California Fish and Game “Conservation of Wildlife Through Education”

Total Page:16

File Type:pdf, Size:1020Kb

California Fish and Game “Conservation of Wildlife Through Education” Spring 2015 81 CALIFORNIA FISH AND GAME “Conservation of Wildlife Through Education” Volume 101 Spring 2015 Number 2 CDFW Photo by Terry Maas Published Quarterly by the California Department of Fish and Wildlife 82 CALIFORNIA FISH AND GAME Vol. 101, No. 2 STATE OF CALIFORNIA Jerry Brown, Governor CALIFORNIA NATURAL RESOURCES AGENCY John Laird, Secretary for Natural Resources FISH AND GAME COMMISSION Jack Baylis, President Jim Kellogg, Vice President Richard B. Rogers, Member Jacque Hostler-Carmesin, Member Michael Sutton, Member Sonke Mastrup, Executive Director DEPARTMENT OF FISH AND WILDLIFE Charlton “Chuck” Bonham, Director CALIFORNIA FISH AND GAME EDITORIAL STAFF Vern Bleich ........................................................................................Editor-in-Chief Debra Hamilton ............ Office of Communication, Education and Outreach - AVU Jeff Villepique, Steve Parmenter ........................................... Inland Deserts Region Scott Osborn, Laura Patterson, Joel Trumbo ................................... Wildlife Branch Dave Lentz, Kevin Shaffer ............................................................. Fisheries Branch Peter Kalvass, Nina Kogut .................................................................Marine Region James Harrington .......................................Office of Spill Prevention and Response Cherilyn Burton ...................................................................... Native Plant Program Spring 2015 83 VOLUME 101 SPRING 2015 NUMBER 2 Published Quarterly by STATE OF CALIFORNIA CALIFORNIA NATURAL RESOURCES AGENCY DEPARTMENT OF FISH AND WILDLIFE ISSN: 0008-1078 (print) ISSN: 2331-0405 (online) --LDA-- 84 CALIFORNIA FISH AND GAME Vol. 101, No. 2 California Fish and Game California Fish and Game is published quarterly by the California Department of Fish and Wildlife. It is a journal devoted to the conservation and understanding of the flora and fauna of California and surrounding areas. If its contents are reproduced elsewhere, the authors and the California Department of Fish and Wildlife would appreciate being acknowledged. Please direct correspondence to: Vernon C. Bleich, Ph.D. Editor-in-Chief California Fish and Game [email protected] Inquiries regarding subscriptions should be directed to the Subscription Manager at 916-322-8911 or by email at [email protected]. Alternate communication format is available upon request. If reasonable accommodation is needed, call 916-322-8911 or the California Relay (Telephone) Service for the deaf or hearing-impaired from TDD phones at 800-735-2929. Spring 2015 85 Contents Notes from the Editor VERNON C. BLEICH .......................................................................................................86 Experimental enhancement of pickleweed, Suisun Bay, California A. KEITH MILES, DIRK H. VAN VUREN, DANIKA C. TSAO, AND JULIE L. YEE ..................87 Observations of the non-native Pacific oyster (Crassostrea gigas) in San Diego County, California JEFFREY A. CROOKS, KAI R. CROOKS, AND AIDEN J. CROOKS .........................................101 Effects of loading density during transport on physiological stress and survival of Sacramento-San Joaquin Delta fishes ZACHARY A. SUTPHIN AND CHARLES D. HUETH .............................................................108 Mitochondrial DNA perspectives on the introduction and spread of wild pigs in California RICK A. SWEITZER, BLAKE E. MCCANN, RONALD E. LOGGINS, AND REBECCA B. SIMMONS ..................................................................................................131 A swimming deep-sea peneaoid shrimp photographed off California MARY K. WICKSTEN AND LINDA A. KUHNZ ...................................................................146 Observations of predation and loss among leopard sharks and brown smoothhounds in San Francisco Bay, California RONALD A. RUSSO ........................................................................................................149 Obituary: Kimberly A. Nicol, 1956–2015 ..............................................................158 Book Review: Becoming a compelling communicator for conservation: the essential reference for everyone who desires to make a difference ...............159 Books Received and Available for Review .............................................................161 