Hypoxia Adaptation in Fish of the Amazon: a Never-Ending Task
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Potential Threat of the International Aquarium Fish Trade to Silver Arawana Osteoglossum Bicirrhosum in the Peruvian Amazon
Oryx Vol 40 No 2 April 2006 Potential threat of the international aquarium fish trade to silver arawana Osteoglossum bicirrhosum in the Peruvian Amazon Marie-Annick Moreau and Oliver T. Coomes Abstract Silver arawana Osteoglossum bicirrhosum are and in urgent need of research, monitoring and man- increasingly popular on the international aquarium fish agement. Outright bans on arawana fishing are likely market, but the routine killing of mouth brooding adults to be ineffective and to destabilize an export fishery that to collect juveniles for the trade may threaten wild popu- provides significant part-time employment for the rural lations. We describe the aquarium trade and fishery for poor and substantial foreign earnings. Experimental silver arawana in the Peruvian Amazon. This is the first studies are called for that compare the impacts on such report on the species for South America, and is arawana yields of alternate fishing techniques, such as based on field interviews with trade participants and catch and release of brooding males, as a basis for devel- fishermen, and on a review of government statistics. The oping more effective management schemes in Amazonia. regional trade is large, expanding and valuable (over 1 million juveniles worth USD 560,000 exported in 2001), Keywords Amazonia, aquatic conservation, arawana, of considerable economic importance to the rural poor, ornamental fish, Osteoglossidae, Peru. Introduction found only in the Rio Negro, the South American osteoglossids are widespread, occurring in the Amazon The global trade in aquarium fishes is a little studied yet basin, the western Orinoco and the Rupununi and valuable wildlife industry, estimated to have generated 3 Essequibo systems of the Guianas, although not above billion USD in retail sales of fishes alone in 1999 (Olivier, cataracts (Goulding, 1980). -
Shoaling Reduces Metabolic Rate in a Gregarious Coral Reef Fish Species Lauren E
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Enlighten: Publications © 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 2802-2805 doi:10.1242/jeb.139493 SHORT COMMUNICATION Shoaling reduces metabolic rate in a gregarious coral reef fish species Lauren E. Nadler1,2,*, Shaun S. Killen3, Eva C. McClure1,2, Philip L. Munday2 and Mark I. McCormick1,2 ABSTRACT species. First, the ventilation rate of shoaling versus solitary Many animals live in groups because of the potential benefits individuals has been recorded to estimate metabolic rate (Lefrancois associated with defense and foraging. Group living may also induce a et al., 2009; Queiroz and Magurran, 2005). A second method uses ‘calming effect’ on individuals, reducing overall metabolic demand. respirometry (where oxygen uptake is measured as a proxy for ’ This effect could occur by minimising the need for individual vigilance aerobic metabolism) to compare the sum of each individual s and reducing stress through social buffering. However, this effect has metabolic rate when measured alone with the metabolic rate of the proved difficult to quantify. We examined the effect of shoaling on shoal measured together (Parker, 1973; Schleuter et al., 2007). metabolism and body condition in the gregarious damselfish Chromis Although these methods have provided supporting evidence for the viridis. Using a novel respirometry methodology for social species, we calming effect, they do not directly measure social influences on found that the presence of shoal-mate visual and olfactory cues led to individual physiology. Lastly, a third method has been employed, in a reduction in the minimum metabolic rate of individuals. -
Respiratory Disorders of Fish
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Disorders of the Respiratory System in Pet and Ornamental Fish a, b Helen E. Roberts, DVM *, Stephen A. Smith, DVM, PhD KEYWORDS Pet fish Ornamental fish Branchitis Gill Wet mount cytology Hypoxia Respiratory disorders Pathology Living in an aquatic environment where oxygen is in less supply and harder to extract than in a terrestrial one, fish have developed a respiratory system that is much more efficient than terrestrial vertebrates. The gills of fish are a unique organ system and serve several functions including respiration, osmoregulation, excretion of nitroge- nous wastes, and acid-base regulation.1 The gills are the primary site of oxygen exchange in fish and are in intimate contact with the aquatic environment. In most cases, the separation between the water and the tissues of the fish is only a few cell layers thick. Gills are a common target for assault by infectious and noninfectious disease processes.2 Nonlethal diagnostic biopsy of the gills can identify pathologic changes, provide samples for bacterial culture/identification/sensitivity testing, aid in fungal element identification, provide samples for viral testing, and provide parasitic organisms for identification.3–6 This diagnostic test is so important that it should be included as part of every diagnostic workup performed on a fish. -
