The Use of a Spectral Nudging Technique to Determine the Impact of Environmental Factors on the Track of Typhoon Megi (2010)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Typhoon Neoguri Disaster Risk Reduction Situation Report1 DRR Sitrep 2014‐001 ‐ Updated July 8, 2014, 10:00 CET
Typhoon Neoguri Disaster Risk Reduction Situation Report1 DRR sitrep 2014‐001 ‐ updated July 8, 2014, 10:00 CET Summary Report Ongoing typhoon situation The storm had lost strength early Tuesday July 8, going from the equivalent of a Category 5 hurricane to a Category 3 on the Saffir‐Simpson Hurricane Wind Scale, which means devastating damage is expected to occur, with major damage to well‐built framed homes, snapped or uprooted trees and power outages. It is approaching Okinawa, Japan, and is moving northwest towards South Korea and the Philippines, bringing strong winds, flooding rainfall and inundating storm surge. Typhoon Neoguri is a once‐in‐a‐decade storm and Japanese authorities have extended their highest storm alert to Okinawa's main island. The Global Assessment Report (GAR) 2013 ranked Japan as first among countries in the world for both annual and maximum potential losses due to cyclones. It is calculated that Japan loses on average up to $45.9 Billion due to cyclonic winds every year and that it can lose a probable maximum loss of $547 Billion.2 What are the most devastating cyclones to hit Okinawa in recent memory? There have been 12 damaging cyclones to hit Okinawa since 1945. Sustaining winds of 81.6 knots (151 kph), Typhoon “Winnie” caused damages of $5.8 million in August 1997. Typhoon "Bart", which hit Okinawa in October 1999 caused damages of $5.7 million. It sustained winds of 126 knots (233 kph). The most damaging cyclone to hit Japan was Super Typhoon Nida (reaching a peak intensity of 260 kph), which struck Japan in 2004 killing 287 affecting 329,556 people injuring 1,483, and causing damages amounting to $15 Billion. -
Ensemble Forecast of a Typhoon Flood Event
AUGUST 2001 MACKEY AND KRISHNAMURTI 399 Ensemble Forecast of a Typhoon Flood Event BRIAN P. M ACKEY AND T. N . K RISHNAMURTI Department of Meteorology, The Florida State University, Tallahassee, Florida (Manuscript received 9 September 1999, in ®nal form 2 February 2001) ABSTRACT A high-resolution nested regional spectral model and an ensemble prediction system are combined to forecast the track, intensity, and ¯ooding precipitation arising from Typhoon Winnie of August 1997, which eventually reached supertyphoon status. The prediction of ¯oods is operationally challenging since rainfall distributions can have a high degree of spatial and temporal variability. Rare event probabilities, however, can be estimated more readily via ensemble forecasting. This technique is used to evaluate a typhoon ¯ood event in which rainfall amounts greater than 200 mm led to landslides and major ¯ooding of crops. Seven-member ensembles were generated using an EOF-based technique. An experiment was conducted with a regional model resolution of 0.58 latitude. A Mercator transform grid with a grid mesh size of approximately 55 km in the east±west and 48 km in the north±south was employed. The results indicated very accurate track and intensity forecasts for both the control and ensemble mean. Track position errors remained below 150 km through 72 h, while intensity errors were approximately5ms21 at landfall. Qualitatively, the overall 5-day precipitation patterns appeared realistic and compared favorably with the observed data, while, quantitatively, the correlation coef®cient was near 0.6. For stations near and north of where Winnie made landfall, ensemble-based predictions performed well. While the ensemble mean often underestimated the heaviest rainfall totals by approximately 25%±50%, the maximum values within the ensemble spread either exceeded or came within 10%±15% of the station totals. -
Layoutvorgaben Für Die Erstellung Der Beiträge