86 CALIFORNIA FISH AND GAME Vol. 101, No. 2 California Fish and Game 101(2):86; 2015 Notes from the Editor Wow... it’s not yet the end of May, and the spring issue of California Fish and Game has hit the streets. This issue, 101(2), of the journal has been in the making for nearly a year, but production of the four special issues celebrating the 100th anniversary of the founding of California’s longest-running, continuously published scientific journal took an inordinate amount of time and effort to produce. Fortunately, the Associate Editors, Corresponding Editors, reviewers, and Debra Hamilton, who handles the production and layout of the journal, were able to work both on the special issues as well as papers scheduled to appear in 101(1) and 101(2) simultaneously. Without that ability to multitask, we would be months behind in our publication schedule. Thank you to everyone that has worked so hard over the last 18 months to keep us on track. I am an avid collector of California Fish and Game, and have accumulated individual copies of every issue published to date, with one exception. Although I do have a copy of issue 20(2), it is bound into a former library volume. It has taken >40 years to acquire this collection and, in the process of trying to complete it, I have also accumulated multiple copies of numerous issues. If there are serious collectors among the readership, feel free to let me know of issues that you might need for your collection, and I’ll try to help you out. And, if you happen to have a copy of 20(2), published in 1934, please consider me to be a willing recipient should you choose to help me complete my quest. The current issue of California Fish and Game, now in your hands, covers numerous topics. Papers addressing distributional records, physiological responses of fish to crowding during transport, the genetics of wild pigs and their history in California, and predation are included in this issue, illustrating the wide range of topics appropriate to be considered for publication in this journal. Also included is a review of a short book that I suspect many authors will find helpful in their future endeavors. Please note the words of, the late, Kate Wolf that introduce the review. Wordiness is the bane of many editors, and this one is no exception. Additionally, the author of that book, Dr. Bill Dunn, emphasizes the necessity of being “on message” with your audience. Individuals that choose to read this book will very likely become better writers or speakers, or both, as a result of doing so. Finally, this issue contains a tribute to Regional Manager Kimberly Nicol, who spent her entire career in what is now Region 6. Kim passed away in January of this year following a long and courageous battle with cancer. She began her career as a fisheries biologist, and had a strong interest in reptiles and amphibians, as well as in desert fishes. Those of us that worked with her for many years came to know her as a concerned and effective leader. The critters inhabiting the deserts of southeastern California are better off for Kim’s efforts, and she and her work on behalf of those creatures and their habitats will be missed. Vernon C. Bleich, Ph.D. Editor-in-Chief California Fish and Game Spring 2015 87 California Fish and Game 101(2):87-100; 2015 Experimental enhancement of pickleweed, Suisun Bay, California A. KEITH MILES*, DIRK H. VAN VUREN, DANIKA C. TSAO, AND JULIE L. YEE U.S. Geological Survey, Western Ecological Research Center, 3020 State University Drive East, Modoc Hall, Room 4003, Sacramento, CA 95819, USA (AKM) Department of Wildlife, Fish, and Conservation Biology, 1 Shields Avenue, University of California, Davis, CA, 95616, USA (DHVV) California Department of Water Resources, Division of Environmental Services, 3500 Industrial Boulevard, West Sacramento, CA, 95691, USA (DCT) U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Dixon, CA, 95620, USA (JLY) *Correspondent: [email protected] As mitigation for habitat impacted by the expansion of a pier on Suisun Bay, California, two vehicle parking lots (0.36 ha and 0.13 ha) were restored by being excavated, graded, and contoured using dredged sediments to the topography or elevation of nearby wetlands. We asked if pickleweed (Sarcocornia pacifica L, [Amaranthaceae]) colonization could be enhanced by experimental manipulation on these new wetlands. Pickleweed dominates ecologically important communities at adjacent San Francisco Bay, but is not typically dominant at Suisun Bay probably because of widely fluctuating water salinity and is outcompeted by other brackish water plants. Experimental treatments (1.0-m2 plots) included mulching with pickleweed cuttings in either the fall or the spring, tilling in the fall, or applying organic enrichments in the fall. Control plots received no treatment. Pickleweed colonization was most enhanced at treatment plots that were mulched with pickleweed in the fall. Since exotic vegetation can colonize bare sites within the early phases of restoration and reduce habitat quality, we concluded that mulching was most effective in the
