Potential Threat of the International Aquarium Fish Trade to Silver Arawana Osteoglossum Bicirrhosum in the Peruvian Amazon

Total Page:16

File Type:pdf, Size:1020Kb

Potential Threat of the International Aquarium Fish Trade to Silver Arawana Osteoglossum Bicirrhosum in the Peruvian Amazon Oryx Vol 40 No 2 April 2006 Potential threat of the international aquarium fish trade to silver arawana Osteoglossum bicirrhosum in the Peruvian Amazon Marie-Annick Moreau and Oliver T. Coomes Abstract Silver arawana Osteoglossum bicirrhosum are and in urgent need of research, monitoring and man- increasingly popular on the international aquarium fish agement. Outright bans on arawana fishing are likely market, but the routine killing of mouth brooding adults to be ineffective and to destabilize an export fishery that to collect juveniles for the trade may threaten wild popu- provides significant part-time employment for the rural lations. We describe the aquarium trade and fishery for poor and substantial foreign earnings. Experimental silver arawana in the Peruvian Amazon. This is the first studies are called for that compare the impacts on such report on the species for South America, and is arawana yields of alternate fishing techniques, such as based on field interviews with trade participants and catch and release of brooding males, as a basis for devel- fishermen, and on a review of government statistics. The oping more effective management schemes in Amazonia. regional trade is large, expanding and valuable (over 1 million juveniles worth USD 560,000 exported in 2001), Keywords Amazonia, aquatic conservation, arawana, of considerable economic importance to the rural poor, ornamental fish, Osteoglossidae, Peru. Introduction found only in the Rio Negro, the South American osteoglossids are widespread, occurring in the Amazon The global trade in aquarium fishes is a little studied yet basin, the western Orinoco and the Rupununi and valuable wildlife industry, estimated to have generated 3 Essequibo systems of the Guianas, although not above billion USD in retail sales of fishes alone in 1999 (Olivier, cataracts (Goulding, 1980). Silver arawana (also called 2001). Collection of wild fishes for the trade is known to arowana or arowhana in English, arahuana in Spanish have negative effects on certain species, as demonstrated and aruanã in Portuguese) are found primarily in flood- by local population extinctions of freshwater aquarium plain lakes, where they are able to tolerate low oxygen species in South-east Asia (Banister, 1989; Ng & Tan, levels (Val & de Almeida-Val, 1995). As water levels rise 1997) and declines in at least two South American species with the annual floods, arawana move laterally into the (Chao & Prada-Pedreros, 1995; Crampton, 1999). The flooded forests (Lowe-McConnell, 1975). The fish is rela- Asian arawana Scleropages formosus is one of only a few tively sedentary, however, not engaging in migrations aquarium fishes whose international trade is restricted along the main river channels (Bayley & Petrere, 1989). under CITES; it was listed on Appendix I in 1975 as a It is a long, laterally compressed fish (maximum length response to over-collection of juveniles and adults. Since of c. 1 m) covered in large, iridescent, bony scales, the CITES listing trade in its close relative, the silver and is distinguished by its two chin barbels and a arawana of South America Osteoglossum bicirrhosum, has increased steadily (Tello & Cánepa, 1991; Ministerio de large, upwardly angled mouth (Goulding, 1980). A slow- Pesquería, 2001). swimming predator, arawana stay in well lit surface O. bicirrhosum is one of only seven extant species of waters along the shoreline, feeding primarily on insects bony-tongue fishes (Family Osteoglossidae). Osteo- and spiders that fall in the water (Goulding, 1980). The glossids are restricted to tropical regions of Africa, Asia, species also eats crabs, fishes and snakes, and has earned Australia and South America, with Arapaima gigas and the name water monkey for its habit of jumping out of the O. ferreirai, in addition to O. bicirrhosum, from South water to catch insects, birds on low branches, and even America (Moyle & Cech, 2004). Apart from O. ferreirai, bats (Goulding, 1980). Adult arawana spawn at low water, as flood waters are beginning to rise (Goulding, 1980). According to Marie-Annick Moreau and Oliver T. Coomes (Corresponding author) fishermen, juveniles (alevinos) become available c. 2 Department of Geography, McGill University, 805 Sherbrooke St. W., months later. Fecundity is extremely low, with females Montreal, Quebec, H3A 2K6, Canada. E-mail [email protected] carrying relatively few, large eggs at spawning (180–210; Received 2 November 2004. Revision requested 1 March 2005. Goulding, 1980; Val & de Almeida-Val, 1995). The male Accepted 19 September 2005. arawana provides parental care to the eggs and young, 152 © 2006 FFI, Oryx, 40(2), 152–160 doi:10.1017/S0030605306000603 Printed in the United Kingdom Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.219, on 25 Sep 2021 