Dynamical Tropical Cyclone Track Forecast Errors. Part I: Tropical Region Error Sources

Total Page:16

File Type:pdf, Size:1020Kb

Dynamical Tropical Cyclone Track Forecast Errors. Part I: Tropical Region Error Sources VOLUME 15 WEATHER AND FORECASTING DECEMBER 2000 Dynamical Tropical Cyclone Track Forecast Errors. Part I: Tropical Region Error Sources LESTER E. CARR III AND RUSSELL L. ELSBERRY Naval Postgraduate School, Monterey, California (Manuscript received 28 January 2000, in ®nal form 16 June 2000) ABSTRACT All highly erroneous (.300 n mi or 555 km at 72 h) Navy Operational Global Atmospheric Prediction System (NOGAPS) and U.S. Navy version of the Geophysical Fluid Dynamics Laboratory model (GFDN) tropical cyclone track forecasts in the western North Paci®c during 1997 are examined. Responsible error mechanisms are described by conceptual models that are all related to known tropical cyclone motion processes that are being misrepresented in the dynamical models. Error mechanisms that predominantly occur while the tropical cyclone is still in the Tropics are described in this paper, and those errors that are more related to midlatitude circulations are addressed in a companion paper. Of the 69 NOGAPS large-error cases, 39 were attributed to excessive direct cyclone interaction (E-DCI), 12 cases of excessive ridge modi®cation by the tropical cyclone (E-RMT), and 10 cases of excessive reverse trough formation (E-RTF). Of the 50 GFDN large-error cases, 31 were E-DCI, and only two E-RMT and two E-RTF cases were found, but 9 cases involving a single cyclone were attributed to excessive tropical cyclone size (E-TCS). Characteristics and symptoms in the forecast tracks and model ®elds that accompany these frequently occurring error mechanisms are documented and illustrative case studies are presented. When a sudden deviation from previous track guidance or a track outlier from the other dynamical model guidance appears, the forecaster should diagnose whether this is an error, or is indicative of a real track change. If the conceptual models of large-error mechanisms proposed from this retrospective study can be applied in real time, track forecasting will be improved. 1. Introduction track forecast guidance for the forecaster has been achieved since 1994. First, the Geophysical Fluid Dy- The long-range objective of the systematic and in- namics Laboratory (GFDL) model was demonstrated to tegrated approach to tropical cyclone (TC) track fore- provide superior guidance over the other statistical and casting (hereafter the systematic approach) of Carr and empirical techniques (Kurihara et al. 1995). That re- Elsberry (1994) is to assist the forecaster achieve sig- ni®cant improvements in of®cial track forecasts. When gional model was subsequently modi®ed to use the ini- the systematic approach was developed, the TC fore- tial conditions and lateral boundary conditions from the casters relied primarily on statistical and empirical track Navy Operational Global Atmospheric Prediction Sys- guidance (Elsberry 1995). Although dynamical model tem (NOGAPS) for provision of track forecast guidance guidance was available, nearly all of the models had in the western North Paci®c, and is referred to as the systematic errors (e.g., a marked poleward bias for low- GFDN model. Both the NOGAPS and the U.K. Met. latitude TCs moving westward). In the original system- Of®ce (UKMO) global models were signi®cantly im- atic approach concept, the plan had been to apply sta- proved in October 1994 by the introduction of improved tistical corrections for different synoptic patterns to cor- TC synthetic observations (Goerss and Jeffries 1994; rect for systematic errors in the dynamical model guid- Heming et al. 1995). Various improvements were intro- ance. A reduction in the systematic errors of the duced to the Japan Meteorological Agency Global Spec- dynamical models used by the forecaster at that time tral Model (JGSM) and Typhoon Model (JTYM) prior would presumably