Recommended publications
  • California's Freshwater Fishes: Status and Management
    California’s freshwater fishes: status and management Rebecca M. Quiñones* and Peter B. Moyle Center for Watershed Sciences, University of California at Davis, One Shields Ave, Davis, 95616, USA * correspondence to [email protected] SUMMARY Fishes in Mediterranean climates are adapted to thrive in streams with dy- namic environmental conditions such as strong seasonality in flows. Howev- er, anthropogenic threats to species viability, in combination with climate change, can alter habitats beyond native species’ environmental tolerances and may result in extirpation. Although the effects of a Mediterranean cli- mate on aquatic habitats in California have resulted in a diverse fish fauna, freshwater fishes are significantly threatened by alien species invasions, the presence of dams, and water withdrawals associated with agricultural and urban use. A long history of habitat degradation and dependence of salmonid taxa on hatchery supplementation are also contributing to the decline of fish- es in the state. These threats are exacerbated by climate change, which is also reducing suitable habitats through increases in temperatures and chang- es to flow regimes. Approximately 80% of freshwater fishes are now facing extinction in the next 100 years, unless current trends are reversed by active conservation. Here, we review threats to California freshwater fishes and update a five-tiered approach to preserve aquatic biodiversity in California, with emphasis on fish species diversity. Central to the approach are man- agement actions that address conservation at different scales, from single taxon and species assemblages to Aquatic Diversity Management Areas, wa- tersheds, and bioregions. Keywords: alien fishes, climate change, conservation strategy, dams Citation: Quiñones RM, Moyle PB (2015) California’s freshwater fishes: status and man- agement.
    [Show full text]
  • CATALINA CALIFORNIA QUAIL (Callipepla Californica Catalinensis) Paul W
    II SPECIES ACCOUNTS Andy Birch PDF of Catalina California Quail account from: Shuford, W. D., and Gardali, T., editors. 2008. California Bird Species of Special Concern: A ranked assessment of species, subspecies, and distinct populations of birds of immediate conservation concern in California. Studies of Western Birds 1. Western Field Ornithologists, Camarillo, California, and California Department of Fish and Game, Sacramento. California Bird Species of Special Concern CATALINA CALIFORNIA QUAIL (Callipepla californica catalinensis) Paul W. Collins Criteria Scores Population Trend 0 Santa Range Trend 0 Barbara County Population Size 7.5 Range Size 10 Ventura Endemism 10 County Population Concentration 10 Threats 0 Los San Miguel Is. Santa Cruz Is. Angeles County Anacapa Is. Santa Rosa Is. Santa Barbara Is. Santa Catalina Is. San Nicolas Is. San Clemente Is. Current Year-round Range Historic Year-round Range County Boundaries Kilometers 20 10 0 20 Current and historic (ca. 1944) year-round range of the Catalina California Quail. Birds from Santa Catalina Island (perhaps brought by Native Americans) later introduced successfully to Santa Rosa (1935–1940) and Santa Cruz (late 1940s) islands, but unsuccessfully to San Nicolas Island (1962); quail from mainland populations of C. c. californica introduced unsuccessfully to Santa Cruz (prior to 1875) and San Clemente (late 19th century, 1913) islands. Catalina California Quail Studies of Western Birds 1:107–111, 2008 107 Studies of Western Birds No. 1 SPECIAL CONCERN PRIORITY HISTORIC RANGE AND ABUNDANCE Currently considered a Bird Species of Special IN CALIFORNIA Concern (year round), priority 3. This subspecies Grinnell and Miller (1944) described the Catalina was not included on prior special concern lists California Quail as a “common to abundant” (Remsen 1978, CDFG 1992).