Native Fish Species Boosting Brazilian's Aquaculture Development
Acta Fish. Aquat. Res. (2017) 5(1): 1-9 DOI 10.2312/ActaFish.2017.5.1.1-9 ORIGINAL ARTICLE Acta of Acta of Fisheries and Aquatic Resources Native fish species boosting Brazilian’s aquaculture development Espécies nativas de peixes impulsionam o desenvolvimento da aquicultura brasileira Ulrich Saint-Paul Leibniz Center for Tropical Marine Research, Fahrenheitstr. 6, 28359 Bremen, Germany *Email: [email protected] Recebido: 26 de fevereiro de 2017 / Aceito: 26 de março de 2017 / Publicado: 27 de março de 2017 Abstract Brazil’s aquaculture production has Resumo A produção da aquicultura do Brasil increased rapidly during the last two decades, aumentou rapidamente nas últimas duas décadas, growing from basically zero in the 1980s to over passando de quase zero nos anos 80 para mais de one half million tons in 2014. The development meio milhão de toneladas em 2014. O started with introduced international species such desenvolvimento começou através da introdução as shrimp, tilapia, and carp in a very traditional de espécies internacionais, tais como o camarão, a way, but has shifted to an increasing share of tilápia e a carpa, de uma forma muito tradicional, native species and focus on the domestic market. mas mudou com o aporte crescente de espécies Actually 40 % of the total production is coming nativas e foco no mercado interno. Atualmente, from native species such tambaquí (Colossoma 40% da produção total provém de espécies nativas macropomum), tambacu (hybrid from female C. como tambaqui (Colossoma macropomum), macropomum and male Piaractus mesopotamicus). tambacu (híbrido de C. macropomum e macho Other species like pirarucu (Arapaima gigas) or Piaractus mesopotamicus). -
Functional Aspects of the Osmorespiratory Compromise in Fishes
FUNCTIONAL ASPECTS OF THE OSMORESPIRATORY COMPROMISE IN FISHES by Marina Mussoi Giacomin B.Sc. Hon., Federal University of Paraná, 2011 M.Sc., Federal University of Rio Grande, 2013 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Zoology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) February 2019 © Marina Mussoi Giacomin, 2019 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled: Functional aspects of the osmorespiratory compromise in fishes submitted by Marina Mussoi Giacomin in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Zoology Examining Committee: Dr. Christopher M. Wood, UBC Zoology Co-supervisor Dr. Patricia M. Schulte, UBC Zoology Co-supervisor Dr. Colin J. Brauner, UBC Zoology Supervisory Committee Member Dr. David J. Randall, UBC Zoology University Examiner Dr. John S. Richardson, UBC Forestry University Examiner Dr. Yoshio Takei, University of Tokyo External Examiner Additional Supervisory Committee Members: Dr. Jeffrey G. Richards, UBC Zoology Supervisory Committee Member ii Abstract The fish gill is a multipurpose organ that plays a central role in gas exchange, ion regulation, acid-base balance and nitrogenous waste excretion. Effective gas transfer requires a large surface area and thin water-to-blood diffusion distance, but such structures also promote diffusive ion and water movements between blood and water that challenge the maintenance of hydromineral balance. Therefore, a functional conflict exists between gas exchange and ionic and osmotic regulation at the gill. The overarching goal of my thesis was to examine the trade-offs associated with the optimization of these different functions (i.e. -
(Colossoma Macropomum, Cuvier, 1818) Under Different Photoperiods