have led to a reduction in the annual to the 1997 typhoon season. Thus, three global (NO- average track errors. GAPS, UKMO, and JGSM) and two regional (GFDN A major gain in the accuracy of the dynamical TC and JTYM) tracks are typically available for western North Paci®c TCs at the synoptic (0000 and 1200 UTC) and off-synoptic (0600 and 1800 UTC) times, respec- tively. Corresponding author address: L. E. Carr III, Department of Me- One recent improvement in the dynamical model teorology, Code MR/Cr, 589 Dyer Rd., Room 254, Monterey, CA 93943-5114. guidance has been the reduction in the systematic errors. E-mail: [email protected] Although Elsberry et al. (1999) have shown it is possible 641 Unauthenticated | Downloaded 09/28/21 01:18 AM UTC 642 WEATHER AND FORECASTING VOLUME 15 caster detect when the dynamical guidance is likely to be erroneous and thus should be rejected during prepa- ration of the warning. Elsberry and Carr (2000) have examined the track forecast errors as a function of the spread (maximum distance to consensus centroid) among these ®ve dynamical models. Their ®ve-member consen- sus approach is an extension of the Goerss (2000) three- global-model or two-regional-model consensus technique at the synoptic and off-synoptic times, respectively. Goerss demonstrated that his consensus forecasts were either the best or the second-best guidance in about 70% of the forecasts. As might be expected based on expe- rience with ensemble prediction systems, an average of ®ve independent dynamical models with only small sys- tematic errors provides an improvement over the three- member or two-member consensus. Although Elsberry and Carr (2000) documented that a small spread (,300 FIG. 1. Frequency of occurrence of 72-h track errors for the NO- n mi, or 555 km) along the ®ve model tracks often im- GAPS (solid) and GFDN (open) forecasts of western North Paci®c plied a small consensus forecast error, in a sizeable frac- TCs during 1997. tion of the small spread cases the consensus error ex- ceeded 300 n mi. Another important result was that a to apply a statistical adjustment to improve the NO- large spread among the ®ve model tracks did not nec- GAPS tracks at 12±36 h, no statistically signi®cant im- essarily imply a large consensus track error, because the provement was achieved beyond 36 h. With the reduc- errors of two (or more) of the models may be compen- tion in systematic errors, old rules about the perfor- sating. Elsberry and Carr (2000) did demonstrate that a mance of the models as a function of initial latitude or large spread implies that at least one of the dynamical track orientation are not as valid. As this research has models will have an error larger than that spread. They found [see examples in Elsberry and Carr (2000) and propose a selective consensus approach in which the Carr and Elsberry (2000)], the same dynamical model model guidance suspected to have a 72-h error greater that was good in one case (e.g., recurvature) can be the than 300 n mi is ®rst eliminated prior to calculating the worst in another essentially identical case. Thus, the average of the remaining four model tracks. They dem- original systematic approach concept of applying sta- onstrate that simply omitting the worst of the ®ve dy- tistical adjustments to the dynamical model tracks need- namical model tracks would indeed improve the selective ed to be changed. consensus over the nonselective consensus. Although the dynamical models typically have skill This paper describes the characteristics and symptoms relative to a climatology and persistence forecast, the in the forecast tracks and model ®elds that a forecaster dynamical models occasionally have large errors. For might use to detect likely cases of large (300 n mi at 72 example, the distribution of 72-h NOGAPS and GFDN h) dynamical TC track errors. Conceptual models and track forecast errors during the 1997 western North Pa- case studies are presented in this paper for large-error ci®c season