at 12:57:17, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0030605306000603 Trade in silver arawana 153 gathering the eggs in a special pouch in its mouth after Manaus in 2003; N.L. Chao, pers. comm), Colombia fertilization. After the eggs hatch, the male continues to and Guyana. Peru’s Amazonian fish trade is centered on keep the larvae entirely in its mouth for up to 3 weeks the city of Iquitos, capital of the Department of Loreto (Schaller & Dorn, 1971). Only once the alevinos are 25– (Fig. 1). With >300,000 inhabitants Iquitos is the largest 40 mm long and have absorbed their yolk-sac are they urban area in the Peruvian Amazon and the main market released from the male’s mouth for occasional feeding, for most of the commodities produced or extracted in the returning at the first sign of danger (Schaller & Dorn, region (Barham et al., 1999; Kvist et al., 2001). Iquitos is at 1971; Goulding, 1990). At 4–6 weeks young are left to the hub of an extensive river transportation network but fend for themselves (Goulding, 1990). Silver arawana are lacks roads to the rest of Peru and commercial flights thought to reach sexual maturity after 2 years (Lowe- to international destinations. In 2001, 28 aquarium fish McConnell, 1975), with hobbyist web sites reporting that firms were established, drawing in supplies from at least the fish can live for up to 20 years in captivity. 21 major rivers and exporting >9 million fishes (offi- Silver arawana are seen as good luck symbols in Asian cially worth 2.5 million USD free-on-board, i.e. cost of households and businesses, a belief that stems from goods before freight, packing and duties) to national and the species’ resemblance to the Asian arawana. In the international clients in 24 countries, via Lima (Ministerio 1970s Chinese and Japanese businessmen keeping the de Pesquería, 2001). The local export industry was first Asian arawana began associating the red and deep established in the 1950s, supplying small fishes (e.g. gold colouration of some specimens with the traditional the neon tetra Paracheirodon innesi) primarily to North colours of prosperity, sparking an Asian boom in the American markets, but declined precipitously in the species’ trade (Ng & Tan, 1997). International restrictions late 1970s as a result of increasing competition from on the sale of Asian arawana followed, leading traders captive-breeders abroad (Hanek, 1982). The industry has to develop captive breeding initiatives (Ng & Tan, 1997), experienced a resurgence since the early 1990s, due to to obtain wild specimens by illegal means (Matsumura & local firms re-orienting their exports towards larger, Milliken, 1984), and to shift to replacement species. The higher-value species (including silver arawana) for silver arawana serves this last purpose, having the same Asian clients. general shape as Asian arawana, a metallic colour associ- Few legislative controls are in place for the region’s ated with money, and the ability to eat prodigiously and ornamental fisheries, and none relate specifically to the grow rapidly in captivity, taken to symbolise wealth silver arawana. The main piece of national legislation accumulation. The fish is also appreciated outside Asia on Peruvian Amazon fisheries (Reglamento de for its size, graceful movements and prehistoric appear- Ordenamiento Pesquero en la Amazonía Peruana, Minis- ance. Juveniles are the preferred targets of trade, as they terial Resolution No. 147-2001-PE) requires all fishermen can be held and shipped at higher densities, and so at lower costs, than adults. In North America, based on an of ornamental fish to be licensed, calls on collectors and October 2005 internet search of aquarium fish retailer traders to minimize mortality in transport and holding, and hobbyist sites, silver arawana larvae with yolk sacs and bans collection from the wild and sale of the fry and retail for 10–20 USD, 10–20 cm juveniles for 25–65 USD, juveniles of 41 species also deemed to be important to the and adults for 100 USD or more, depending on size. commercial food fishery. Silver arawana is not included Although the silver arawana shares many of the life on this list. history characteristics that make the Asian arawana vulnerable to overexploitation, i.e. late maturity, low Methods fecundity and mouth-brooding, there is limited moni- toring of the species and few trade controls in place. Data came from fieldwork conducted by MAM and a Here we argue, based on observations from the Peruvian local research assistant in June–September 2002 as part Amazon, for the need to develop research and man- of a study of the organization and livelihood role of the agement plans for the silver arawana because of its Peruvian Amazon aquarium fish trade. Semi-structured vulnerability and regional economic importance. To our interviews (consisting of a set of open ended questions) knowledge this is the first account of the conservation were held with 12 representatives of 10 Iquitos export status, trade and fishery of O. bicirrhosum. firms selected to reflect the range, both in size (i.e.
