Metagenomic Analysis of Bacterial and Fungal Communities Inhabiting Shiro Dominant Soils of Two Production Regions of Tricholoma Matsutake S

Total Page:16

File Type:pdf, Size:1020Kb

Metagenomic Analysis of Bacterial and Fungal Communities Inhabiting Shiro Dominant Soils of Two Production Regions of Tricholoma Matsutake S Article Metagenomic Analysis of Bacterial and Fungal Communities Inhabiting Shiro Dominant Soils of Two Production Regions of Tricholoma Matsutake S. Ito & S. Imai in Korea Gi-Hong An , Jae-Han Cho, Ok-Tae Kim and Jae-Gu Han * Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Chungbuk 27709, Korea; [email protected] (G.-H.A.); [email protected] (J.-H.C.); [email protected] (O.-T.K.) * Correspondence: [email protected]; Tel.: +82-43-872-5732 Abstract: Tricholoma matsutake is an ectomycorrhizal fungus that has obligate symbiotic relationships with Pinus densiflora. Its fruiting body has a distinctive flavor and is traded at a high price. Thus, it has been a significant source of income for rural communities in Korea. We hypothesized that biotic factors considerably influence the formation of the T. matsutake mushroom, and the soils producing T. matsutake share similar microbial characteristics. Therefore, the present study aimed to detect the specific fungal and bacterial groups in T. matsutake production soils (shiro+) and nonproduction soils (shiro−) of the Bonghwa and Yanyang regions via next-generation sequencing. In a total of 15 phyla, 36 classes, 234 genera of bacteria, six phyla, 29 classes, and 164 genera of fungi were detected from four samples at both sites. The species diversity of shiro+ soils was lower than the shiro− samples in both the fungal and bacterial groups. In addition, we did not find high similarities in the microbial communities between the shiro+ soils of the two regions. However, in the resulting differences Citation: An, G.-H.; Cho, J.-H.; Kim, between the fungal communities categorized by their trophic assembly, we found a distinguishable O.-T.; Han, J.-G. Metagenomic compositional pattern in the fungal communities from the shiro+ soils and the shiro− soils of the Analysis of Bacterial and Fungal Communities Inhabiting Shiro two sites. Thus, the similarity among the microbial communities in the forest soils may be due to Dominant Soils of Two Production the fact that the microbial communities in the T. matsutake dominant soils are closely associated with Regions of Tricholoma Matsutake S. Ito biotic factors and abiotic factors such as soil properties. & S. Imai in Korea. Forests 2021, 12, 758. https://doi.org/10.3390/ Keywords: ectomycorrhizae; bacterial communities; fungal communities; metagenomics; miseq; f12060758 shiro dominant soil; Tricholoma matsutake Academic Editor: Carol A. Loopstra Received: 26 April 2021 1. Introduction Accepted: 4 June 2021 Tricholoma matsutake (S. Ito & S. Imai) that forms a symbiotic association with the Published: 9 June 2021 root tips of Pinus densiflora (Siebold & Zucc.) provides attractive commercial benefits to rural communities in Korea [1,2]. The annual yields of this mushroom are highly Publisher’s Note: MDPI stays neutral limited and unpredictable. Since it has not yet been successfully artificially cultivated, the with regard to jurisdictional claims in entire production of T. matsutake still depends upon natural harvesting from forests. In published maps and institutional affil- recent decades, many researchers have strived to succeed in the artificial production of iations. T. matsutake [2–6]. However, the artificial cultivation of this fungus has not been established. As an obligated symbiont, the biology of this mycorrhizal fungus must be considered from the perspective of the ecological interaction with the surrounding biotic factors, especially microbial groups. Copyright: © 2021 by the authors. Soil ecosystems have a wide variety of microbial communities. Microorganisms in Licensee MDPI, Basel, Switzerland. the soil can have positive or negative effects on the growth of ectomycorrhizal fungus [7]. This article is an open access article Many studies have been conducted on the microbial communities in the soils adjacent distributed under the terms and to T. matsutake [6,8–11]. The influence of the diverse microbial communities in soil on conditions of the Creative Commons the life cycle of T. matsutake, such as the development of mycelia and the formation of Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ fruiting bodies in various ways, has been investigated [4,12,13]. In particular, some soil 4.0/). bacteria, which are called mycorrhizal helper bacteria (MHB), have beneficial effects on the Forests 2021, 12, 758. https://doi.org/10.3390/f12060758 https://www.mdpi.com/journal/forests Forests 2021, 12, 758 2 of 16 mycorrhizal symbiosis by mobilizing nutrients in nutrient-deficient soils [14]. In addition, some fungi that have frequently been detected from the fruiting body and fairy ring of T. matsutake co-exist in the hyphal dominant environment as a potential mycorrhizal helper fungus [11]. Therefore, the various microbial communities associated with T. matsutake could potentially contribute to the growth of hyphae and the