facility. A BIM is a shared knowledge resource for information about a facility forming a reliable basis for decisions during its life-cycle.In 2004, the National Institute of Standards and Technology (NIST) published a report stating that poor interoperability and data management costs the construction industry approximately $15.8 billion a year, or approximately 3 -4% of the total industry .A basic premise of BIM is collaboration by different stakeholders at different phases of the life cycle of a facility to insert, extract, update or modify information in the BIM process to support and reflect the roles of that stakeholder (Suremann, 2009) Addition to that, new dimension elements have been added to 3D concept such as 4D for time and 5D for cost to enhance the capability for life cycle management.
    [Show full text]
  • BIM Handbook a Guide to Buil
    BIM Handbook A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors Chuck Eastman Paul Teicholz Rafael Sacks Kathleen Liston John Wiley & Sons, Inc. BIM Handbook: A Guide to Building InformationModeling for Owners, Managers,Designers, Engineers, and Contractors. Chuck Eastman, Paul Teicholz, Rafael Sacks and Kathleen Liston Copyright © 2008 John Wiley & Sons, Inc. ffirs.indd i 1/3/08 12:32:13 PM This book is printed on acid-free paper. ϱ Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifi cally disclaim any implied warranties of merchantability or fi tness for a particular purpose.
    [Show full text]
  • BIM and Its Envisioned Use in Engineering Infrastructure
    BIM and its Envisioned Use in Engineering Infrastructure Graduation Thesis Author Jan-Peter Ter Maaten Date September 1, 2015 Version 1.0 Status Final ‘If you don’t know where you’re going, any road will get you there’ Quote derived from Lewis Carroll’s Alice in Wonderland Figure 1 | Corporate Vision E2CS (E2CS Partners LLC., 2007) © Copyright 2015 by J. Ter Maaten, TU Delft and Grontmij Nederland B.V. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilised in any way or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without the prior permission from the proprietors. Research Title BIM’s Horizon Research Sub Title BIM and its Envisioned Use in Engineering Infrastructure Document Type Graduation Thesis Date of Completion September 1, 2015 Date of Presentation September 16, 2015 Author Jan-Peter Ter Maaten Hoofdweg 115 6744 WJ Ederveen 06-57240749 [email protected] [email protected] Student number 4098951 University Delft University of Technology Faculty Civil Engineering and Geosciences Master Track Construction Management and Engineering Graduation Committee Prof.dr.ir. M.J.C.M. Hertogh CEG, TU Delft Dr.ir. G.A. van Nederveen CEG, TU Delft Dr. S.G. Lukosch TBM, TU Delft Ing. M.B.J. de Kroon Grontmij, Nederland Grontmij Nederland B.V. De Holle Bilt 22 3732 HM, De Bilt Delft University of Technology Faculty of Civil Engineering and Geosciences Stevinweg 1 2628, CN, Delft J. Ter Maaten iii Writing a report often ends with the first textual part of it, and so it does in this case as well.
    [Show full text]
  • Jbimfall 2007 Your Not Parents’ Way of Doing Business
    Journal of Building Information Modeling An official publication of the National BIM Standard (NBIMS) and the National Institute of Building Sciences (NIBS) JBIMFall 2007 Your Not Parents’ Way of Doing Business Approaches to Transforming the Construction Industry Permit No. 14 No. Permit Pembina, ND Pembina, PAID U.S. Postage U.S. PRSRT STD PRSRT Feature Building Information Models and Model Views By Richard See, Managing Director, Digital Alchemy IN THE LAST FEW YEARS, we have seen government funded research in this area in designing buildings and integrated data- a great deal of marketing and press about that ultimately led to early building model- base techniques to support more sophisti- Building Information Modeling (BIM). By ing systems including BDS (Building De- cated models and extending the association now, most people in the industry must sign System) and RUCAPS which were of data with geometric representations1. have a vague understanding of what BIM used by early adopters in the UK and U.S. These techniques were later adopted or is, but may find some additional back- through the mid 1980s. Even these first emulated in commercial products. ground, some specific examples, and generation building modeling systems in- These early systems were generally more detail about how BIMs will improve cluded some of the concepts central to developed by people in the building indus- quality, reduce costs, and enable new today’s BIM authoring software. Concepts try that had a vision of using the computer business processes should be of interest including parametric element definition, to prototype buildings as assemblies of to most.
