Functional Aspects of the Osmorespiratory Compromise in Fishes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecology, Biology and Taxonomy. Mudskippers
Chapter of the edited collection: Mangroves: Ecology, Biology and Taxonomy. Mudskippers: human use, ecotoxicology and biomonitoring of mangrove and other soft bottom intertidal ecosystems. Gianluca Polgar 1 and Richard Lim 2 1Institute of Biological Sciences, Institute of Ocean and Earth Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia. Tel. +603-7967-4609 / 4182; e-mail: [email protected] / [email protected]. Web site: www.themudskipper.org 2Centre for Environmental Sustainability, School of the Environment, Faculty of Science, University of Technology Sydney, Broadway, New South Wales 2007, Australia. e-mail: [email protected] Abstract (269) Mudskippers (Gobiidae: Oxudercinae) are air-breathing gobies, which are widely distributed throughout the West African coast and the Indo-Pacific region. They are closely linked to mangrove and adjacent soft bottom peri-tidal ecosystems. Some species are amongst the best adapted fishes to an amphibious lifestyle. All mudskippers are benthic burrowers in anoxic sediments, and since tidal mudflats are efficient sediment traps, and sinks for nutrients and other chemical compounds, they are constantly in contact with several types of pollutants produced by industrial, agricultural and domestic activities. Due to their natural abundance, considerable resistance to highly polluted conditions, and their benthic habits, mudskippers are frequently used in aquatic ecotoxicological studies. For the same reasons, mudskippers also frequently occur in urbanised or semi-natural coastal areas. Since several species are widely consumed throughout their whole geographical range, these same characteristics also facilitate their aquaculture in several countries, such as Bangladesh, Thailand, Philippines, China, Taiwan and Japan. Even when not directly used, mudskippers are often abundant and are important prey items for many intertidal transient species (marine visitors), and several species of shorebirds. -
Shoaling Reduces Metabolic Rate in a Gregarious Coral Reef Fish Species Lauren E
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Enlighten: Publications © 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 2802-2805 doi:10.1242/jeb.139493 SHORT COMMUNICATION Shoaling reduces metabolic rate in a gregarious coral reef fish species Lauren E. Nadler1,2,*, Shaun S. Killen3, Eva C. McClure1,2, Philip L. Munday2 and Mark I. McCormick1,2 ABSTRACT species. First, the ventilation rate of shoaling versus solitary Many animals live in groups because of the potential benefits individuals has been recorded to estimate metabolic rate (Lefrancois associated with defense and foraging. Group living may also induce a et al., 2009; Queiroz and Magurran, 2005). A second method uses ‘calming effect’ on individuals, reducing overall metabolic demand. respirometry (where oxygen uptake is measured as a proxy for ’ This effect could occur by minimising the need for individual vigilance aerobic metabolism) to compare the sum of each individual s and reducing stress through social buffering. However, this effect has metabolic rate when measured alone with the metabolic rate of the proved difficult to quantify. We examined the effect of shoaling on shoal measured together (Parker, 1973; Schleuter et al., 2007). metabolism and body condition in the gregarious damselfish Chromis Although these methods have provided supporting evidence for the viridis. Using a novel respirometry methodology for social species, we calming effect, they do not directly measure social influences on found that the presence of shoal-mate visual and olfactory cues led to individual physiology. Lastly, a third method has been employed, in a reduction in the minimum metabolic rate of individuals. -
Status of the Fisheries Report an Update Through 2008
STATUS OF THE FISHERIES REPORT AN UPDATE THROUGH 2008 Photo credit: Edgar Roberts. Report to the California Fish and Game Commission as directed by the Marine Life Management Act of 1998 Prepared by California Department of Fish and Game Marine Region August 2010 Acknowledgements Many of the fishery reviews in this report are updates of the reviews contained in California’s Living Marine Resources: A Status Report published in 2001. California’s Living Marine Resources provides a complete review of California’s three major marine ecosystems (nearshore, offshore, and bays and estuaries) and all the important plants and marine animals that dwell there. This report, along with the Updates for 2003 and 2006, is available on the Department’s website. All the reviews in this report were contributed