Analysis of the Influence of Joint Operation of Shihmen and Feitsui Reservoirs on Downstream Flood Peaks for Flood Control Chung-Min Tseng, Ming-Chang Shieh, Chao-Pin Yeh, Jun-Pin Chow, Wen Sen Lee Abstract The Tamsui River Basin covers the Greater Taipei Metropolitan Area, which is the most important economic center in Taiwan. Shihmen Reservoir and Feitsui Reservoir are located in the upper reaches of Tamsui River, play an important role for regulate the water use and flood control in the basin. During flood events, release of floodwaters from Shihmen and Feitsui reservoirs is necessary due to excessive inflows. Since Tamsui River is a tidal river, downstream tide changes need to be considered to avoid disastrous water levels caused by released discharges and simultaneous tidal water flows into the estuary. The joint operation of the two reservoirs has an absolute impact on the safety of the river downstream. In this study, we took real typhoon events as examples, based on actual rainfalls, reservoir release and tidal changes, used a 1-D numerical river flow model to simulate the unsteady river dynamics of Tamsui River. The goal was to understand the interaction between the two reservoirs’ joint operation and the tide. The impact on water levels and flows in Tamsui River is used do draw conclusions for future flood control operations. Keywords: Joint operation for flood control, tidal river, disastrous water levels, numerical river model 1 General Introduction 1.1 Basin Overview The Tamsui River Basin is located in the northern part of Taiwan, has a length of about 159 kilometers and a drainage area of about 2,726 square kilometers. -
Comparison of Typhoon Locations Over Ocean Surface Observed by Various Satellite Sensors
Remote Sens. 2013, 5, 3172-3189; doi:10.3390/rs5073172 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Comparison of Typhoon Locations over Ocean Surface Observed by Various Satellite Sensors Yufang Pan 1, Antony K. Liu 1,2, Shuangyan He 2,*, Jingsong Yang 1,2 and Ming-Xia He 3 1 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China; E-Mails: [email protected] (Y.P.); [email protected] (J.Y.) 2 Ocean College, Zhejiang University, Hangzhou 310058, China; E-Mail: [email protected] 3 Ocean Remote Sensing Institute, Ocean University of China, Qingdao 266003, China; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +86-571-8820-8890; Fax: +86-571-8820-8891. Received: 5 May 2013; in revised form: 13 June 2013 / Accepted: 13 June 2013 / Published: 28 June 2013 Abstract: In this study, typhoon eyes have been delineated using wavelet analysis from the synthetic aperture radar (SAR) images of ocean surface roughness and from the warm area at the cloud top in the infrared (IR) images, respectively. Envisat SAR imagery, and multi-functional transport satellite (MTSAT) and Feng Yun (FY)-2 Chinese meteorological satellite IR imagery were used to examine the typhoons in the western North Pacific from 2005 to 2011. Three cases of various typhoons in different years, locations, and conditions have been used to compare the typhoon eyes derived from SAR (on the ocean surface) with IR (at the cloud-top level) images. -
Drop Size Distribution Characteristics of Seven Typhoons in China
Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Drop Size Distribution Characteristics of Seven 10.1029/2017JD027950 Typhoons in China Key Points: Long Wen1,2,3 , Kun Zhao1,2 , Gang Chen1,2, Mingjun Wang1,2 , Bowen Zhou1,2 , • Raindrops of typhoons in continental 1,2 4 5 6 China are smaller and more spherical Hao Huang , Dongming Hu , Wen-Chau Lee , and Hanfeng Hu with higher concentration than that of 1 the Pacific and Atlantic Key Laboratory for Mesoscale Severe Weather/MOE and School of Atmospheric Science, Nanjing University, Nanjing, 2 • More accurate precipitation China, State Key Laboratory of Severe Weather and Joint Center for Atmospheric Radar Research, CMA/NJU, Beijing, China, estimation, raindrop size distribution, 3Xichang Satellite Launch Center, Xichang, China, 4Guangzhou Central Meteorological Observatory, Guangzhou, China, and polarimetric radar parameters are 5Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, CO, USA, 6Key Laboratory for obtained for typhoon rainfall • Warm rain processes dominate the Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and formation and evolution of typhoon Technology, Nanjing, China rainfall in continental China Abstract This study is the first attempt to investigate the characteristics of the drop size distribution (DSD) and drop shape relation (DSR) of seven typhoons after making landfall in China. Four typhoons were sampled Correspondence to: K. Zhao, by a C-band polarimetric radar (CPOL) and a two-dimensional video disdrometer (2DVD) in Jiangsu Province [email protected] (East China) while three typhoons were sampled by two 2DVDs in Guangdong Province (south China). Although the DSD and DSR are different in individual typhoons, the computed DSD parameters in these two μ Λ Citation: groups of typhoons possess similar characteristics. -
Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities
Sea Level Rise and Implications for Low-Lying Islands, SPM4 Coasts and Communities Coordinating Lead Authors: Michael Oppenheimer (USA), Bruce C. Glavovic (New Zealand/South Africa) Lead Authors: Jochen Hinkel (Germany), Roderik van de Wal (Netherlands), Alexandre K. Magnan (France), Amro Abd-Elgawad (Egypt), Rongshuo Cai (China), Miguel Cifuentes-Jara (Costa Rica), Robert M. DeConto (USA), Tuhin Ghosh (India), John Hay (Cook Islands), Federico Isla (Argentina), Ben Marzeion (Germany), Benoit Meyssignac (France), Zita Sebesvari (Hungary/Germany) Contributing Authors: Robbert Biesbroek (Netherlands), Maya K. Buchanan (USA), Ricardo Safra de Campos (UK), Gonéri Le Cozannet (France), Catia Domingues (Australia), Sönke Dangendorf (Germany), Petra Döll (Germany), Virginie K.E. Duvat (France), Tamsin Edwards (UK), Alexey Ekaykin (Russian Federation), Donald Forbes (Canada), James Ford (UK), Miguel D. Fortes (Philippines), Thomas Frederikse (Netherlands), Jean-Pierre Gattuso (France), Robert Kopp (USA), Erwin Lambert (Netherlands), Judy Lawrence (New Zealand), Andrew Mackintosh (New Zealand), Angélique Melet (France), Elizabeth McLeod (USA), Mark Merrifield (USA), Siddharth Narayan (US), Robert J. Nicholls (UK), Fabrice Renaud (UK), Jonathan Simm (UK), AJ Smit (South Africa), Catherine Sutherland (South Africa), Nguyen Minh Tu (Vietnam), Jon Woodruff (USA), Poh Poh Wong (Singapore), Siyuan Xian (USA) Review Editors: Ayako Abe-Ouchi (Japan), Kapil Gupta (India), Joy Pereira (Malaysia) Chapter Scientist: Maya K. Buchanan (USA) This chapter should be cited as: Oppenheimer, M., B.C. Glavovic , J. Hinkel, R. van de Wal, A.K. Magnan, A. Abd-Elgawad, R. Cai, M. Cifuentes-Jara, R.M. DeConto, T. Ghosh, J. Hay, F. Isla, B. Marzeion, B. Meyssignac, and Z. Sebesvari, 2019: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. -
Sea Level Rise and Implications for Low Lying Islands, Coasts And
SECOND ORDER DRAFT Chapter 4 IPCC SR Ocean and Cryosphere 1 2 Chapter 4: Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities 3 4 Coordinating Lead Authors: Michael Oppenheimer (USA), Bruce Glavovic (New Zealand) 5 6 Lead Authors: Amro Abd-Elgawad (Egypt), Rongshuo Cai (China), Miguel Cifuentes-Jara (Costa Rica), 7 Rob Deconto (USA), Tuhin Ghosh (India), John Hay (Cook Islands), Jochen Hinkel (Germany), Federico 8 Isla (Argentina), Alexandre K. Magnan (France), Ben Marzeion (Germany), Benoit Meyssignac (France), 9 Zita Sebesvari (Hungary), AJ Smit (South Africa), Roderik van de Wal (Netherlands) 10 11 Contributing Authors: Maya Buchanan (USA), Gonéri Le Cozannet (France), Catia Domingues 12 (Australia), Petra Döll (Germany), Virginie K.E. Duvat (France), Tamsin Edwards (UK), Alexey Ekaykin 13 (Russian Federation), Miguel D. Fortes (Philippines), Thomas Frederikse (Netherlands), Jean-Pierre Gattuso 14 (France), Robert Kopp (USA), Erwin Lambert (Netherlands), Andrew Mackintosh (New Zealand), 15 Angélique Melet (France), Elizabeth McLeod (USA), Mark Merrifield (USA), Siddharth Narayan (US), 16 Robert J. Nicholls (UK), Fabrice Renaud (UK), Jonathan Simm (UK), Jon Woodruff (USA), Poh Poh Wong 17 (Singapore), Siyuan Xian (USA) 18 19 Review Editors: Ayako Abe-Ouchi (Japan), Kapil Gupta (India), Joy Pereira (Malaysia) 20 21 Chapter Scientist: Maya Buchanan (USA) 22 23 Date of Draft: 16 November 2018 24 25 Notes: TSU Compiled Version 26 27 28 Table of Contents 29 30 Executive Summary ......................................................................................................................................... 2 31 4.1 Purpose, Scope, and Structure of the Chapter ...................................................................................... 6 32 4.1.1 Themes of this Chapter ................................................................................................................... 6 33 4.1.2 Advances in this Chapter Beyond AR5 and SR1.5 ........................................................................ -