    [Show full text]
  • Potential Threat of the International Aquarium Fish Trade to Silver Arawana Osteoglossum Bicirrhosum in the Peruvian Amazon
    Oryx Vol 40 No 2 April 2006 Potential threat of the international aquarium fish trade to silver arawana Osteoglossum bicirrhosum in the Peruvian Amazon Marie-Annick Moreau and Oliver T. Coomes Abstract Silver arawana Osteoglossum bicirrhosum are and in urgent need of research, monitoring and man- increasingly popular on the international aquarium fish agement. Outright bans on arawana fishing are likely market, but the routine killing of mouth brooding adults to be ineffective and to destabilize an export fishery that to collect juveniles for the trade may threaten wild popu- provides significant part-time employment for the rural lations. We describe the aquarium trade and fishery for poor and substantial foreign earnings. Experimental silver arawana in the Peruvian Amazon. This is the first studies are called for that compare the impacts on such report on the species for South America, and is arawana yields of alternate fishing techniques, such as based on field interviews with trade participants and catch and release of brooding males, as a basis for devel- fishermen, and on a review of government statistics. The oping more effective management schemes in Amazonia. regional trade is large, expanding and valuable (over 1 million juveniles worth USD 560,000 exported in 2001), Keywords Amazonia, aquatic conservation, arawana, of considerable economic importance to the rural poor, ornamental fish, Osteoglossidae, Peru. Introduction found only in the Rio Negro, the South American osteoglossids are widespread, occurring in the Amazon The global trade in aquarium fishes is a little studied yet basin, the western Orinoco and the Rupununi and valuable wildlife industry, estimated to have generated 3 Essequibo systems of the Guianas, although not above billion USD in retail sales of fishes alone in 1999 (Olivier, cataracts (Goulding, 1980).
    [Show full text]
  • Sediment Transport in the San Francisco Bay Coastal System: an Overview
    Marine Geology 345 (2013) 3–17 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Sediment transport in the San Francisco Bay Coastal System: An overview Patrick L. Barnard a,⁎, David H. Schoellhamer b,c, Bruce E. Jaffe a, Lester J. McKee d a U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, USA b U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA c University of California, Davis, USA d San Francisco Estuary Institute, Richmond, CA, USA article info abstract Article history: The papers in this special issue feature state-of-the-art approaches to understanding the physical processes Received 29 March 2012 related to sediment transport and geomorphology of complex coastal–estuarine systems. Here we focus on Received in revised form 9 April 2013 the San Francisco Bay Coastal System, extending from the lower San Joaquin–Sacramento Delta, through the Accepted 13 April 2013 Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by Available online 20 April 2013 numerous anthropogenic activities common to many large estuaries, including a mining legacy, channel dredging, aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic Keywords: sediment transport species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet 9 3 estuaries connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~8 × 10 m /day, in addition circulation to the transport of mud, sand, biogenic material, nutrients, and pollutants.
    [Show full text]
  • Oyster Growers and Oyster Pirates in San Francisco Bay
    04-C3737 1/20/06 9:46 AM Page 63 Oyster Growers and Oyster Pirates in San Francisco Bay MATTHEW MORSE BOOKER The author is a member of the history department at North Carolina State University, Raleigh. In the late nineteenth century San Francisco Bay hosted one of the American West’s most valuable fisheries: Not the bay’s native oysters, but Atlantic oysters, shipped across the country by rail and seeded on privately owned tidelands, created private profits and sparked public resistance. Both oyster growers and oyster pirates depended upon a rapidly changing bay ecosystem. Their struggle to possess the bay’s productivity revealed the inqualities of ownership in the American West. An unstable nature and shifting perceptions of San Francisco Bay combined to remake the bay into a place to dump waste rather than to find food. Both growers and pirates disappeared following the collapse of the oyster fishery in the early twentieth century. In 1902 twenty-two-year-old Oakland writer Jack London published his first book, an adventure story for boys. In the novel, London’s boy hero runs away from a comfortable middle-class home to test his mettle in the rough world of the San Francisco waterfront. Plucky but naïve, Joe Bronson soon finds himself sailing down San Francisco Bay in a rickety sloop called the Dazzler, piloted by hard-drinking French Pete and his tough orphan sidekick, the ’Frisco Kid. The Dazzler joins a small fleet of boats congregating in the tidal flats along the eastern shoreline of San Francisco Bay where French Pete orders Joe and the Kid to drag a triangular piece of steel, an oyster dredge, over the muddy bottom.