by California Department of Fish and Game biologists unless another affiliation is indicated. Author’s names and email addresses are provided with each review. The Editor would like to thank the contributors for their efforts. All the contributors endeavored to make their reviews as accurate and up-to-date as possible. Additionally, thanks go to the photographers whose photos are included in this report. Editor Traci Larinto Senior Marine Biologist Specialist California Department of Fish and Game [email protected] Status of the Fisheries Report 2008 ii Table of Contents 1 Coonstripe Shrimp, Pandalus danae .................................................................1-1 2 Kellet’s Whelk, Kelletia kelletii ...........................................................................2-1 -
Dr. Rodi Omondi Ojoo
Dr. Rodi Omondi Ojoo Contacts: Department of Veterinary Anatomy and Physiology University of Nairobi P.O.Box 30197- 00100 Nairobi, Kenya Telephone: +2542 4442014/5/6 ext 2300 Cell No: 0722679680 Fax: + 2542 4451770 Email: [email protected] Education: Ph.D. Veterinary Anatomy (Reproductive Biology ), University of Nairobi, Kenya, 2006. M.Sc. Veterinary Anatomy (Reproductive Biology), University of Nairobi, 1996. B.V.M. University of Nairobi, 1990. Positions held: 1996- 2014: Lecturer in Department of Veterinary Anatomy and Physiology, University of Nairobi 1990-1996: Assistant lecturer in Department of Veterinary Anatomy of University of Nairobi. 1985-1986: Research assistant for 7 months at the Biomedical Research Centre of the Kenya Medical Research Institute. Professional affiliations: Member of the Kenya Veterinary Association Veterinary Surgeon registered by the Kenya Veterinary Board as No. 1289 Duties: Lectures and examination (Veterinary Anatomy) of Bachelor of Veterinary Medicine and BSc. Wildlife Management, undergraduate students. Lectures and examination of Reproductive biology to postgraduate students Have been member of boards for examination of a number of MSc. Students. Have been internal examiner of MSc. Thesis Other responsibilities: - Chairman, Faculty of Veterinary Medicine, Biosafety, Animal use and Ethics Committee - Reviewer for the Kenya Veterinarian, a Journal of the Kenya Veterinary Association Publications: Theses: 1. Ojoo, R.O. (2006) Comparison and characterisation of specific fertilisation proteins in human (Homo sapiens) and baboon (Papio anubis) spermatozoa. Ph.D thesis , University of Nairobi. 2. Ojoo, R.O. (1995) A morphological and endocrinological study of the male reproductive system of the male reproductive system of the thick-tailed bush baby (Galago garnetti). -
Respiratory Disorders of Fish
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Disorders of the Respiratory System in Pet and Ornamental Fish a, b Helen E. Roberts, DVM *, Stephen A. Smith, DVM, PhD KEYWORDS Pet fish Ornamental fish Branchitis Gill Wet mount cytology Hypoxia Respiratory disorders Pathology Living in an aquatic environment where oxygen is in less supply and harder to extract than in a terrestrial one, fish have developed a respiratory system that is much more efficient than terrestrial vertebrates. The gills of fish are a unique organ system and serve several functions including respiration, osmoregulation, excretion of nitroge- nous wastes, and acid-base regulation.1 The gills are the primary site of oxygen exchange in fish and are in intimate contact with the aquatic environment. In most cases, the separation between the water and the tissues of the fish is only a few cell layers thick. Gills are a common target for assault by infectious and noninfectious disease processes.2 Nonlethal diagnostic biopsy of the gills can identify pathologic changes, provide samples for bacterial culture/identification/sensitivity testing, aid in fungal element identification, provide samples for viral testing, and provide parasitic organisms for identification.3–6 This diagnostic test is so important that it should be included as part of every diagnostic workup performed on a fish. -
Lamprey, Hagfish