are shown in Fig. 1. Notice these two model scenarios that are most common when the TC is still in error distributions are skewed toward the larger errors. the Tropics, that is, equatorward of the subtropical ridge. Even though the largest NOGAPS error (1226 n mi or In a companion paper (Carr and Elsberry 2000), those 2268 km) is signi®cantly larger than for the GFDN mod- conceptual models that apply more frequently when the el (931 n mi or 1722 km), the percentages of 72-h fore- TC is poleward of the subtropical ridge will be described. cast errors exceeding 300 n mi (555 km) are very similar As demonstrated by Elsberry and Carr (2000), a suc- (33.1% for NOGAPS and 34.5% for GFDN). cessful application of these conceptual models by the Thus, the new systematic approach focus is the re- forecaster would reduce the TC track forecast errors. duction in the number of of®cial track forecasts with large errors. Although not numerous during most sea- 2. Methodology sons, these forecast ``busts'' provide such poor guidance to the customer that con®dence is degraded. If these The approach has been to identify and analyze cases large errors could be eliminated, the warnings would be during 1997 of large (300 n mi or 555 km at 72 h) track more consistent in time. Then the areas warned would errors by the NOGAPS or GFDN models (Fig. 1). Of be reduced so that customers in adjacent areas would the ®ve dynamical models mentioned above, only for not unnecessarily make preparations, and those custom- these two models were the analyses and forecast ®elds ers in the warned areas could more con®dently make available to search for explanations of the large errors. the appropriate preparations. Only the tracks of the other three models were available The basic motivation for this work is to help the fore- (®elds for JGSM and the UKMO model have recently Unauthenticated | Downloaded 09/28/21 01:18 AM UTC DECEMBER 2000 CARR AND ELSBERRY 643 become available and appear to have similar character- In the following sections, conceptual models of the istics when large errors occurred; these evaluations will mechanisms leading to the large track errors will be be published separately).
Recommended publications
  • Typhoon Neoguri Disaster Risk Reduction Situation Report1 DRR Sitrep 2014‐001 ‐ Updated July 8, 2014, 10:00 CET
    Typhoon Neoguri Disaster Risk Reduction Situation Report1 DRR sitrep 2014‐001 ‐ updated July 8, 2014, 10:00 CET Summary Report Ongoing typhoon situation The storm had lost strength early Tuesday July 8, going from the equivalent of a Category 5 hurricane to a Category 3 on the Saffir‐Simpson Hurricane Wind Scale, which means devastating damage is expected to occur, with major damage to well‐built framed homes, snapped or uprooted trees and power outages. It is approaching Okinawa, Japan, and is moving northwest towards South Korea and the Philippines, bringing strong winds, flooding rainfall and inundating storm surge. Typhoon Neoguri is a once‐in‐a‐decade storm and Japanese authorities have extended their highest storm alert to Okinawa's main island. The Global Assessment Report (GAR) 2013 ranked Japan as first among countries in the world for both annual and maximum potential losses due to cyclones. It is calculated that Japan loses on average up to $45.9 Billion due to cyclonic winds every year and that it can lose a probable maximum loss of $547 Billion.2 What are the most devastating cyclones to hit Okinawa in recent memory? There have been 12 damaging cyclones to hit Okinawa since 1945. Sustaining winds of 81.6 knots (151 kph), Typhoon “Winnie” caused damages of $5.8 million in August 1997. Typhoon "Bart", which hit Okinawa in October 1999 caused damages of $5.7 million. It sustained winds of 126 knots (233 kph). The most damaging cyclone to hit Japan was Super Typhoon Nida (reaching a peak intensity of 260 kph), which struck Japan in 2004 killing 287 affecting 329,556 people injuring 1,483, and causing damages amounting to $15 Billion.