Recommended publications
  • Native Fish Species Boosting Brazilian's Aquaculture Development
    Acta Fish. Aquat. Res. (2017) 5(1): 1-9 DOI 10.2312/ActaFish.2017.5.1.1-9 ORIGINAL ARTICLE Acta of Acta of Fisheries and Aquatic Resources Native fish species boosting Brazilian’s aquaculture development Espécies nativas de peixes impulsionam o desenvolvimento da aquicultura brasileira Ulrich Saint-Paul Leibniz Center for Tropical Marine Research, Fahrenheitstr. 6, 28359 Bremen, Germany *Email: [email protected] Recebido: 26 de fevereiro de 2017 / Aceito: 26 de março de 2017 / Publicado: 27 de março de 2017 Abstract Brazil’s aquaculture production has Resumo A produção da aquicultura do Brasil increased rapidly during the last two decades, aumentou rapidamente nas últimas duas décadas, growing from basically zero in the 1980s to over passando de quase zero nos anos 80 para mais de one half million tons in 2014. The development meio milhão de toneladas em 2014. O started with introduced international species such desenvolvimento começou através da introdução as shrimp, tilapia, and carp in a very traditional de espécies internacionais, tais como o camarão, a way, but has shifted to an increasing share of tilápia e a carpa, de uma forma muito tradicional, native species and focus on the domestic market. mas mudou com o aporte crescente de espécies Actually 40 % of the total production is coming nativas e foco no mercado interno. Atualmente, from native species such tambaquí (Colossoma 40% da produção total provém de espécies nativas macropomum), tambacu (hybrid from female C. como tambaqui (Colossoma macropomum), macropomum and male Piaractus mesopotamicus). tambacu (híbrido de C. macropomum e macho Other species like pirarucu (Arapaima gigas) or Piaractus mesopotamicus).
    [Show full text]
  • (Colossoma Macropomum, Cuvier, 1818) Under Different Photoperiods
    Revista Brasileira de Zootecnia © 2012 Sociedade Brasileira de Zootecnia ISSN 1806-9290 R. Bras. Zootec., v.41, n.6, p.1337-1341, 2012 www.sbz.org.br Morphometrical development of tambaqui (Colossoma macropomum, Cuvier, 1818) under different photoperiods Pedro Pierro Mendonça1*, Manuel Vazquez Vidal Junior2, Marcelo Fanttini Polese3, Monique Virães Barbosa dos Santos4, Fabrício Pereira Rezende5, Dalcio Ricardo de Andrade2 1 Doutorando em Ciência Animal - LZNA/CCTA/UENF. 2 LZNA/ CCTA/UENF, Campos dos Goytacazes, RJ, Brasil. 3 Mestrando em Ciência Animal - LZNA/CCTA/UENF. 4 Mestranda em Produção Animal - LZNA/CCTA/UENF. 5 Doutorando em Zootecnia/EMBRAPA Pesca e Aquicultura - Palmas, TO. ABSTRACT - The experiment was performed with 160 tambaqui (Colossoma macropomum) with average weight 11.01±2.08 g and total length 7.8±0.18 cm. Fishes were kept in sixteen aquariums with 56 L of water at 29.1±0.4 oC of temperature, initial stocking density 1.97 g/L and constant aeration. The objective of this study was to assess the influence of photoperiod on fish performance. Treatments consisted of four photoperiods: T1 = 6 hours; T2 = 12 hours; T3 = 18 hours and T4 = 24 hours, with four replicates each. Fishes were fed twice a day with commercial extruded feed (28% of crude protein). The experiment was developed in closed circulation system, with volume of water renewal for each experimental unit equivalent to 40 times daily. Fish biometry was performed at the beginning of the experiment and at every 16 days, in order to follow the effects of treatments on juvenile development. Final weight, total length, standard length, height, feed intake, weight gain, feed conversion, survival, specific growth rate, protein efficiency rate and protein retention efficiency were assessed.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Redalyc.Genetic Variation in Native and Farmed Populations of Tambaqui (Colossoma Macropomum ) in the Brazilian Amazon: Regional