Agnatha - Lamprey, Kingdom: Animalia Phylum: Chordata Super Class: Agnatha Hagfish Agnatha are jawless fish. Lampreys and hagfish are in this class. Members of the agnatha class are probably the earliest vertebrates. Scientists have found fossils of agnathan species from the late Cambrian Period that occurred 500 million years ago. Members of this class of fish don't have paired fins or a stomach. Adults and larvae have a notochord. A notochord is a flexible rod-like cord of cells that provides the main support for the body of an organism during its embryonic stage. A notochord is found in all chordates. Most agnathans have a skeleton made of cartilage and seven or more paired gill pockets. They have a light sensitive pineal eye. A pineal eye is a third eye in front of the pineal gland. Fertilization of eggs takes place outside the body. The lamprey looks like an eel, but it has a jawless sucking mouth that it attaches to a fish. It is a parasite and sucks tissue and fluids out of the fish it is attached to. The lamprey's mouth has a ring of cartilage that supports it and rows of horny teeth that it uses to latch on to a fish. Lampreys are found in temperate rivers and coastal seas and can range in size from 5 to 40 inches. Lampreys begin their lives as freshwater larvae. In the larval stage, lamprey usually are found on muddy river and lake bottoms where they filter feed on microorganisms. The larval stage can last as long as seven years! At the end of the larval state, the lamprey changes into an eel- like creature that swims and usually attaches itself to a fish. -
Alcolapia Grahami ERSS
Lake Magadi Tilapia (Alcolapia grahami) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, March 2015 Revised, August 2017, October 2017 Web Version, 8/21/2018 1 Native Range and Status in the United States Native Range From Bayona and Akinyi (2006): “The natural range of this species is restricted to a single location: Lake Magadi [Kenya].” Status in the United States No records of Alcolapia grahami in the wild or in trade in the United States were found. The Florida Fish and Wildlife Conservation Commission has listed the tilapia Alcolapia grahami as a prohibited species. Prohibited nonnative species (FFWCC 2018), “are considered to be dangerous to the ecology and/or the health and welfare of the people of Florida. These species are not allowed to be personally possessed or used for commercial activities.” Means of Introductions in the United States No records of Alcolapia grahami in the United States were found. 1 Remarks From Bayona and Akinyi (2006): “Vulnerable D2 ver 3.1” Various sources use Alcolapia grahami (Eschmeyer et al. 2017) or Oreochromis grahami (ITIS 2017) as the accepted name for this species. Information searches were conducted under both names to ensure completeness of the data gathered. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Eschmeyer et al. (2017), Alcolapia grahami (Boulenger 1912) is the current valid name for this species. It was originally described as Tilapia grahami; it has also been known as Oreoghromis grahami, and as a synonym, but valid subspecies, of -
Gyrodactylus Magadiensis N. Sp. (Monogenea
Parasite 26, 76 (2019) Ó Q.M. Dos Santos et al., published by EDP Sciences, 2019 https://doi.org/10.1051/parasite/2019077 urn:lsid:zoobank.org:pub:677E07BB-8A05-4722-8ECD-0A9A16656F4B Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Gyrodactylus magadiensis n. sp. (Monogenea, Gyrodactylidae) parasitising the gills of Alcolapia grahami (Perciformes, Cichlidae), a fish inhabiting the extreme environment of Lake Magadi, Kenya Quinton Marco Dos Santos, John Ndegwa Maina, and Annemariè Avenant-Oldewage* Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa Received 31 July 2019, Accepted 6 December 2019, Published online 20 December 2019 Abstract – A new species of Gyrodactylus von Nordmann, 1832 is described from the gills of Alcolapia grahami,a tilapian fish endemic to Lake Magadi. This alkaline soda lake in the Rift Valley in Kenya is an extreme environment with pH as high as 11, temperatures up to 42 °C, and diurnal fluctuation between hyperoxia and virtual anoxia. Nevertheless, gyrodactylid monogeneans able to survive these hostile conditions were detected from the gills the Magadi tilapia. The worms were studied using light microscopy, isolated sclerites observed using scanning electron microscopy, and molecular techniques used to genetically characterize the specimens. The gyrodactylid was described as Gyrodactylus magadiensis n. sp. and could be distinguished from other Gyrodactylus species infecting African cichlid fish based on the comparatively long and narrow hamuli, a ventral bar with small rounded anterolateral processes and a tongue-shaped posterior membrane, and marginal hooks with slender sickles which are angled forward, a trapezoid to square toe, rounded heel, a long bridge prior to reaching marginal sickle shaft, and a long lateral edge of the toe. -
Immunological and Physiological Effects of Piscine Orthoreovirus Infection in Atlantic Salmon (Salmo Salar)