    [Show full text]
  • On Building Information Modeling: an Explorative Study
    Use of BIM for existing Buildings On Building Information Modeling: an explorative study Erika JOHANSSON Darek M. HAFTOR Bengt MAGNUSSON Jan ROSVALL 1 Use of BIM for existing Buildings On Building Information Modeling: an explorative study © Erika JOHANSSON Darek M. HAFTOR Bengt MAGNUSSON Jan ROSVALL Department of Informatics and Department of Construction Technology, Linnaeus University, Växjö, Sweden Linnaeus University Press Växjö, Sweden June, 2014 ISBN 978-91-87925-02-3 2 Use of BIM for existing Buildings Abstract Building Information Model (BIM) is now a well-established notion in the context of built environment management, which includes the construction industry and the facility management industry. At first sight, BIM represents the various tools that support formulation and usage of models of built environments. Vendors that develop and provide BIM technologies typically offer bold promises regarding the positive effects of the usage of BIM. These positive effects include increased efficiency, quality and safety, in the context of the whole lifecycle of a built environment. However, the main emphasis of that rhetoric is placed on the benefits gained from using BIM in the construction and maintenance of new built environments. As the overwhelming majority of built environments are made up of already existing constructions, rather than projected buildings, a key question is: what are the practices for the use of BIM for existing buildings? An explorative research study has been conducted to respond to that question. The main
    [Show full text]
  • BIM Handbook
    BIM Handbook A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors Chuck Eastman Paul Teicholz Rafael Sacks Kathleen Liston John Wiley & Sons, Inc. BIM Handbook: A Guide to Building InformationModeling for Owners, Managers,Designers, Engineers, and Contractors. Chuck Eastman, Paul Teicholz, Rafael Sacks and Kathleen Liston Copyright © 2008 John Wiley & Sons, Inc. ffirs.indd i 1/3/08 12:32:13 PM This book is printed on acid-free paper. ϱ Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifi cally disclaim any implied warranties of merchantability or fi tness for a particular purpose.
    [Show full text]
  • Modelagem Da Informação Da Construção Estudo De Caso - Inspetoria Da Receita Federal Em Jaguarão - Rs
    UNIVERSIDADE DE BRASÍLIA FACULDADE DE ARQUITETURA E URBANISMO PROGRAMA DE PESQUISA E PÓS-GRADUAÇÃO MESTRADO EM ARQUITETURA E URBANISMO ÁREA DE CONCENTRAÇÃO: TECNOLOGIA MODELAGEM DA INFORMAÇÃO DA CONSTRUÇÃO ESTUDO DE CASO - INSPETORIA DA RECEITA FEDERAL EM JAGUARÃO - RS MARIA DA CONCEIÇÃO MENDES DINIZ BRASÍLIA – DF JULHO/2013 II UNIVERSIDADE DE BRASÍLIA FACULDADE DE ARQUITETURA E URBANISMO PROGRAMA DE PESQUISA E PÓS-GRADUAÇÃO MESTRADO EM ARQUITETURA E URBANISMO ÁREA DE CONCENTRAÇÃO: TECNOLOGIA MODELAGEM DA INFORMAÇÃO DA CONSTRUÇÃO ESTUDO DE CASO - INSPETORIA DA RECEITA FEDERAL EM JAGUARÃO - RS MARIA DA CONCEIÇÃO MENDES DINIZ ORIENTADOR: PROF. DR. NEANDER FURTADO DA SILVA Dissertação apresentada no Curso de Pós-graduação em Arquitetura e Urbanismo da Universidade Federal de Brasília, como parte dos requisitos para obtenção do título de Mestre em Arquitetura e Urbanismo. BRASÍLIA – DF JULHO/2013 III FOLHA DE APROVAÇÃO Candidato: Maria da Conceição Mendes Diniz Dissertação defendida e aprovada Prof. Dr. Neander Furtado da Silva Faculdade de Arquitetura e Urbanismo de Brasília - Universidade de Brasília Prof. Dr. Márcio Augusto Roma Buzar Faculdade de Arquitetura e Urbanismo de Brasília - Universidade de Brasília Prof. Dr. David Rodney Lionel Pennington Faculdade de Comunicação – Universidade de Brasília BRASÍLIA – DF JULHO/2013 IV AGRADECIMENTOS A Deus que sempre me sustentou e guiou, por ter me permitido mais uma conquista. Aos meus pais, pela dedicação e incentivo à nossa educação. Aos meus irmãos e sobrinhos pela motivação e carinho nos momentos mais difíceis. Ao meu orientador, Professor Doutor Neander Furtado da Silva pelos conhecimentos transmitidos e auxílio na análise de dados necessários à elaboração desta dissertação. Ao Professor Doutor Márcio Augusto Roma Buzar pelos ensinamentos e preciosas contribuições nas bancas de qualificação e de defesa da dissertação.