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil AGUIAR, JONAS; SCHNEIDER, HORACIO; GOMES, FÁTIMA; CARNEIRO, JEFERSON; SANTOS, SIMÔNI; RODRIGUES, LUIS R.; SAMPAIO, IRACILDA Genetic variation in native and farmed populations of Tambaqui (Colossoma macropomum ) in the Brazilian Amazon: regional discrepancies in farming systems Anais da Academia Brasileira de Ciências, vol. 85, núm. 4, 2013, pp. 1439-1447 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32729375022 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2013) 85(4): 1439-1447 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-376520130007 www.scielo.br/aabc Genetic variation in native and farmed populations of Tambaqui (Colossoma macropomum) in the Brazilian Amazon: regional discrepancies in farming systems JONAS AGUIAR1, HORACIO SCHNEIDER2, FÁTIMA GOMES2, JEFERSON CARNEIRO2, SIMÔNI SANTOS2, LUIS R. RODRIGUES1 and IRACILDA SAMPAIO2 1Laboratório de Genética e Biodiversidade/LGBIO, Universidade Federal do Oeste do Pará /UFOPA, Rua Marechal Rondon, s/n, 68040-440 Santarém, PA, Brasil 2Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros, Campus Bragança, Universidade Federal do Pará/UFPA, Alameda Leandro Ribeiro, s/n, 68600-000 Bragança, PA, Brasil Manuscript received on January 7, 2013; accepted for publication on April 12, 2013 ABSTRACT The tambaqui, Colossoma macropomum, is the most popular fish species used for aquaculture in Brazil but there is no study comparing genetic variation among native and farmed populations of this species.
    [Show full text]
  • Aquaculture Production in Brazil 600000 562.533 500000
    Transformations in Brazilian aquaculture: technological intensification and capital concentration Manoel Pedroza Embrapa Fisheries and Aquaculture Brazilian Agricultural Research Corporation What about the Brazilian aquaculture? » Significant growth in recent years Aquaculture production in Brazil 600000 562.533 500000 Tons 14º biggest - 400000 Inland 300000 world Marine 200000 producer 100000 Total Production Production 0 2008 2010 2012 2014 » Inland production semi-intensive and extensive systems Floating cages Earthen ponds Source: FAO, 2016 » Great diversity of species » Manly native » Geographical dispersion Aquaculture production in Brazil (2014) • White legged shrimp • Tilapia (42%) (O. niloticus) ≠’s strains (78%) (L.vannamei) (Thai/Chitralada/ Gift) 18% • Tambaqui (29%) (Colossoma macropomum) • Pacific oyster (C. gigas) + Brown mussel (P.perna) • Tambacu and tambatinga (9%) (hybrids) (22%) 82% • Carps (4%) (≠’s spp.) • Spotted catfish (4%) (Psedoplatystoma spp.) • Others (12%) Inland aquaculture Mariculture Source: IBGE, Ministry of Fisheries and Aquaculture Historical driving forces in the Brazilian aquaculture » Increase in demand of seafood » 2005 = 6,6 kg/habitant/year 2015 = 10,6 kg/habitant/year (+60,6%) » 1 billion US$ seafood imports » Low scale of producers » Most of producers with annual production of less than 5.000 tones » Few producers organizations » Low technological intensity » Innovation gap on native species Aquaculture production in Brazil by category of species (tons) Dourado (Salminus brasiliensis) 38 Peacock
    [Show full text]
  • Novel Microsatellite Markers Used for Determining Genetic Diversity and Tracing of Wild and Farmed Populations of the Amazonian Giant Fish Arapaima Gigas