Immunological and physiological effects of Piscine orthoreovirus infection in Atlantic salmon (Salmo salar) Philosophiae Doctor (PhD) Thesis Morten Lund Department of Food Safety and Infection Biology Faculty of Veterinary Medicine Norwegian University of Life Sciences Adamstuen 2017 Thesis number 2017:33 ISSN 1894-6402 ISBN 978-82-575-1994-0 1 Table of contents Acknowledgements --------------------------------------------------------------------------------------------------------------------------------- 4 Abbreviations ------------------------------------------------------------------------------------------------------------------------------------------ 6 List of papers ------------------------------------------------------------------------------------------------------------------------------------------- 8 Summary ------------------------------------------------------------------------------------------------------------------------------------------------- 9 Sammendrag (Summary in Norwegian) -------------------------------------------------------------------------------------------------- 11 1 Introduction ------------------------------------------------------------------------------------------------------------------------------------ 13 1.1 General background --------------------------------------------------------------------------------------------------------------- 13 1.2 The life cycle of farmed Atlantic salmon ------------------------------------------------------------------------------- 14 1.3 Common infections in Norwegian -
XIV. Appendices
Appendix 1, Page 1 XIV. Appendices Appendix 1. Vertebrate Species of Alaska1 * Threatened/Endangered Fishes Scientific Name Common Name Eptatretus deani black hagfish Lampetra tridentata Pacific lamprey Lampetra camtschatica Arctic lamprey Lampetra alaskense Alaskan brook lamprey Lampetra ayresii river lamprey Lampetra richardsoni western brook lamprey Hydrolagus colliei spotted ratfish Prionace glauca blue shark Apristurus brunneus brown cat shark Lamna ditropis salmon shark Carcharodon carcharias white shark Cetorhinus maximus basking shark Hexanchus griseus bluntnose sixgill shark Somniosus pacificus Pacific sleeper shark Squalus acanthias spiny dogfish Raja binoculata big skate Raja rhina longnose skate Bathyraja parmifera Alaska skate Bathyraja aleutica Aleutian skate Bathyraja interrupta sandpaper skate Bathyraja lindbergi Commander skate Bathyraja abyssicola deepsea skate Bathyraja maculata whiteblotched skate Bathyraja minispinosa whitebrow skate Bathyraja trachura roughtail skate Bathyraja taranetzi mud skate Bathyraja violacea Okhotsk skate Acipenser medirostris green sturgeon Acipenser transmontanus white sturgeon Polyacanthonotus challengeri longnose tapirfish Synaphobranchus affinis slope cutthroat eel Histiobranchus bathybius deepwater cutthroat eel Avocettina infans blackline snipe eel Nemichthys scolopaceus slender snipe eel Alosa sapidissima American shad Clupea pallasii Pacific herring 1 This appendix lists the vertebrate species of Alaska, but it does not include subspecies, even though some of those are featured in the CWCS. -
Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch. -
Physiological Adaptations of the Gut in the Lake Magadi Tilapia, Alcolapia Grahami, an Alkaline- and Saline-Adapted Teleost Fish
Comparative Biochemistry and Physiology Part A 136 (2003) 701–715 Physiological adaptations of the gut in the Lake Magadi tilapia, Alcolapia grahami, an alkaline- and saline-adapted teleost fish Annie Narahara Bergmanab , Pierre Laurent , George Otiang’a-Owiti c , Harold L. Bergman a , Patrick J. Walshde , Paul Wilson , Chris M. Wood f, * aDepartment of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA bCentre d’Ecologie et de Physiologie Energetiques,´ CNRS, 23 Rue Bequerel, BP 20 CR, Strasbourg 67087, France cDepartment of Veterinary Anatomy, University of Nairobi, Nairobi, Kenya dDivision of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, NIEHS Marine and Freshwater Biomedical Science Center, University of Miami, Miami, FL 33149, USA eDepartment of Chemistry, Wildlife Forensic DNA Laboratory, Trent University, Peterborough, Ontario, Canada K9J 7B8 fDepartment of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1 Received 17 April 2003; received in revised form 28 July 2003; accepted 29 July 2003 Abstract We describe the gut physiology of the Lake Magadi tilapia (Alcolapia grahami), specifically those aspects associated with feeding and drinking while living in water of unusually high carbonate alkalinity (titratable bases245 mequiv ly1) and pH (9.85). Drinking of this highly alkaline lake water occurs at rates comparable to or higher than those seen in marine teleosts. Eating and drinking take place throughout the day, although drinking predominates during hours of darkness. The intestine directly intersects the esophagus at the anterior end of the stomach forming a ‘T’, and the pyloric sphincter, which comprises both smooth and striated muscle, is open when the stomach is empty and closed when the stomach is full.