formation of the fruiting body of T. matsutake [7,15–17]. Recent advances in metagenomics contribute to unveiling the microbial commu- nities in various environmental samples [11,13,18]. Next-generation sequencing (NGS) based on metagenomics is a culture-independent method that enables the identification of uncultured microbes. The recent application of NGS sequencing methods, such as pyrosequencing 454 and Illumina, may provide a more direct way to detect microbial taxa, especially those with a low level of species changes [19,20]. In addition, Illumina sequencing is cost-effective and could obtain tenfold or more sequences per sample than pyrosequencing 454, thereby allowing the analysis of a high number of detailed taxonomic profiles from samples [21]. According to the report by Korean Statistical Information Service (KOSIS), the annual yields of T. matsutake in Korea dramatically decreased from 480 tons in 2007 to 140 tons in 2017. Previously, Gyeongsangbuk-do and Gangwon-do provinces were well-known as the representative T. matsutake producing regions that occupied the largest (61.3%) and second (18.0%) largest total yields of T. matsutake in Korea. However, the yields of T. matsutake in Gyeongsangbuk-do province have been gradually decreasing, and it was reported by KOSIS to be 340 tons in 2007, further decreasing to 75 tons in 2017. Thus, we speculated that the reduction in the yields of T. matsutake is due to various environmental factors, and we focused on the changes in microbial communities in the production of soils for T. matsutake. We hypothesized that the microbial communities in the production of soils for T. matsutake would be quite similar to one another, regardless of geographical characteristics, if there are microorganisms that have beneficial effects on the growth of mycelium and the formation of the fruit body of T. matsutake. Therefore, in this study, to determine the differences between the microbial communities in soils where T. matsutake occurs in Gyeongsangbuk- do and Gangwon-do provinces, we conducted sampling of the T. matsutake production soil (shiro+ soil) and nonproduction soil (shiro− soil) in two main T. matsutake production regions (Bonghwa and Yangyang) in Korea and investigated the soil bacterial and fungal communities from each sample using the Illumina Miseq sequencing platform 2. Materials and Methods 2.1. Sampling Sites Two sampling sites were mountains located near Seo-myeon, Yangyang-gun, Gangwon- do (110 m ELV, 38◦03023.8” N, 128◦38038.7” E), and Beopjeon-myeon, Bonghwa-gun, Gyeongsangbuk-do (360 m ELV, 36◦55014.2” N, 128◦56047.2” E) in south-eastern parts of the Korean peninsula. The climate and major vegetation at these sites are summarized in Table1. At the Yangyang site, in 2019, the annual mean temperature was 13.9 ◦C, and annual precipitation was 1517.3 mm. The major canopy vegetation was P. densiflora at more than 80%, and understory vegetation comprised Rhododendron schlippen (Maxim.), R. mu- cronulatum (Turcz.), Smilax nipponica (Miq.), and Carex fernaldiana (H.Lév & Vaniot). The site belongs to the public research forest under the management of the Yangyang-gun Agricul- tural Technology Center. At the Bonghwa site, in 2019, the annual mean temperature was 11.5 ◦C, and annual precipitation was 970.5 mm. The major canopy vegetation was P. densi- flora at more than 80%, and understory vegetation comprised R. schlippen, R. mucronulatum, Melampyrum roseum (Maxim.), Pteridium aquilinum (Underw. ex A. Heller), S. nipponica, and C. fernaldiana. The site in Bonghwa is privately owned. The sampling sites are geographi- cally remote, located approximately 120 km from each other (Figure1). In September 2019, soil sampling was conducted immediately after T. matsutake fruiting bodies were harvested. By using a soil sampler, soils containing shiro (shiro+) were collected at 10 cm depth from the soil surface at the three spots of the zone beneath the T. matsutake, and soils without Forests 2021, 12, x FOR PEER REVIEW 3 of 17 September 2019, soil sampling was conducted immediately after T. matsutake fruiting bod- ies were harvested. By using a soil sampler, soils containing shiro (shiro+) were collected Forests 2021, 12,at 758 10 cm depth from the soil surface at the three spots of the zone beneath the T. matsutake, 3 of 16 and soils without shiro (shiro−) were collected at approximately 3–4 m intervals from the spots with the shiro+ soils. Each soil sample was placed into a polyvinyl bag and mixed well. Shiro can beshiro distinguished (shiro−) wereby its collectedfeatures of at whitish-gray-colored approximately 3–4 m soil, intervals in which from fun- the spots with the gal hyphae are aggregatedshiro+ soils. [11]. Each Soil soil samples sample taken was placedfrom each into sampling a polyvinyl site bag were and trans- mixed well. Shiro can ported on ice andbe stored distinguished at −4 °C before by its DNA features extraction. of whitish-gray-colored soil, in which fungal hyphae are aggregated [11]. Soil samples taken from each sampling site were transported on ice and Table 1. Climates andstored vegetation at −4 ◦ofC the before experime DNAntal extraction. sites (http://www.nongsaro.go.kr/).