    [Show full text]
  • Ensemble Forecast of a Typhoon Flood Event
    AUGUST 2001 MACKEY AND KRISHNAMURTI 399 Ensemble Forecast of a Typhoon Flood Event BRIAN P. M ACKEY AND T. N . K RISHNAMURTI Department of Meteorology, The Florida State University, Tallahassee, Florida (Manuscript received 9 September 1999, in ®nal form 2 February 2001) ABSTRACT A high-resolution nested regional spectral model and an ensemble prediction system are combined to forecast the track, intensity, and ¯ooding precipitation arising from Typhoon Winnie of August 1997, which eventually reached supertyphoon status. The prediction of ¯oods is operationally challenging since rainfall distributions can have a high degree of spatial and temporal variability. Rare event probabilities, however, can be estimated more readily via ensemble forecasting. This technique is used to evaluate a typhoon ¯ood event in which rainfall amounts greater than 200 mm led to landslides and major ¯ooding of crops. Seven-member ensembles were generated using an EOF-based technique. An experiment was conducted with a regional model resolution of 0.58 latitude. A Mercator transform grid with a grid mesh size of approximately 55 km in the east±west and 48 km in the north±south was employed. The results indicated very accurate track and intensity forecasts for both the control and ensemble mean. Track position errors remained below 150 km through 72 h, while intensity errors were approximately5ms21 at landfall. Qualitatively, the overall 5-day precipitation patterns appeared realistic and compared favorably with the observed data, while, quantitatively, the correlation coef®cient was near 0.6. For stations near and north of where Winnie made landfall, ensemble-based predictions performed well. While the ensemble mean often underestimated the heaviest rainfall totals by approximately 25%±50%, the maximum values within the ensemble spread either exceeded or came within 10%±15% of the station totals.
    [Show full text]
  • The Use of a Spectral Nudging Technique to Determine the Impact of Environmental Factors on the Track of Typhoon Megi (2010)
    atmosphere Article The Use of a Spectral Nudging Technique to Determine the Impact of Environmental Factors on the Track of Typhoon Megi (2010) Xingliang Guo ID and Wei Zhong * Institute of Meteorology and Oceanography, National University of Defense Technology, Nanjing 211101, China; [email protected] * Correspondence: [email protected] Received: 3 October 2017; Accepted: 7 December 2017; Published: 20 December 2017 Abstract: Sensitivity tests based on a spectral nudging (SN) technique are conducted to analyze the effect of large-scale environmental factors on the movement of typhoon Megi (2010). The error of simulated typhoon track is effectively reduced using SN and the impact of dynamical factors is more significant than that of thermal factors. During the initial integration and deflection period of Megi (2010), the local steering flow of the whole and lower troposphere is corrected by a direct large-scale wind adjustment, which improves track simulation. However, environmental field nudging may weaken the impacts of terrain and typhoon system development in the landfall period, resulting in large simulated track errors. Comparison of the steering flow and inner structure of the typhoon reveals that the large-scale circulation influences the speed and direction of typhoon motion by: (1) adjusting the local steering flow and (2) modifying the environmental vertical wind shear to change the location and symmetry of the inner severe convection. Keywords: spectral nudging; typhoon track; environmental factors 1. Introduction Although the forecasting accuracy of typhoon tracks has been effectively improved in recent years through observations, numerical simulations, data assimilation and studies of the physical mechanisms affecting typhoon movement [1], the accurate prediction of abnormal typhoon tracks, including their continuous changes and abrupt deflection, is still not possible [2].
    [Show full text]
  • Coastal Risk Assessment for Ebeye
    Coastal Risk Assesment for Ebeye Technical report | Coastal Risk Assessment for Ebeye Technical report Alessio Giardino Kees Nederhoff Matthijs Gawehn Ellen Quataert Alex Capel 1230829-001 © Deltares, 2017, B De tores Title Coastal Risk Assessment for Ebeye Client Project Reference Pages The World Bank 1230829-001 1230829-00 1-ZKS-OOO1 142 Keywords Coastal hazards, coastal risks, extreme waves, storm surges, coastal erosion, typhoons, tsunami's, engineering solutions, small islands, low-elevation islands, coral reefs Summary The Republic of the Marshall Islands consists of an atoll archipelago located in the central Pacific, stretching approximately 1,130 km north to south and 1,300 km east to west. The archipelago consists of 29 atolls and 5 reef platforms arranged in a double chain of islands. The atolls and reef platforms are host to approximately 1,225 reef islands, which are characterised as low-lying with a mean elevation of 2 m above mean sea leveL Many of the islands are inhabited, though over 74% of the 53,000 population (2011 census) is concentrated on the atolls of Majuro and Kwajalein The limited land size of these islands and the low-lying topographic elevation makes these islands prone to natural hazards and climate change. As generally observed, small islands have low adaptive capacity, and the adaptation costs are high relative to the gross domestic product (GDP). The focus of this study is on the two islands of Ebeye and Majuro, respectively located on the Ralik Island Chain and the Ratak Island Chain, which host the two largest population centres of the archipelago.
