Journal of Japan Association for Earthquake Engineering, Vol.12, No.2, 2012 STUDY OF SOIL AMPLIFICATION BASED ON MICROTREMOR AND SEISMIC RECORDS IN LIMA PERU Diana CALDERON1, Toru SEKIGUCHI2, Shoichi NAKAI3, Zenon AGUILAR4, Fernando LAZARES5 1 Member of JAEE, PhD. Candidate, Department of Urban Environment Systems, Chiba University, Chiba, Japan,
[email protected] 2 Member of JAEE, Assistant Professor, Department of Urban Environment Systems, Chiba University, Chiba, Japan,
[email protected] 3 Member of JAEE, Professor, Department of Urban Environment Systems, Chiba University, Chiba, Japan,
[email protected] 4 Professor, Faculty of Civil Engineering, National University of Engineering, Lima, Peru,
[email protected] 5 Professor, Faculty of Civil Engineering, National University of Engineering, Lima, Peru,
[email protected] ABSTRACT: The dynamic characteristics of the ground in Lima, capital of Peru, specifically the amplification are investigated. By using the small and large microtremor array measurements we estimated the soil velocity profiles with depths to the bedrock in many cases. These profiles were used to estimate the amplification factors. Important results are the large amplification factors at EMO, VSV, CAL and CMA (La Molina, Villa El Salvador, El Callao and Bellavista district, respectively). Key Words: Dispersion curve, Shear-wave velocity profile, Transfer function, Amplification factor, Site effect INTRODUCTION Lima, capital of Peru, is situated in the central-west side of the South American continent, bordered by the Pacific Ocean in a zone of high seismic activity known as the Ring of Fire. Earthquakes in this area are originated mainly due to the subduction of the Nazca Plate under the South American plate.