    [Show full text]
  • BIM Handbook: a Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors
    www.EngineeringBooksPdf.com www.EngineeringBooksPdf.com BIM Handbook A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors Second Edition Chuck Eastman Paul Teicholz Rafael Sacks Kathleen Liston John Wiley & Sons, Inc. ffirs.indd i 3/8/11 10:53:45 PM www.EngineeringBooksPdf.com This book is printed on acid-free paper. ϱ Copyright © 2011 by John Wiley & Sons, Inc.. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifi cally disclaim any implied warranties of merchantability or fi tness for a particular purpose.
    [Show full text]
  • The Roots of Bim
    Műszaki Tudományos Közlemények vol. 12. (2020) 42–49. DOI English: https://doi.org/10.33894/mtk-2020.12.06 Hungarian: https://doi.org/10.33895/mtk-2020.12.06 THE ROOTS OF BIM Ferdinánd-Zsongor GOBESZ Technical University of Cluj-Napoca, Facultyof Civil Engineering, Department of Structural Mechanics, Cluj-Napoca, Romania, [email protected] Abstract Today's architectural and civil engineering design is almost inconceivable without collaborative tools. Build- ing Information Modeling supports this with a set of collaboratively usable data. The roots of this concept go back in the past, thus the present paper attempts to depict some of the milestones in its evolution. Keywords: building, information, modeling, history. 1. Introduction 2. Product data evolution In most simple terms, BIM (Building Informa- The first technical drawing book [7] was pub- tion Modeling) is a digital representation of the lished in France towards the end of the 18th physical and functional characteristics of a build- century, opening the way for technical graph- ics. Technical drawing has become one of the ing [1] in a unified model which can be applied, pillars of engineering design. On the one hand, managed and used in collaboration by all the it was able to show the structures in parts, and actors in the construction industry. Its practical on the other hand, it provided a more detailed application is through computer-aided software product description (specifying more accurately packages, be it planning, construction manage- the product data). Computer-aided design was ment, valuation, operation and maintenance, or also based on graphic design at first.
    [Show full text]
  • Building Information Modeling Two Years Later – Huge Potential, Some Success and Several Limitations Written By: Ian Howell and Bob Batcheler
    Building Information Modeling Two Years Later – Huge Potential, Some Success and Several Limitations Written by: Ian Howell and Bob Batcheler Introduction Since the great Building Information Modeling (BIM) debate facilitated by Jerry Laiserin in April 2003, and reported on here in the Laiserin Letter, much has transpired with regard to building information modeling. Pilot projects have been completed, BIM systems have evolved through several versions of software upgrades, and industry leading firms are adopting BIM on live projects. Given the number of companies we have met during our research that have indicated some intention to seriously consider adopting BIM, we felt that it would be useful to document our findings to provide a basis for evaluating BIM and to examine what has been learned. First, for the uninitiated, a brief recap. CAD versus BIM – A Quick Refresher of the Basics [Regular readers of the Laiserin Letter should feel fee to skip this section and get straight to the exciting stuff below] The original premise of a CAD system was to automate the task of drafting. As such, the original focus of CAD applications was to represent 2D geometry via graphical elements, such as lines, arcs, symbols, et al. In this context, walls, for example, are merely represented as parallel lines. To establish some meaning behind these graphical elements, the concept of layering was introduced to group related elements, such as the lines used to represent walls on a given ‘wall layer.’ By doing so, discrete 2D drawing files could be generated and plotted from CAD, but more complex information, such as the relationships between elements could not be represented.
    [Show full text]
  • Academic Report on Measuring Jin Li Gwan Building in Ansan University Using BIM Technology
    e-ISSN 2721-0952 th The 5 International Conference INNOVATION RESEARCH FOR SCIENCE, TECHNOLOGY, AND CULTURE Academic Report on Measuring Jin Li Gwan Building in Ansan University Using BIM Technology Isham Shah Hassana1*, Ruslinda Abdullaha1, Nik Hasnira Nik Paa1 and Isma Zaidaa1 1Center of Architecture Technology, Politeknik Port Dickson, Malaysia *Corresponding author: [email protected] Abstract. Korea generally known as a country of high technology and rapid in the world but the country also has a diversity of Korean architectural style. This led to the Korean inherit various building designs for generations. It is important for the identity of a country. JIN LI GWAN designs a building that has a value that is proud like facade. The main objective of this study is to see upon how BIM technology will help students in measuring historical building. Students from CART Polipd combined with students from Ansan University integrate BIM technology in measuring and documenting JIN LI GWAN. Research found that integrating BIM technology in measured drawing project help students to produce high accuracy documentation in a short period of time. Façade development also becomes easy with BIM technology. Drone made the process faster in documenting façade and roof for tall building. Integrating BIM technology in measured drawing make easy for documentation process involving the generation and management of digital representations of physical and functional characteristics of buildings and places. BIM technology allows students to create documentation from the data collected in short period of time. This technology also allows students to produce high detail of digital model that make it easy for visualization in the presentation.
    [Show full text]