    [Show full text]
  • Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons
    3744 MONTHLY WEATHER REVIEW VOLUME 137 Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part II: Dependence on Translation Speed I.-I. LIN,IAM-FEI PUN, AND CHUN-CHIEH WU Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan (Manuscript received 8 July 2008, in final form 9 December 2008) ABSTRACT Using new in situ ocean subsurface observations from the Argo floats, best-track typhoon data from the U.S. Joint Typhoon Warning Center, an ocean mixed layer model, and other supporting datasets, this work systematically explores the interrelationships between translation speed, the ocean’s subsurface condition [characterized by the depth of the 268C isotherm (D26) and upper-ocean heat content (UOHC)], a cyclone’s self-induced ocean cooling negative feedback, and air–sea enthalpy fluxes for the intensification of the western North Pacific category 5 typhoons. Based on a 10-yr analysis, it is found that for intensification to category 5, in addition to the warm sea surface temperature generally around 298C, the required subsurface D26 and UOHC depend greatly on a cyclone’s translation speed. It is observed that even over a relatively shallow subsurface warm layer of D26 ; 60–70 m and UOHC ; 65–70 kJ cm22, it is still possible to have a sufficient enthalpy flux to intensify the storm to category 5, provided that the storm can be fast moving 21 (typically Uh ; 7–8 m s ). On the contrary, a much deeper subsurface layer is needed for slow-moving 21 22 typhoons. For example at Uh ; 2–3 m s , D26 and UOHC are typically ;115–140 m and ;115–125 kJ cm , respectively.
    [Show full text]
  • Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities
    Sea Level Rise and Implications for Low-Lying Islands, SPM4 Coasts and Communities Coordinating Lead Authors: Michael Oppenheimer (USA), Bruce C. Glavovic (New Zealand/South Africa) Lead Authors: Jochen Hinkel (Germany), Roderik van de Wal (Netherlands), Alexandre K. Magnan (France), Amro Abd-Elgawad (Egypt), Rongshuo Cai (China), Miguel Cifuentes-Jara (Costa Rica), Robert M. DeConto (USA), Tuhin Ghosh (India), John Hay (Cook Islands), Federico Isla (Argentina), Ben Marzeion (Germany), Benoit Meyssignac (France), Zita Sebesvari (Hungary/Germany) Contributing Authors: Robbert Biesbroek (Netherlands), Maya K. Buchanan (USA), Ricardo Safra de Campos (UK), Gonéri Le Cozannet (France), Catia Domingues (Australia), Sönke Dangendorf (Germany), Petra Döll (Germany), Virginie K.E. Duvat (France), Tamsin Edwards (UK), Alexey Ekaykin (Russian Federation), Donald Forbes (Canada), James Ford (UK), Miguel D. Fortes (Philippines), Thomas Frederikse (Netherlands), Jean-Pierre Gattuso (France), Robert Kopp (USA), Erwin Lambert (Netherlands), Judy Lawrence (New Zealand), Andrew Mackintosh (New Zealand), Angélique Melet (France), Elizabeth McLeod (USA), Mark Merrifield (USA), Siddharth Narayan (US), Robert J. Nicholls (UK), Fabrice Renaud (UK), Jonathan Simm (UK), AJ Smit (South Africa), Catherine Sutherland (South Africa), Nguyen Minh Tu (Vietnam), Jon Woodruff (USA), Poh Poh Wong (Singapore), Siyuan Xian (USA) Review Editors: Ayako Abe-Ouchi (Japan), Kapil Gupta (India), Joy Pereira (Malaysia) Chapter Scientist: Maya K. Buchanan (USA) This chapter should be cited as: Oppenheimer, M., B.C. Glavovic , J. Hinkel, R. van de Wal, A.K. Magnan, A. Abd-Elgawad, R. Cai, M. Cifuentes-Jara, R.M. DeConto, T. Ghosh, J. Hay, F. Isla, B. Marzeion, B. Meyssignac, and Z. Sebesvari, 2019: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities.