    [Show full text]
  • Native Fish Species Boosting Brazilian's Aquaculture Development
    Acta Fish. Aquat. Res. (2017) 5(1): 1-9 DOI 10.2312/ActaFish.2017.5.1.1-9 ORIGINAL ARTICLE Acta of Acta of Fisheries and Aquatic Resources Native fish species boosting Brazilian’s aquaculture development Espécies nativas de peixes impulsionam o desenvolvimento da aquicultura brasileira Ulrich Saint-Paul Leibniz Center for Tropical Marine Research, Fahrenheitstr. 6, 28359 Bremen, Germany *Email: [email protected] Recebido: 26 de fevereiro de 2017 / Aceito: 26 de março de 2017 / Publicado: 27 de março de 2017 Abstract Brazil’s aquaculture production has Resumo A produção da aquicultura do Brasil increased rapidly during the last two decades, aumentou rapidamente nas últimas duas décadas, growing from basically zero in the 1980s to over passando de quase zero nos anos 80 para mais de one half million tons in 2014. The development meio milhão de toneladas em 2014. O started with introduced international species such desenvolvimento começou através da introdução as shrimp, tilapia, and carp in a very traditional de espécies internacionais, tais como o camarão, a way, but has shifted to an increasing share of tilápia e a carpa, de uma forma muito tradicional, native species and focus on the domestic market. mas mudou com o aporte crescente de espécies Actually 40 % of the total production is coming nativas e foco no mercado interno. Atualmente, from native species such tambaquí (Colossoma 40% da produção total provém de espécies nativas macropomum), tambacu (hybrid from female C. como tambaqui (Colossoma macropomum), macropomum and male Piaractus mesopotamicus). tambacu (híbrido de C. macropomum e macho Other species like pirarucu (Arapaima gigas) or Piaractus mesopotamicus).
    [Show full text]
  • (Colossoma Macropomum, Cuvier, 1818) Under Different Photoperiods
    Revista Brasileira de Zootecnia © 2012 Sociedade Brasileira de Zootecnia ISSN 1806-9290 R. Bras. Zootec., v.41, n.6, p.1337-1341, 2012 www.sbz.org.br Morphometrical development of tambaqui (Colossoma macropomum, Cuvier, 1818) under different photoperiods Pedro Pierro Mendonça1*, Manuel Vazquez Vidal Junior2, Marcelo Fanttini Polese3, Monique Virães Barbosa dos Santos4, Fabrício Pereira Rezende5, Dalcio Ricardo de Andrade2 1 Doutorando em Ciência Animal - LZNA/CCTA/UENF. 2 LZNA/ CCTA/UENF, Campos dos Goytacazes, RJ, Brasil. 3 Mestrando em Ciência Animal - LZNA/CCTA/UENF. 4 Mestranda em Produção Animal - LZNA/CCTA/UENF. 5 Doutorando em Zootecnia/EMBRAPA Pesca e Aquicultura - Palmas, TO. ABSTRACT - The experiment was performed with 160 tambaqui (Colossoma macropomum) with average weight 11.01±2.08 g and total length 7.8±0.18 cm. Fishes were kept in sixteen aquariums with 56 L of water at 29.1±0.4 oC of temperature, initial stocking density 1.97 g/L and constant aeration. The objective of this study was to assess the influence of photoperiod on fish performance. Treatments consisted of four photoperiods: T1 = 6 hours; T2 = 12 hours; T3 = 18 hours and T4 = 24 hours, with four replicates each. Fishes were fed twice a day with commercial extruded feed (28% of crude protein). The experiment was developed in closed circulation system, with volume of water renewal for each experimental unit equivalent to 40 times daily. Fish biometry was performed at the beginning of the experiment and at every 16 days, in order to follow the effects of treatments on juvenile development. Final weight, total length, standard length, height, feed intake, weight gain, feed conversion, survival, specific growth rate, protein efficiency rate and protein retention efficiency were assessed.