Causes of the Unusual Coastal Flooding Generated by Typhoon Winnie on the West Coast of Korea
Natural Hazards 29: 485–500, 2003. 485 © 2003 Kluwer Academic Publishers. Printed in the Netherlands. Causes of the Unusual Coastal Flooding Generated by Typhoon Winnie on the West Coast of Korea I.-J. MOON1,I.S.OH2,T.MURTY3 and Y.-H. YOUN4 1University of Rhode Island, Graduate School of Oceanography, Narragansett, RI 02882, U.S.A. (E-mail: [email protected]); 2Seoul National University, Department of Oceanography and Research Institute of Oceanography, Seoul 151-742, Korea; 3W. F. Baird & Associates, Coastal Engineers Ltd., Ottawa, Canada; 4Korea Meteorological Administration, Meteorological Research Institute, Seoul 151-742, Korea (Received: 30 October 2000; accepted: 11 February 2002) Abstract. On 19 August 1997 Typhoon Winnie brought unusually strong and extensive coastal flooding from storm surges to the west coast of Korea, which was far enough from the typhoon’s center to lack significant local wind and pressure forcing. Sea levels at some tidal stations broke 36-year records and resulted in property damages of $18,000,000. This study investigated the causes of the unusual high sea levels by using an Astronomical-Meteorological Index (AMI) and a coupled ocean wave-circulation model developed by the present authors. The AMI analysis and the numerical simulation of the surge event showed that the major cause of the high sea levels was not the standard inverse barometric effect supplemented by water piling up along the coast by the wind field of the typhoon as is usual for a typical storm surge, but rather an enhanced tidal forcing from the perigean spring tide and water transported into the Yellow Sea by the currents generated by the typhoon. -
Member Report (2016)
MEMBER REPORT (2016) ESCAP/WMO Typhoon Committee 11th Integrated Workshop China MERANTI (1614) October 24-28, 2016 Cebu, Philippines Contents I. Review of Tropical Cyclones Which Have Affected/Impacted Members since the Previous Session 1.1 Meteorological and hydrological assessment ....................................................................................... 1 1.2 Socio-economic assessment ................................................................................................................ 13 1.3 Regional cooperation assessment ....................................................................................................... 15 II. SUMMARY OF KEY RESULT AREAS Typhoon forecast, prediction and research 2.1 Typhoon forecasting technique .......................................................................................................... 20 2.2 Typhoon numerical modeling and data assimilation .......................................................................... 21 2.3 Typhoon research ................................................................................................................................ 23 2.4 Journal of tropical cyclone research and review ................................................................................. 25 Typhoon observation, satellite application and data broadcasting 2.5 Ocean observing system and observation experiments ..................................................................... 26 2.6 GF-4 satellite applied in typhoon monitoring .................................................................................... -
Guantanamo Gold Hill Galley to Close Sept. 30
Guantanamo Bay gazette Sertr ofteNay18 Vol. 54 No. 33 Friday, August 22, 1997 Gold Hill Galley to close Sept. 30 Yes, it's true. Gold Hill (Windward) Galley will close Sept. 30 after MWR assumes custody of Gold Hill Galley Oct. 15 and is presently serving the evening meal. So what does this mean? Well, for military seeking a concessionaire to o perate this facility. This facility is expected to residents on Windward, it'll be a pay raise. be open to all hands and will serve three meals a day, seven days a week. Effective Oct. 1 all personnel, except Hospital and Marine, residing on MWR will provide details in eluding pricing in the near future. Windward will be placed on a Basic Al- Salabarria (Leeward) Galley will be lowance for Subsistence (BAS). BAS is open under contract effective Jan. 1, 1998. currently $8.30 each day. Personnel cur- 4 < + This transition should be invisible to cus- rently on COMRATS ($7.36/day) will 4 4+ tomers. Hours of operation and the menu receive an increase of 94 cents a day. will remain the same. Personnel residing Those individuals who presently hold < 4 4 on Leeward, including Marines, will con- Chow Passes will begin receiving the tinue to draw COMRATS or use their $8.30 each day automatically effective Chow Pass (whichever is presently en- Oct. 1. PSD will implement the changes titled). Leeward residents will draw and no action is required of military mem- COMRATS vice BAS because a galley is bers. available. Military members, other than Hos- The Food Service Division is planning I and Marine personnel, will not be a grand finale (special meal) for Sept. -
Storm Data and Unusual Weather Phenomena ....………..…………..…..……………..……………..…
JANUARY 2001 VOLUME 43 NUMBER 01 STSTORMORM DDAATTAA AND UNUSUAL WEATHER PHENOMENA WITH LATE REPORTS AND CORRECTIONS NATIONAL OCEANIC AND NATIONAL ENVIRONMENTAL SATELLITE, NATIONAL CLIMATIC DATA CENTER noaa ATMOSPHERIC ADMINISTRATION DATA AND INFORMATION SERVICE ASHEVILLE, NC Cover: Icicles hang from an orange tree with sprinklers running in an adjacent strawberry field in the background at sunrise on January 1, 2001. The photo was taken at Mike Lott’s Strawberry Farm in rural Eastern Hillsborough County of West- Central, FL. Low temperatures in the area were in the middle 20’s for six to nine hours. (Photograph courtesy of St. Petersburg Times Newspaper Photographer, Fraser Hale) TABLE OF CONTENTS Page Outstanding Storm of the Month ..……..…………………..……………..……………..……………..…. 4 Storm Data and Unusual Weather Phenomena ....………..…………..…..……………..……………..…. 5 Additions/Corrections ..………….……………………………………………………………………….. 92 Reference Notes ..……..………..……………..……………..……………..…………..………………… 122 STORM DATA (ISSN 0039-1972) National Climatic Data Center Editor: Stephen Del Greco Assistant Editors: Stuart Hinson and Rhonda Mooring STORM DATA is prepared, and distributed by the National Climatic Data Center (NCDC), National Environmental Satellite, Data and Information Service (NESDIS), National Oceanic and Atmospheric Administration (NOAA). The Storm Data and Unusual Weather Phenomena narratives and Hurricane/Tropical Storm summaries are prepared by the National Weather Service. Monthly and annual statistics and summaries of tornado and lightning events resulting in deaths, injuries, and damage are compiled by the National Climatic Data Center and the National Weather Service's (NWS) Storm Prediction Center. STORM DATA contains all confirmed information on storms available to our staff at the time of publication. Late reports and corrections will be printed in each edition. Except for limited editing to correct grammatical errors, the data in Storm Data are published as received. -
Influence of Tropical Cyclone Intensity and Size on Storm Surge in the Northern East China
remote sensing Article Influence of Tropical Cyclone Intensity and Size on Storm Surge in the Northern East China Sea Jian Li 1,2,3,4, Yijun Hou 1,2,3,5,*, Dongxue Mo 1,2,3, Qingrong Liu 4 and Yuanzhi Zhang 6 1 Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road, 7, Qingdao 266071, China; [email protected] (J.L.); [email protected] (D.M.) 2 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road, 7, Qingdao 266071, China 3 University of Chinese Academy of Sciences, Yuquan Road, 19A, Beijing 100049, China 4 North China Sea Marine Forecasting center of State Oceanic Administration, Yunling Road, 27, Qingdao 266061, China; [email protected] 5 Laboratory for Ocean and Climate Dynamics, Qingdao National Laboratory for Marine Science, Qingdao 266061, China 6 Nanjing University of Information Science and Technology, Pukou District, Nanjing 210044, China; [email protected] * Correspondence: [email protected]; Tel.: +86-532-82898516 Received: 5 November 2019; Accepted: 10 December 2019; Published: 16 December 2019 Abstract: Typhoon storm surge research has always been very important and worthy of attention. Less is studied about the impact of tropical cyclone size (TC size) on storm surge, especially in semi-enclosed areas such as the northern East China Sea (NECS). Observational data for Typhoon Winnie (TY9711) and Typhoon Damrey (TY1210) from satellite and tide stations, as well as simulation results from a finite-volume coastal ocean model (FVCOM), were developed to study the effect of TC size on storm surge.