Revista Brasileira de Zootecnia © 2012 Sociedade Brasileira de Zootecnia ISSN 1806-9290 R. Bras. Zootec., v.41, n.6, p.1337-1341, 2012 www.sbz.org.br Morphometrical development of tambaqui (Colossoma macropomum, Cuvier, 1818) under different photoperiods Pedro Pierro Mendonça1*, Manuel Vazquez Vidal Junior2, Marcelo Fanttini Polese3, Monique Virães Barbosa dos Santos4, Fabrício Pereira Rezende5, Dalcio Ricardo de Andrade2 1 Doutorando em Ciência Animal - LZNA/CCTA/UENF. 2 LZNA/ CCTA/UENF, Campos dos Goytacazes, RJ, Brasil. 3 Mestrando em Ciência Animal - LZNA/CCTA/UENF. 4 Mestranda em Produção Animal - LZNA/CCTA/UENF. 5 Doutorando em Zootecnia/EMBRAPA Pesca e Aquicultura - Palmas, TO. ABSTRACT - The experiment was performed with 160 tambaqui (Colossoma macropomum) with average weight 11.01±2.08 g and total length 7.8±0.18 cm. Fishes were kept in sixteen aquariums with 56 L of water at 29.1±0.4 oC of temperature, initial stocking density 1.97 g/L and constant aeration. The objective of this study was to assess the influence of photoperiod on fish performance. Treatments consisted of four photoperiods: T1 = 6 hours; T2 = 12 hours; T3 = 18 hours and T4 = 24 hours, with four replicates each. Fishes were fed twice a day with commercial extruded feed (28% of crude protein). The experiment was developed in closed circulation system, with volume of water renewal for each experimental unit equivalent to 40 times daily. Fish biometry was performed at the beginning of the experiment and at every 16 days, in order to follow the effects of treatments on juvenile development. Final weight, total length, standard length, height, feed intake, weight gain, feed conversion, survival, specific growth rate, protein efficiency rate and protein retention efficiency were assessed. -
Analysis of the Diet Between an Invasive and Native Fishes in the Peruvian Amazon. Anthony Mazeroll [email protected] Introduct
Analysis of the diet between an invasive and native fishes in the Peruvian Amazon. Anthony Mazeroll [email protected] Introduction Non-native species are the second greatest threat to global species biodiversity after land development (Vitousek, D'Antonio, Loope, Rejmanek, & Westbrooks, 1997). Due to the magnitude of this threat, it is vital that the impacts of exotic species are understood. Fish biodiversity is especially threatened by the ecological changes caused by non-native species (Gozlan, Britton, Cowx, & Copp, 2010). Having higher species diversity allows more ecological processes to take place, protecting the resources of that system, and making it more resilient to change (Folke, 2006). Adding outside inputs, such as additional non-native species, into an ecosystem can have beneficial or compromising effects depending on the amount and type. Invasive species have been shown to reduce native species richness and diversity of native organisms. Some have argued that the transportation of species from one ecosystem to another is actually beneficial for diversity, and non-native species are not really an environmental “problem”. Introductions of non-native species increase diversity at a local level because in the short term there will be a lag time where both non-native and natives can coexist (Lodge, Stein, Brown, Covich, Bronmark, Garvey and Klosiewski, 1998). Species entering a new ecosystem have to pass through a gauntlet of barriers before they can become established. The usual progression of invasion is: transportation to the new ecosystem, initial establishment, spread to a larger region, and then naturalization into the new community (Marchetti, Light, Moyle, and Viers, 2004). -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................ -
Redalyc.Genetic Variation in Native and Farmed Populations of Tambaqui (Colossoma Macropomum ) in the Brazilian Amazon: Regional
Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil AGUIAR, JONAS; SCHNEIDER, HORACIO; GOMES, FÁTIMA; CARNEIRO, JEFERSON; SANTOS, SIMÔNI; RODRIGUES, LUIS R.; SAMPAIO, IRACILDA Genetic variation in native and farmed populations of Tambaqui (Colossoma macropomum ) in the Brazilian Amazon: regional discrepancies in farming systems Anais da Academia Brasileira de Ciências, vol. 85, núm. 4, 2013, pp. 1439-1447 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32729375022 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2013) 85(4): 1439-1447 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-376520130007 www.scielo.br/aabc Genetic variation in native and farmed populations of Tambaqui (Colossoma macropomum) in the Brazilian Amazon: regional discrepancies in farming systems JONAS AGUIAR1, HORACIO SCHNEIDER2, FÁTIMA GOMES2, JEFERSON CARNEIRO2, SIMÔNI SANTOS2, LUIS R. RODRIGUES1 and IRACILDA SAMPAIO2 1Laboratório de Genética e Biodiversidade/LGBIO, Universidade Federal do Oeste do Pará /UFOPA, Rua Marechal Rondon, s/n, 68040-440 Santarém, PA, Brasil 2Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros, Campus Bragança, Universidade Federal do Pará/UFPA, Alameda Leandro Ribeiro, s/n, 68600-000 Bragança, PA, Brasil Manuscript received on January 7, 2013; accepted for publication on April 12, 2013 ABSTRACT The tambaqui, Colossoma macropomum, is the most popular fish species used for aquaculture in Brazil but there is no study comparing genetic variation among native and farmed populations of this species. -
Immunological and Physiological Effects of Piscine Orthoreovirus Infection in Atlantic Salmon (Salmo Salar)