    [Show full text]
  • Section 5 References
    Section 5 References 5.0 REFERENCES Akçakaya, H. R. and J. L. Atwood. 1997. A habitat-based metapopulation model of the California Gnatcatcher. Conservation Biology 11:422-434. Akçakaya, H.R. 1998. RAMAS GIS: Linking landscape data with population viability analysis (version 3.0). Applied Biomathematics, Setaauket, New York. Anderson, D.W. and J.W. Hickey. 1970. Eggshell changes in certain North American birds. Ed. K. H. Voous. Proc. (XVth) Inter. Ornith. Congress, pp 514-540. E.J. Brill, Leiden, Netherlands. Anderson, D.W., J.R. Jehl, Jr., R.W. Risebrough, L.A. Woods, Jr., L.R. Deweese, and W.G. Edgecomb. 1975. Brown pelicans: improved reproduction of the southern California coast. Science 190:806-808. Atwood, J.L. 1980. The United States distribution of the California black-tailed gnatcatcher. Western Birds 11: 65-78. Atwood, J.L. 1990. Status review of the California gnatcatcher (Polioptila californica). Unpublished Technical Report, Manomet Bird Observatory, Manomet, Massachusetts. Atwood, J.L. 1992. A maximum estimate of the California gnatcatcher’s population size in the United States. Western Birds. 23:1-9. Atwood, J.L. and J.S. Bolsinger. 1992. Elevational distribution of California gnatcatchers in the United States. Journal of Field Ornithology 63:159-168. Atwood, J.L., S.H. Tsai, C.H. Reynolds, M.R. Fugagli. 1998. Factors affecting estimates of California gnatcatcher territory size. Western Birds 29: 269-279. Baharav, D. 1975. Movement of the horned lizard Phrynosoma solare. Copeia 1975: 649-657. Barry, W.J. 1988. Management of sensitive plants in California state parks. Fremontia 16(2):16-20. Beauchamp, R.M.
    [Show full text]
  • Birds on San Clemente Island, As Part of Our Work Toward the Recovery of the Island’S Endangered Species
    WESTERN BIRDS Volume 36, Number 3, 2005 THE BIRDS OF SAN CLEMENTE ISLAND BRIAN L. SULLIVAN, PRBO Conservation Science, 4990 Shoreline Hwy., Stinson Beach, California 94970-9701 (current address: Cornell Laboratory of Ornithology, 159 Sapsucker Woods Rd., Ithaca, New York 14850) ERIC L. KERSHNER, Institute for Wildlife Studies, 2515 Camino del Rio South, Suite 334, San Diego, California 92108 With contributing authors JONATHAN J. DUNN, ROBB S. A. KALER, SUELLEN LYNN, NICOLE M. MUNKWITZ, and JONATHAN H. PLISSNER ABSTRACT: From 1992 to 2004, we observed birds on San Clemente Island, as part of our work toward the recovery of the island’s endangered species. We increased the island’s bird list to 317 species, by recording many additional vagrants and seabirds. The list includes 20 regular extant breeding species, 6 species extirpated as breeders, 5 nonnative introduced species, and 9 sporadic or newly colonizing breeding species. For decades San Clemente Island had been ravaged by overgrazing, especially by goats, which were removed completely in 1993. Since then, the island’s vegetation has begun recovering, and the island’s avifauna will likely change again as a result. We document here the status of that avifauna during this transitional period of re- growth, between the island’s being largely denuded of vegetation and a more natural state. It is still too early to evaluate the effects of the vegetation’s still partial recovery on birds, but the beginnings of recovery may have enabled the recent colonization of small numbers of Grasshopper Sparrows and Lazuli Buntings. Sponsored by the U. S. Navy, efforts to restore the island’s endangered species continue—among birds these are the Loggerhead Shrike and Sage Sparrow.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Redalyc.Genetic Variation in Native and Farmed Populations of Tambaqui (Colossoma Macropomum ) in the Brazilian Amazon: Regional