    G C A T T A C G G C A T genes Article Novel Microsatellite Markers Used for Determining Genetic Diversity and Tracing of Wild and Farmed Populations of the Amazonian Giant Fish Arapaima gigas Paola Fabiana Fazzi-Gomes 1 , Jonas da Paz Aguiar 2 , Diego Marques 1 , Gleyce Fonseca Cabral 1 , Fabiano Cordeiro Moreira 1 , Marilia Danyelle Nunes Rodrigues 3, Caio Santos Silva 1 , Igor Hamoy 3 and Sidney Santos 1,* 1 Laboratório de Humana e Médica, Universidade Federal do Pará, Rua Augusto Correa, 1, Belém 66075-110, Brazil; [email protected] (P.F.F.-G.); [email protected] (D.M.); [email protected] (G.F.C.); [email protected] (F.C.M.); [email protected] (C.S.S.) 2 Universidade Federal do Pará, Campus Bragança, Alameda Leandro Ribeiro s/n, Bragança 68600-000, Brazil; [email protected] 3 Laboratório de Genética Aplicada, Instituto de Recursos Aquáticos e Socioambientais, Universidade Federal Rural da Amazônia, Avenida Presidente Tancredo Neves, 2501, Belem 66077-830, Brazil; [email protected] (M.D.N.R.); [email protected] (I.H.) * Correspondence: [email protected] Abstract: The Amazonian symbol fish Arapaima gigas is the only living representative of the Arapami- Citation: Fazzi-Gomes, P.F.; Aguiar, dae family. Environmental pressures and illegal fishing threaten the species’ survival. To protect wild J.d.P.; Marques, D.; Fonseca Cabral, populations, a national regulation must be developed for the management of A. gigas throughout G.; Moreira, F.C.; Rodrigues, M.D.N.; the Amazon basin. Moreover, the reproductive genetic management and recruitment of additional Silva, C.S.; Hamoy, I.; Santos, S.
    [Show full text]
  • Field Guide to the Culture of Tambaqui (Colossoma Macropomum, Cuvier, 1816) Field Guide to the Culture of Tambaqui ( Colossoma Macropomum , Cuvier, 1816)
    ISSN 2070-7010 FAO 624 FISHERIES AND AQUACULTURE TECHNICAL PAPER 624 Field guide to the culture of tambaqui (Colossoma macropomum, Cuvier, 1816) Field guide to the culture of tambaqui ( Following a short introduction to the species and its closest commercially viable related species, namely pirapatinga (Piaractus brachypomus) and pacu (Piaractus mesopotamicus), this field guide provides practical information on the culture and reproduction of tambaqui (Colossoma macropomum). Colossoma macropomum As a field guide it aims to support the understanding and dissemination of applicable technologies for the culture and reproduction of tambaqui, i.e. what should be done – as well as when and how it should be done – in order to achieve success in the artificial propagation as well as the fingerling and table fish production stages. The concise technical descriptions in this guide are accompanied by self-explanatory illustrations and a reader-friendly glossary of technical terms, which is important for tambaqui aquaculture farmers. , Cuvier, 1816) ISBN 978-92-5-131242-1 ISSN 2070-7010 978 9251 312421 FAO CA2955EN/1/01.19 Cover photographs: ©FAO/András Woynárovich. Illustrations and photos in this Technical Paper are courtesy of András Woynárovich. Images and photos courtesy of other authors are indicated separately. FAO FISHERIES AND Field guide AQUACULTURE TECHNICAL to the culture of tambaqui PAPER (Colossoma macropomum, 624 Cuvier, 1816) by András Woynárovich FAO Consultant Budapest, Hungary and Raymon Van Anrooy Fishery Industry Officer Fisheries and Aquaculture Department Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2019 Required citation Woynárovich, A. and Van Anrooy, R. 2019. Field guide to the culture of tambaqui (Colossoma macropomum, Cuvier, 1816).