Recommended publications
  • Unearthing the Role of Ectomycorrhizal Fungi in Pine Co-Invasions on Maui
    UNEARTHING THE ROLE OF ECTOMYCORRHIZAL FUNGI IN PINE CO-INVASIONS ON MAUI A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAIʻI AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BOTANY (ECOLOGY, EVOLUTION, AND CONSERVATION BIOLOGY) MAY 2021 By Leah P. M. Thompson Thesis Committee: Nicole Hynson, Chairperson Anthony Amend Nhu Nguyen Keywords: pine, ectomycorrhizal, co-invasion, Suillus Acknowledgments I would like to first and foremost to thank all the members of the Hynson and Amend labs for their support and friendship during my time working on my degree. I also want to thank the National Park Service for facts and information, the State of Hawaiʻi Department of Fish and Wildlife for site access, and Center for MICROBIOME Analysis through Island Knowledge & Investigation for project funding. Thank you to Dr. Cameron Eagan, Dr. Nicole Hynson, Dr. Nhu Nguyen, Dr. Travis Idol, Sean Swift, and Patricia Sendao for help with field work. Thank you to Danyel Yogi, Kacie Kajihara, Terrance McDermott, Megan Isii, Mistiha Jayaraj, and Tanja Lantz Hirvonen for help setting up bioassays, counting root tips, measuring weights, and running extractions. I would like to thank Dr. Michael Kantar, Dr. Chris Wall, Dr. Jack Darcy, and Sean Swift for help with my data analyses. Thank you to Dr. Chris Wall and Thomas Chapin for editing my draft. Finally, thank you to my committee, Dr. Anthony Amend, Dr. Nhu Nguyen, and Dr. Nicole Hynson for all her support and helping guide me along the way. I would also like to thank my friends and family, who were there to support me in all the aspects of my life throughout this process.
    [Show full text]
  • Novel Bacterial Lineages Associated with Boreal Moss Species Hannah
    bioRxiv preprint doi: https://doi.org/10.1101/219659; this version posted November 16, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Novel bacterial lineages associated with boreal moss species 2 Hannah Holland-Moritz1,2*, Julia Stuart3, Lily R. Lewis4, Samantha Miller3, Michelle C. Mack3, Stuart 3 F. McDaniel4, Noah Fierer1,2* 4 Affiliations: 5 1Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, 6 Boulder, CO, USA 7 2Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, 8 USA 9 3Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ USA 10 4Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA 11 *Corresponding Author 12 13 Abstract 14 Mosses are critical components of boreal ecosystems where they typically account for a large 15 proportion of net primary productivity and harbor diverse bacterial communities that can be the major 16 source of biologically-fixed nitrogen in these ecosystems. Despite their ecological importance, we have 17 limited understanding of how microbial communities vary across boreal moss species and the extent to 18 which local environmental conditions may influence the composition of these bacterial communities. 19 We used marker gene sequencing to analyze bacterial communities associated with eight boreal moss 20 species collected near Fairbanks, AK USA. We found that host identity was more important than site in 21 determining bacterial community composition and that mosses harbor diverse lineages of potential N2- 22 fixers as well as an abundance of novel taxa assigned to understudied bacterial phyla (including 23 candidate phylum WPS-2).