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil AGUIAR, JONAS; SCHNEIDER, HORACIO; GOMES, FÁTIMA; CARNEIRO, JEFERSON; SANTOS, SIMÔNI; RODRIGUES, LUIS R.; SAMPAIO, IRACILDA Genetic variation in native and farmed populations of Tambaqui (Colossoma macropomum ) in the Brazilian Amazon: regional discrepancies in farming systems Anais da Academia Brasileira de Ciências, vol. 85, núm. 4, 2013, pp. 1439-1447 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32729375022 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2013) 85(4): 1439-1447 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-376520130007 www.scielo.br/aabc Genetic variation in native and farmed populations of Tambaqui (Colossoma macropomum) in the Brazilian Amazon: regional discrepancies in farming systems JONAS AGUIAR1, HORACIO SCHNEIDER2, FÁTIMA GOMES2, JEFERSON CARNEIRO2, SIMÔNI SANTOS2, LUIS R. RODRIGUES1 and IRACILDA SAMPAIO2 1Laboratório de Genética e Biodiversidade/LGBIO, Universidade Federal do Oeste do Pará /UFOPA, Rua Marechal Rondon, s/n, 68040-440 Santarém, PA, Brasil 2Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros, Campus Bragança, Universidade Federal do Pará/UFPA, Alameda Leandro Ribeiro, s/n, 68600-000 Bragança, PA, Brasil Manuscript received on January 7, 2013; accepted for publication on April 12, 2013 ABSTRACT The tambaqui, Colossoma macropomum, is the most popular fish species used for aquaculture in Brazil but there is no study comparing genetic variation among native and farmed populations of this species.
    [Show full text]
  • Planning for Native Oyster Restoration in San Francisco Bay. Final Report to California Coastal Conservancy Agreement
    Planning for Native Oyster Restoration in San Francisco Bay Final Report to California Coastal Conservancy Agreement # 05-134 Edwin Grosholza, Jim Mooreb, Chela Zabina, Sarikka Attoea and Rena Obernoltea aDepartment of Environmental Science and Policy University of California, Davis bCalifornia Department of Fish and Game Funding provided by the California Ocean Protection Council Introduction Historically, native Olympia oysters Ostreola conchaphila (=Ostrea lurida) (Turgeon et al. 1998) were an abundant and ecologically important part of the fauna in West Coast estuaries and an important fishery (Barnett 1963, Baker 1995). Unfortunately, the popularity of the fishery that began in the 1850s resulted in the complete collapse of native oyster populations along the west coast of the U.S. during the late 19th and early 20th centuries (Barnett 1963, Baker 1995). Not only was the fishery lost, but so were the key ecosystem services provided by native oysters. Studies of oysters in estuaries in the eastern U.S. have shown that native oyster reefs (Crassostrea virginica) act as a “foundation species” by creating a refuge from predators and physical stress as well as a food source resulting in increased local diversity of fishes and invertebrates (Zimmerman 1989, Lenihan 1999, Micheli and Peterson 1999, Lenihan et al. 2001). In the largely unstructured, soft-sediment habitats of West Coast estuaries, aggregations of native oysters were likely to have provided similar functions and have been shown to increase invertebrate species richness (Kimbro and Grosholz 2006). The introduction of exotic Pacific oysters (Crassostrea gigas) from Asia in the early 20th century provided a successful replacement for the native oyster fishery.
    [Show full text]