    [Show full text]
  • Revista Agrarian Use of Common Salt (Nacl) in the Control Epistylis Sp. In
    10.30612/agrarian.v12i46.7155 Revista Agrarian ISSN: 1984-2538 Use of common salt (NaCl) in the control Epistylis sp. in hybrid sorubim Uso do sal comum (NaCl) no controle de Epistylis sp. em surubim hibrido Robson Andrade Rodrigues1, Milena Souza dos Santos Sanchez2, Letícia Emiliani Fantini1; André Luiz Nunes1, Rodrigo Yutaka Dichoff Kasai 3; Cristiane Meldau de Campos1 1Universidade Estadual de Mato Grosso do Sul, Programa de Pós-Graduação em Zootecnia- Produção Animal no Cerrado-Pantanal, Aquidauana, Mato Grosso do Sul, Brasil. E-mail: [email protected] 2Programa de Pós-graduação em Recursos Pesqueiros e Engenharia de Pesca, Universidade Estadual do Oeste do Paraná. Rua da Faculdade, 645, caixa postal 320, Toledo, PR Brasil. 3Piraí Piscicultura, Terenos, Mato Grosso do Sul, Brasil. Recebido em: 02/02/2019 Aceito em:05/09/2019 Resumo: Epistylis sp. é um parasito emergente no Brasil e é comumente encontrado em surubim Pseudoplatystoma spp. durante os estágios iniciais de produção e, portanto, requer o estabelecimento de medidas profiláticas e terapêuticas, visando o seu controle. Portanto, o presente estudo teve como objetivo avaliar o uso de sal comum para controlar Epistylis sp. em juvenis de surubim. Os peixes (n=48) foram divididos aleatoriamente em três tratamentos, e um grupo de controle, com três repetições cada. Os tratamentos consistiram de três banhos terapêuticos realizados a cada 48 horas durante 20 minutos com diferentes concentrações de sal comum: 0,0%, 1,0%, 1,5% e 2,0%. O experimento teve duração de seis dias. Vinte e quatro horas após o último banho, os peixes foram amostrados para verificar a presença do parasito e colheita de sangue.
    [Show full text]
  • Morphological Deformities in the Osseous Structure in Spotted Sorubim Pseudoplatystoma Coruscans (Agassiz & Spix, 1829) with Vitamin C Deficiency
    Anais da Academia Brasileira de Ciências (2013) 85(1): 379-384 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Morphological deformities in the osseous structure in spotted sorubim Pseudoplatystoma coruscans (agassiz & spix, 1829) with vitamin c deficiency RODRIGO Y. FUJIMOTO1, RUDÃ F.B. SANTOS2 and DALTON J. CARNEIRO3 1Embrapa Tabuleiros Costeiros, Avenida Beira Mar, 3250, Bairro Jardins, 49025-040 Aracaju, SE, Brasil 2Laboratório de Ictioparasitologia e Piscicultura, Universidade Federal do Pará, Alameda Leandro Ribeiro, s/n, Bairro Aldeia, 68600-000 Bragança, PA, Brasil 3Departamento de Zootecnia da Faculdade de Ciências Agrárias e Veterinárias, UNESP, Campus de Jaboticabal, Prof. Paulo Donato Castellane, s/n, Bairro Zona Rural, 14884-900 Jaboticabal, SP, Brasil Manuscript received on June 26, 2011; accepted for publication on April 24, 2012 ABSTRACT Vitamin C is essential for fish diets because many species cannot syntethize it. This vitamin is needed for bone and cartilage formation. Moreover, it acts as antioxidant and improve the immunological system. The present work investigated the effects of vitamin C diet supplementation to spotted sorubim (Pseudoplatystoma coruscans) fingerlings by frequency of bone and cartilage deformation. Ascorbyl poliphosphate (AP) was used as source of vitamin C in the diets for spotted sorubim fingerlings during three months. Six diets were formulated: one diet control (0 mg/kg of vitamin C) and 500, 1,000, 1,500, 2,000 and 2,500 mg AP/kg diets. Fishes fed without vitamin C supplementation presented bone deformation in head and jaws, and fin fragilities. Thus, 500 mg AP/kg diet was enough to prevent deformation and the lack of vitamin C supplementation worsening the development of fingerlings.