    [Show full text]
  • Sea Level Rise and Implications for Low Lying Islands, Coasts And
    SECOND ORDER DRAFT Chapter 4 IPCC SR Ocean and Cryosphere 1 2 Chapter 4: Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities 3 4 Coordinating Lead Authors: Michael Oppenheimer (USA), Bruce Glavovic (New Zealand) 5 6 Lead Authors: Amro Abd-Elgawad (Egypt), Rongshuo Cai (China), Miguel Cifuentes-Jara (Costa Rica), 7 Rob Deconto (USA), Tuhin Ghosh (India), John Hay (Cook Islands), Jochen Hinkel (Germany), Federico 8 Isla (Argentina), Alexandre K. Magnan (France), Ben Marzeion (Germany), Benoit Meyssignac (France), 9 Zita Sebesvari (Hungary), AJ Smit (South Africa), Roderik van de Wal (Netherlands) 10 11 Contributing Authors: Maya Buchanan (USA), Gonéri Le Cozannet (France), Catia Domingues 12 (Australia), Petra Döll (Germany), Virginie K.E. Duvat (France), Tamsin Edwards (UK), Alexey Ekaykin 13 (Russian Federation), Miguel D. Fortes (Philippines), Thomas Frederikse (Netherlands), Jean-Pierre Gattuso 14 (France), Robert Kopp (USA), Erwin Lambert (Netherlands), Andrew Mackintosh (New Zealand), 15 Angélique Melet (France), Elizabeth McLeod (USA), Mark Merrifield (USA), Siddharth Narayan (US), 16 Robert J. Nicholls (UK), Fabrice Renaud (UK), Jonathan Simm (UK), Jon Woodruff (USA), Poh Poh Wong 17 (Singapore), Siyuan Xian (USA) 18 19 Review Editors: Ayako Abe-Ouchi (Japan), Kapil Gupta (India), Joy Pereira (Malaysia) 20 21 Chapter Scientist: Maya Buchanan (USA) 22 23 Date of Draft: 16 November 2018 24 25 Notes: TSU Compiled Version 26 27 28 Table of Contents 29 30 Executive Summary ......................................................................................................................................... 2 31 4.1 Purpose, Scope, and Structure of the Chapter ...................................................................................... 6 32 4.1.1 Themes of this Chapter ................................................................................................................... 6 33 4.1.2 Advances in this Chapter Beyond AR5 and SR1.5 ........................................................................
    [Show full text]
  • Causes of the Unusual Coastal Flooding Generated by Typhoon Winnie on the West Coast of Korea
    Natural Hazards 29: 485–500, 2003. 485 © 2003 Kluwer Academic Publishers. Printed in the Netherlands. Causes of the Unusual Coastal Flooding Generated by Typhoon Winnie on the West Coast of Korea I.-J. MOON1,I.S.OH2,T.MURTY3 and Y.-H. YOUN4 1University of Rhode Island, Graduate School of Oceanography, Narragansett, RI 02882, U.S.A. (E-mail: [email protected]); 2Seoul National University, Department of Oceanography and Research Institute of Oceanography, Seoul 151-742, Korea; 3W. F. Baird & Associates, Coastal Engineers Ltd., Ottawa, Canada; 4Korea Meteorological Administration, Meteorological Research Institute, Seoul 151-742, Korea (Received: 30 October 2000; accepted: 11 February 2002) Abstract. On 19 August 1997 Typhoon Winnie brought unusually strong and extensive coastal flooding from storm surges to the west coast of Korea, which was far enough from the typhoon’s center to lack significant local wind and pressure forcing. Sea levels at some tidal stations broke 36-year records and resulted in property damages of $18,000,000. This study investigated the causes of the unusual high sea levels by using an Astronomical-Meteorological Index (AMI) and a coupled ocean wave-circulation model developed by the present authors. The AMI analysis and the numerical simulation of the surge event showed that the major cause of the high sea levels was not the standard inverse barometric effect supplemented by water piling up along the coast by the wind field of the typhoon as is usual for a typical storm surge, but rather an enhanced tidal forcing from the perigean spring tide and water transported into the Yellow Sea by the currents generated by the typhoon.