Immunological and physiological effects of Piscine orthoreovirus infection in Atlantic salmon (Salmo salar) Philosophiae Doctor (PhD) Thesis Morten Lund Department of Food Safety and Infection Biology Faculty of Veterinary Medicine Norwegian University of Life Sciences Adamstuen 2017 Thesis number 2017:33 ISSN 1894-6402 ISBN 978-82-575-1994-0 1 Table of contents Acknowledgements --------------------------------------------------------------------------------------------------------------------------------- 4 Abbreviations ------------------------------------------------------------------------------------------------------------------------------------------ 6 List of papers ------------------------------------------------------------------------------------------------------------------------------------------- 8 Summary ------------------------------------------------------------------------------------------------------------------------------------------------- 9 Sammendrag (Summary in Norwegian) -------------------------------------------------------------------------------------------------- 11 1 Introduction ------------------------------------------------------------------------------------------------------------------------------------ 13 1.1 General background --------------------------------------------------------------------------------------------------------------- 13 1.2 The life cycle of farmed Atlantic salmon ------------------------------------------------------------------------------- 14 1.3 Common infections in Norwegian -
Happy New Year 2015
QUATICAQU AT H E O N - L I N E J O U R N A L O F T H E B R O O K L Y N A Q U A R I U M S O C I E T Y VOL. 28 JANUARY ~ FEBRUARY 2015 N o. 3 Metynnis argenteus Silver Dollar HA PPY NEW YEAR 1 104 Y EARS OF E DUCATING A QUARISTS AQUATICA VOL. 28 JANUARY - FEBRUARY 2015 NO. 3 C ONTENT S PAGE 2 THE AQUATICA STAFF. PAGE 23 NOTABLE NATIVES. All about some of the beautiful North PAGE 3 CALENDAR OF EVENTS. American aquarium fish, seldom seen BAS Events for the years 2015 - 2016 and almost never available commercially. ANTHONY P. KROEGER, BAS PAGE 4 MOLLIES LOVE CRACKERS! Collecting wild Sailfin Mollies in Florida. PAGE 25 SPECIES PROFILE. ANTHONY P. KROEGER, BAS Etheostoma caeruieum , Rainbow Darter. JOHN TODARO, BAS PAGE 6 SPECIES PROFILE. The Sailfin PAGE 26 HOBBY HAPPENINGS. Mollie, Poecili latipinna . JOHN TODARO, BAS The further aquatic adventures of Larry Jinks. PAGE 7 TERRORS OF THE LARRY JINKS, BAS, RAS, NJAS PLANTED AQUARIUM. Keeping Silver dollar fish; you must keep in PAGE 28 CATFISH CONNECTIONS. Sy introduces us to Australia’s yellow mind they’re in the same family as the tandanus. Piranha and are voracious plant eaters. fin JOHN TODARO, BAS SY ANGELICUS, BAS PAGE 10 SPECIES PROFILE. The Silver Dollar, PAGE 29 BLUE VELVET SHRIMP. Another article Metynnis ar genteus . on keeping freshwater shrimp, with information on JOHN TODARO, BAS keeping them healthy. BRAD KEMP, BAS, THE SHRIMP FARM.COM PAGE 11 SAND LOACHES - THEY BREED BY THEMSELVES . -
Turnover of Sex Chromosomes and Speciation in Fishes
Environ Biol Fish (2012) 94:549–558 DOI 10.1007/s10641-011-9853-8 Turnover of sex chromosomes and speciation in fishes Jun Kitano & Catherine L. Peichel Received: 1 December 2010 /Accepted: 8 May 2011 /Published online: 4 June 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Closely related species of fishes often have threespine stickleback population has a simple XY different sex chromosome systems. Such rapid turnover sex chromosome system. Furthermore, we demon- of sex chromosomes can occur by several mechanisms, strated that the neo-X chromosome (X2)playsan including fusions between an existing sex chromosome important role in phenotypic divergence and repro- and an autosome. These fusions can result in a multiple ductive isolation between these sympatric stickle- sex chromosome system, where a species has both an back species pairs. Here, we review multiple sex ancestral and a neo-sex chromosome. Although this chromosome systems in fishes, as well as recent type of multiple sex chromosome system has been advances in our understanding of the evolutionary found in many fishes, little is known about the role of sex chromosome turnover in stickleback mechanisms that select for the formation of neo-sex speciation. chromosomes, or the role of neo-sex chromosomes in phenotypic evolution and speciation. The identification Keywords Multiple sex chromosomes . Neo-sex of closely related, sympatric species pairs in which one chromosome . X1X2Y. Stickleback . Sexual conflict . species has a multiple sex chromosome system and Speciation the other has a simple sex chromosome system provides an opportunity to study sex chromosome turnover.