    [Show full text]
  • Gills Versus Kidney for Ionoregulation in the Obligate Air-Breathing Arapaima Gigas, a Fish with a Kidney in Its Air-Breathing Organ Chris M
    © 2020. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2020) 223, jeb232694. doi:10.1242/jeb.232694 RESEARCH ARTICLE Gills versus kidney for ionoregulation in the obligate air-breathing Arapaima gigas, a fish with a kidney in its air-breathing organ Chris M. Wood1,2,*, Bernd Pelster3,4, Susana Braz-Mota5 and Adalberto L. Val5 ABSTRACT invaginated air-breathing organ (ABO, often termed a ‘lung’) that In Arapaima gigas, an obligate air-breather endemic to ion-poor runs the entire length of the abdominal cavity (Hochachka et al., 1978; Soares et al., 2006; Fernandes et al., 2012; Scadenga et al., Amazonian waters, a large complex kidney runs through the air- ̇ breathing organ (ABO). Previous indirect evidence suggested that the 2020). The ABO becomes the dominant site of O2 uptake (MO2) – kidney, relative to the small gills, may be exceptionally important in accounting for 60 80% of the total, while the gills are retained as the ̇ – ionoregulation and nitrogen (N) waste excretion, with support of kidney major sites of CO2 excretion (MCO2), accounting for 60 90% of the total (Stevens and Holeton, 1978; Brauner and Val, 1996; Gonzalez function by direct O2 supply from the airspace. We tested these ideas by continuous urine collection and gill flux measurements in ∼700 g et al., 2010; Pelster et al., 2020a). It is generally believed that the fish. ATPase activities were many-fold greater in kidney than gills. In gills also remain the major sites of ionoregulation, a critical function normoxia, gill Na+ influx and efflux were in balance, with net losses of in light of the ion-poor nature of Amazonian waters (Val and Cl− and K+.
    [Show full text]
  • Parasitizing Gills of Salminus Hilarii from a Neotropical Reservoir, Brazil Revista Brasileira De Parasitologia Veterinária, Vol
    Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Brandão, Heleno; Hideki Yamada, Fábio; de Melo Toledo, Gislayne; Carvalho, Edmir Daniel; da Silva, Reinaldo José Monogeneans (Dactylogyridae) parasitizing gills of Salminus hilarii from a Neotropical reservoir, Brazil Revista Brasileira de Parasitologia Veterinária, vol. 22, núm. 4, octubre-diciembre, 2013, pp. 579-587 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397841490019 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Original Article Rev. Bras. Parasitol. Vet., Jaboticabal, v. 22, n. 4, p. 579-587, out.-dez. 2013 ISSN 0103-846X (impresso) / ISSN 1984-2961 (eletrônico) Monogeneans (Dactylogyridae) parasitizing gills of Salminus hilarii from a Neotropical reservoir, Brazil Monogenéticos (Dactylogyridae) parasitando brânquias de Salminus hilarii de uma represa Neotropical, Brasil Heleno Brandão1*; Fábio Hideki Yamada1; Gislayne de Melo Toledo1; Edmir Daniel Carvalho2; Reinaldo José da Silva1 1Laboratório de Parasitologia de Animais Silvestres – LAPAS, Departamento de Parasitologia, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu, SP, Brasil 2Laboratório de Biologia e Ecologia de Peixes, Departamento de Morfologia, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu, SP, Brasil †Edmir Daniel de Carvalho (in memory) Received August 13, 2013 Accepted November 1, 2013 Abstract With the aim of creating an inventory of the metazoan gill parasites of Salminus hilarii in the Taquari River, state of São Paulo, Brazil, five species of monogeneans (Anacanthorus contortus, A.
    [Show full text]
  • The Amazon's Flora and Fauna
    AMAZON Initiative The Amazon’s flora and fauna The Amazon biome, covering an area of 6.7 million km2 (more than twice the size of India) represents over 40% of the planet’s remaining tropical forests. Trees and plants The Amazon biome The Amazon is particularly rich in trees and plants, with more than 40,000 species landscape that play critical roles in regulating the global climate and sustaining the local water cycle. All have adapted to the abundant rain and often nutrient-poor soils. To • 79.9% tropical defend themselves from herbivores some have developed tough leaves, resins or evergreen forest • 6.8% anthropic (incl. latex outer coats enabling them to resist many predators. Others produce leaves pastures and land use that are nutritionally poor or poisonous. Nonetheless, many of the plants and trees changes) are valued for what they produce – timber, compounds valued in agriculture and • 4.0% savannas medicines such as curare, fibres including kapok, rubber, and food for both the • 3.9% flooded and people living in the Amazon and the wider world. swamp forest • 1.4% deciduous forest • 1.2% water bodies The kapok tree (Ceiba pentandra) is a tall rainforest tree, reaching 50 m. With • 2.8% others (incl. buttressed roots, a smooth grey trunk, and a wide top hosting an abundance of shrubland & bamboo) epiphytes and lianas, it is most commonly seen on forest edges, riverbanks and disturbed areas, where it receives more light. Kapok, a valued cotton-like fibre, With over 10% of all the surrounds the seeds and helps them disperse in the wind.
    [Show full text]