    [Show full text]
  • Impact Assessment of Coastal Hazards Due to Typhoons in the Marshall Islands
    Impact assessment of coastal hazards due to typhoons in the Marshall Islands Kees Nederhoff1, Alessio Giardino1 1 Deltares, Unit Marine and Coastal Systems, The Netherlands Keywords: 1. Abstract Climate change and sea level rise are a global threat to coastal areas and, in particular, to small island states. Future projections indicate that sea levels are expected to rise in the next century at different rates in multiple regions around the world. On top of that, the intensity and frequency of extreme events such as typhoons may vary. In this study, the impacts in terms of flooding of different typhoon conditions are assessed in the present day conditions as well as accounting for climate change effects. In particular, the assessment is carried out for the island of Ebeye, located on Kwajalein Atoll (Republic of Marshall Islands). The results presented herein show that coastal engineering experiences at traditional coasts cannot be applied one-on-one to small islands states in the Pacific, because the relevant hydrodynamic processes offshore and on the reef are fundamentally different. These processes can be examined using a modeling approach combining parametric wind models, as well as process-based models such as Delft3D and XBeach. The model results suggest that offshore extreme wave and storm surge levels may increase by up to 6-8% as a result of higher typhoon winds. Nevertheless, the projected sea level rise is by far the dominant process in relation to increase in flooding levels, accounting for about 80% of the total increase in flooding impacts. 2. Introduction Typhoons are among some of the nature's most powerful and destructive phenomena.
    [Show full text]
  • Guantanamo Gold Hill Galley to Close Sept. 30
    Guantanamo Bay gazette Sertr ofteNay18 Vol. 54 No. 33 Friday, August 22, 1997 Gold Hill Galley to close Sept. 30 Yes, it's true. Gold Hill (Windward) Galley will close Sept. 30 after MWR assumes custody of Gold Hill Galley Oct. 15 and is presently serving the evening meal. So what does this mean? Well, for military seeking a concessionaire to o perate this facility. This facility is expected to residents on Windward, it'll be a pay raise. be open to all hands and will serve three meals a day, seven days a week. Effective Oct. 1 all personnel, except Hospital and Marine, residing on MWR will provide details in eluding pricing in the near future. Windward will be placed on a Basic Al- Salabarria (Leeward) Galley will be lowance for Subsistence (BAS). BAS is open under contract effective Jan. 1, 1998. currently $8.30 each day. Personnel cur- 4 < + This transition should be invisible to cus- rently on COMRATS ($7.36/day) will 4 4+ tomers. Hours of operation and the menu receive an increase of 94 cents a day. will remain the same. Personnel residing Those individuals who presently hold < 4 4 on Leeward, including Marines, will con- Chow Passes will begin receiving the tinue to draw COMRATS or use their $8.30 each day automatically effective Chow Pass (whichever is presently en- Oct. 1. PSD will implement the changes titled). Leeward residents will draw and no action is required of military mem- COMRATS vice BAS because a galley is bers. available. Military members, other than Hos- The Food Service Division is planning I and Marine personnel, will not be a grand finale (special meal) for Sept.