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Genomic Analysis of Family UBA6911 (Group 18 Acidobacteria)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 Genomic analysis of family UBA6911 (Group 18 3 Acidobacteria) expands the metabolic capacities of the 4 phylum and highlights adaptations to terrestrial habitats. 5 6 Archana Yadav1, Jenna C. Borrelli1, Mostafa S. Elshahed1, and Noha H. Youssef1* 7 8 1Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, 9 OK 10 *Correspondence: Noha H. Youssef: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 11 Abstract 12 Approaches for recovering and analyzing genomes belonging to novel, hitherto unexplored 13 bacterial lineages have provided invaluable insights into the metabolic capabilities and 14 ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent 15 and ecologically successful lineages on earth yet, currently, multiple lineages within this phylum 16 remain unexplored. Here, we utilize genomes recovered from Zodletone spring, an anaerobic 17 sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil 18 and non-soil habitats, to examine the metabolic capabilities and ecological role of members of 19 the family UBA6911 (group18) Acidobacteria.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • The Shiga Toxin Producing Escherichia Coli
    microorganisms Review An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli Panagiotis Sapountzis 1,* , Audrey Segura 1,2 , Mickaël Desvaux 1 and Evelyne Forano 1 1 Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; [email protected] (A.S.); [email protected] (M.D.); [email protected] (E.F.) 2 Chr. Hansen Animal Health & Nutrition, 2970 Hørsholm, Denmark * Correspondence: [email protected] Received: 22 May 2020; Accepted: 7 June 2020; Published: 10 June 2020 Abstract: For approximately 10,000 years, cattle have been our major source of meat and dairy. However, cattle are also a major reservoir for dangerous foodborne pathogens that belong to the Shiga toxin-producing Escherichia coli (STEC) group. Even though STEC infections in humans are rare, they are often lethal, as treatment options are limited. In cattle, STEC infections are typically asymptomatic and STEC is able to survive and persist in the cattle GIT by escaping the immune defenses of the host. Interactions with members of the native gut microbiota can favor or inhibit its persistence in cattle, but research in this direction is still in its infancy. Diet, temperature and season but also industrialized animal husbandry practices have a profound effect on STEC prevalence and the native gut microbiota composition. Thus, exploring the native cattle gut microbiota in depth, its interactions with STEC and the factors that affect them could offer viable solutions against STEC carriage in cattle. Keywords: cattle; STEC colonization; microbiota; bacterial interactions 1. Introduction The domestication of cattle, approximately 10,000 years ago [1], brought a stable supply of protein to the human diet, which was instrumental for the building of our societies.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Fungal Phyla
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 1984 Band/Volume: 37 Autor(en)/Author(s): Arx Josef Adolf, von Artikel/Article: Fungal phyla. 1-5 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Fungal phyla J. A. von ARX Centraalbureau voor Schimmelcultures, P. O. B. 273, NL-3740 AG Baarn, The Netherlands 40 years ago I learned from my teacher E. GÄUMANN at Zürich, that the fungi represent a monophyletic group of plants which have algal ancestors. The Myxomycetes were excluded from the fungi and grouped with the amoebae. GÄUMANN (1964) and KREISEL (1969) excluded the Oomycetes from the Mycota and connected them with the golden and brown algae. One of the first taxonomist to consider the fungi to represent several phyla (divisions with unknown ancestors) was WHITTAKER (1969). He distinguished phyla such as Myxomycota, Chytridiomycota, Zygomy- cota, Ascomycota and Basidiomycota. He also connected the Oomycota with the Pyrrophyta — Chrysophyta —• Phaeophyta. The classification proposed by WHITTAKER in the meanwhile is accepted, e. g. by MÜLLER & LOEFFLER (1982) in the newest edition of their text-book "Mykologie". The oldest fungal preparation I have seen came from fossil plant material from the Carboniferous Period and was about 300 million years old. The structures could not be identified, and may have been an ascomycete or a basidiomycete. It must have been a parasite, because some deformations had been caused, and it may have been an ancestor of Taphrina (Ascomycota) or of Milesina (Uredinales, Basidiomycota).
    [Show full text]
  • Actinomycetes from the Coffee Plantation Soils of Western Ghats: Diversity and Enzymatic Potentials
    Int.J.Curr.Microbiol.App.Sci (2018) 7(8): 3599-3611 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 08 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.708.364 Actinomycetes from the Coffee Plantation Soils of Western Ghats: Diversity and Enzymatic Potentials Banu Sameera1, Harishchandra Sripathy Prakash2 and Monnanda Somaiah Nalini1* 1Department of Studies in Botany, 2Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore–570 006, Karnataka, India *Corresponding author ABSTRACT 230 soil actinomycetes were isolated from the coffee plantation of Western Ghats, Karnataka, India along the altitudinal gradients and depths. 24 morphologically distinct species were obtained based on the aerial spore chains and by the sequencing of the 16S K e yw or ds rRNA gene. The strains were assigned to the order Micrococcales, and novel orders Plantation soils, Pseudonocardiales ord. nov., Streptomycetales ord. nov., and Streptosporangiales ord. nov. Coffea arabica, The frequently isolated genus was Streptomyces, along with rare actinomycetes Streptomycetes, Actinomadura, Spirillospora, Actinocorallia, Arthrobacter, Saccharopolyspora and Rare actinomycetes, Nonomuraea. This study is the first report on Nonomuraea antimicrobica as a soil Soil properties, actinomycete. Diversity studies on the distribution of soil actinomycetes indicated enzymes significant differences (P< 0.05) among Shannon diversity indices of sample group depths Article Info along the slope. An attempt was made to correlate the total actinomycete count with soil parameters, by PCA based multiple linear regression (MLR) which significantly correlated Accepted: (P<0.0001) with pH, moisture, available nitrogen and phosphorous. About 91.6% of the 20 July 2018 isolates screened were found to be potentials for enzymatic activity.