    [Show full text]
  • Storm Data and Unusual Weather Phenomena ....………..…………..…..……………..……………..…
    JANUARY 2001 VOLUME 43 NUMBER 01 STSTORMORM DDAATTAA AND UNUSUAL WEATHER PHENOMENA WITH LATE REPORTS AND CORRECTIONS NATIONAL OCEANIC AND NATIONAL ENVIRONMENTAL SATELLITE, NATIONAL CLIMATIC DATA CENTER noaa ATMOSPHERIC ADMINISTRATION DATA AND INFORMATION SERVICE ASHEVILLE, NC Cover: Icicles hang from an orange tree with sprinklers running in an adjacent strawberry field in the background at sunrise on January 1, 2001. The photo was taken at Mike Lott’s Strawberry Farm in rural Eastern Hillsborough County of West- Central, FL. Low temperatures in the area were in the middle 20’s for six to nine hours. (Photograph courtesy of St. Petersburg Times Newspaper Photographer, Fraser Hale) TABLE OF CONTENTS Page Outstanding Storm of the Month ..……..…………………..……………..……………..……………..…. 4 Storm Data and Unusual Weather Phenomena ....………..…………..…..……………..……………..…. 5 Additions/Corrections ..………….……………………………………………………………………….. 92 Reference Notes ..……..………..……………..……………..……………..…………..………………… 122 STORM DATA (ISSN 0039-1972) National Climatic Data Center Editor: Stephen Del Greco Assistant Editors: Stuart Hinson and Rhonda Mooring STORM DATA is prepared, and distributed by the National Climatic Data Center (NCDC), National Environmental Satellite, Data and Information Service (NESDIS), National Oceanic and Atmospheric Administration (NOAA). The Storm Data and Unusual Weather Phenomena narratives and Hurricane/Tropical Storm summaries are prepared by the National Weather Service. Monthly and annual statistics and summaries of tornado and lightning events resulting in deaths, injuries, and damage are compiled by the National Climatic Data Center and the National Weather Service's (NWS) Storm Prediction Center. STORM DATA contains all confirmed information on storms available to our staff at the time of publication. Late reports and corrections will be printed in each edition. Except for limited editing to correct grammatical errors, the data in Storm Data are published as received.
    [Show full text]
  • Influence of Tropical Cyclone Intensity and Size on Storm Surge in the Northern East China
    remote sensing Article Influence of Tropical Cyclone Intensity and Size on Storm Surge in the Northern East China Sea Jian Li 1,2,3,4, Yijun Hou 1,2,3,5,*, Dongxue Mo 1,2,3, Qingrong Liu 4 and Yuanzhi Zhang 6 1 Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road, 7, Qingdao 266071, China; [email protected] (J.L.); [email protected] (D.M.) 2 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road, 7, Qingdao 266071, China 3 University of Chinese Academy of Sciences, Yuquan Road, 19A, Beijing 100049, China 4 North China Sea Marine Forecasting center of State Oceanic Administration, Yunling Road, 27, Qingdao 266061, China; [email protected] 5 Laboratory for Ocean and Climate Dynamics, Qingdao National Laboratory for Marine Science, Qingdao 266061, China 6 Nanjing University of Information Science and Technology, Pukou District, Nanjing 210044, China; [email protected] * Correspondence: [email protected]; Tel.: +86-532-82898516 Received: 5 November 2019; Accepted: 10 December 2019; Published: 16 December 2019 Abstract: Typhoon storm surge research has always been very important and worthy of attention. Less is studied about the impact of tropical cyclone size (TC size) on storm surge, especially in semi-enclosed areas such as the northern East China Sea (NECS). Observational data for Typhoon Winnie (TY9711) and Typhoon Damrey (TY1210) from satellite and tide stations, as well as simulation results from a finite-volume coastal ocean model (FVCOM), were developed to study the effect of TC size on storm surge.
    [Show full text]