    [Show full text]
  • Chytridiomycetes, Chytridiomycota)
    VOLUME 5 JUNE 2020 Fungal Systematics and Evolution PAGES 17–38 doi.org/10.3114/fuse.2020.05.02 Taxonomic revision of the genus Zygorhizidium: Zygorhizidiales and Zygophlyctidales ord. nov. (Chytridiomycetes, Chytridiomycota) K. Seto1,2,3*, S. Van den Wyngaert4, Y. Degawa1, M. Kagami2,3 1Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294, Sugadaira-Kogen, Ueda, Nagano 386-2204, Japan 2Department of Environmental Science, Faculty of Science, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274-8510, Japan 3Graduate School of Environment and Information Sciences, Yokohama National University, 79-7, Tokiwadai, Hodogaya, Yokohama, Kanagawa 240- 8502, Japan 4Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhuette 2, D-16775 Stechlin, Germany *Corresponding author: [email protected] Key words: Abstract: During the last decade, the classification system of chytrids has dramatically changed based on zoospore Chytridiomycota ultrastructure and molecular phylogeny. In contrast to well-studied saprotrophic chytrids, most parasitic chytrids parasite have thus far been only morphologically described by light microscopy, hence they hold great potential for filling taxonomy some of the existing gaps in the current classification of chytrids. The genus Zygorhizidium is characterized by an zoospore ultrastructure operculate zoosporangium and a resting spore formed as a result of sexual reproduction in which a male thallus Zygophlyctis and female thallus fuse via a conjugation tube. All described species of Zygorhizidium are parasites of algae and Zygorhizidium their taxonomic positions remain to be resolved. Here, we examined morphology, zoospore ultrastructure, host specificity, and molecular phylogeny of seven cultures of Zygorhizidium spp. Based on thallus morphology and host specificity, one culture was identified as Z.
    [Show full text]
  • A Crispy Diet: Grazers of Achromatium Oxaliferum in Lake Stechlin Sediments
    Microbial Ecology https://doi.org/10.1007/s00248-018-1158-4 NOTE A Crispy Diet: Grazers of Achromatium oxaliferum in Lake Stechlin Sediments Sina Schorn1,2 & Heribert Cypionka1 Received: 29 December 2017 /Accepted: 7 February 2018 # The Author(s) 2018. This article is an open access publication Abstract Achromatium is the largest freshwater bacterium known to date and easily recognised by conspicuous calcite bodies filling the cell volume. Members of this genus are highly abundant in diverse aquatic sediments and may account for up to 90% of the bacterial biovolume in the oxic-anoxic interfaces. The high abundance implies that Achromatium is either rapidly growing or hardly prone to predation. As Achromatium is still uncultivated and does not appear to grow fast, one could assume that the cells might escape predation by their unusual shape and composition. However, we observed various members of the meiofauna grazing or parasitizing on Achromatium. By microphotography, we documented amoebae, ciliates, oligochetes and plathelminthes having Achromatium cells ingested. Some Achromatium cells harboured structures resembling sporangia of parasitic fungi (chytrids) that could be stained with the chitin-specific dye Calcofluor White. Many Achromatia carried prokary- otic epibionts in the slime layer surrounding the cells. Their regular distribution over the cell might indicate that they are commensalistic rather than harming their hosts. In conclusion, we report on various interactions of Achromatium with the sediment community and show that although Achromatium cells are a crispy diet, full of calcite bodies, predators do not spare them. Keywords Large sulfur bacteria . Plathelminthes . Ciliates . Amoebae . Oligochetes . Aquatic fungi Introduction are numerous intracellular calcite bodies (CaCO3), which fill major parts of the cell volume [6].
    [Show full text]