“Environmental Changes in Siberia”
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Information to Users
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Beil & Howell Information Company 300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 0211125 A need to know: The role of Air Force reconnaissance in war planning, 1045-1953 Farquhar, John Thomas, Ph.D. The Ohio State University, 1991 Copyright ©1001 by Farquhar, John Thomas. -
Continuous Atmospheric Observations from Ambarchik on the Arctic Coast in North-Eastern Siberia
A new window on Arctic greenhouse gases: Continuous atmospheric observations from Ambarchik on the Arctic coast in North-Eastern Siberia Friedemann Reum1, Mathias Göckede1, Nikita Zimov3, Sergej Zimov3, Olaf Kolle1, Ed Dlugokencky4, Tuomas Laurila5, Alexander Makshtas9, Scot Miller6, Anna Michalak6, John Henderson7, Charles Miller8, Martin Heimann1,2 1: MPI for Biogeochemistry, Germany; 2: Div. of Atm. Sci., Dep. of Physics, Uni Helsinki, Finland; 3: North-East Science Station, Cherskii, Russia; 4: NOAA-ESRL, Boulder, USA; 5: Finn. Met. Inst., Helsinki, Finland; 6: Dep. of Global Ecology, Carnegie Inst. for Science, Stanford, USA; 7: Atm. and Env. Research, USA; 8: JPL, USA; 9: Arctic and Antarctic Research Institute, Roshydromet, Russia Why monitor CO2 and CH4 in the Arctic? Huge carbon reservoirs + Warming = Risk of degradation → Positive feedback to global warming? [1,2,3,4] → Need to understand Arctic carbon cycle in changing climate [1] Hugelius et al. 2014, [2] James et al. 2016, [3] Schuur et al. 2013, [4] Schuur et al. 2015 Friedemann Reum, MPI Biogeochemistry Jena Atmospheric GHG observations from Ambarchik 2 Arctic net carbon budgets are highly uncertain ● -1 Arctic CO2 budget: -110 (-291 … +80) Tg C yr [5] ● -1 East Siberian Arctic Shelf CH4: 0 … 17 Tg CH4 yr [6,7,8] ● … [5] McGuire et al. 2012, [6] Shakhova et al. 2013, [7] Berchet et al. 2016, [8] Thornton et al. 2016 Friedemann Reum, MPI Biogeochemistry Jena Atmospheric GHG observations from Ambarchik 3 We don't have enough data... Continuous in-situ monitoring of atmospheric CO2 ( ) and CH4: ( ) ( ) Low network density in East Siberia → Need more data! [9] [9] Belshe et al. -
Laptev Sea System
Russian-German Cooperation: Laptev Sea System Edited by Heidemarie Kassens, Dieter Piepenburg, Jör Thiede, Leonid Timokhov, Hans-Wolfgang Hubberten and Sergey M. Priamikov Ber. Polarforsch. 176 (1995) ISSN 01 76 - 5027 Russian-German Cooperation: Laptev Sea System Edited by Heidemarie Kassens GEOMAR Research Center for Marine Geosciences, Kiel, Germany Dieter Piepenburg Institute for Polar Ecology, Kiel, Germany Jör Thiede GEOMAR Research Center for Marine Geosciences, Kiel. Germany Leonid Timokhov Arctic and Antarctic Research Institute, St. Petersburg, Russia Hans-Woifgang Hubberten Alfred-Wegener-Institute for Polar and Marine Research, Potsdam, Germany and Sergey M. Priamikov Arctic and Antarctic Research Institute, St. Petersburg, Russia TABLE OF CONTENTS Preface ....................................................................................................................................i Liste of Authors and Participants ..............................................................................V Modern Environment of the Laptev Sea .................................................................1 J. Afanasyeva, M. Larnakin and V. Tirnachev Investigations of Air-Sea Interactions Carried out During the Transdrift II Expedition ............................................................................................................3 V.P. Shevchenko , A.P. Lisitzin, V.M. Kuptzov, G./. Ivanov, V.N. Lukashin, J.M. Martin, V.Yu. ßusakovS.A. Safarova, V. V. Serova, ßvan Grieken and H. van Malderen The Composition of Aerosols -
Print 11.05 November
Discovering the breeding grounds of Ross’s Gull: 100 years on Henry A. McGhie and V. Dmitri Logunov 366. Ross’s Gull Rhodostethia rosea, near the Indigirka River, Northeast Siberia, June 1999. Chris Schenk ABSTRACT June 2005 marked the centenary of one of the most notable events of twentieth-century ornithology: the discovery of the breeding grounds of Ross’s Gull Rhodostethia rosea, in northeast Siberia, by Russian ornithologist Sergei Buturlin. News of the discovery was announced in Britain to a meeting of the British Ornithologists’ Club on 13th December 1905 by Henry Dresser, Buturlin’s long-term correspondent.This article provides details on Buturlin’s famous discovery and investigates the relationship between Buturlin and Dresser. Previously unpublished photographs of Buturlin and his expedition are presented, together with new information extracted from correspondence between Dresser and Buturlin that is preserved at the Museum of Local Lore, History and Economy in Ulyanovsk, Russia, which houses the largest surviving archive on Buturlin. © British Birds 98 • November 2005 • 589-599 589 Discovering the breeding grounds of Ross’s Gull oss’s Gull Rhodostethia rosea is surely coast of southern Greenland. This inspired the one of the world’s most beautiful gulls. Norwegian explorer Fridtjof Nansen to embark R Following its discovery in June 1823, it on an incredible journey with his ship, the became surrounded by an almost mystical aura; Fram, which was deliberately allowed to become its extreme rarity and ethereal beauty combined ice-bound during his attempt to reach the with the harsh and remote environment where North Pole. During this epic journey, Nansen it occurred to make it one of the most highly encountered Ross’s Gulls flying north near the prized trophies of the nineteenth century natur- New Siberian Islands, Russia, and noted: alist-collectors. -
ON EFFICIENCY of WIND POWER USE for POWER SUPPLY of the ARCTIC DISTRICTS of YAKUTIA Irina Yu. Ivanova1, Tatiana F. Tuguzova1, Dmitry D
Journal of International Scientific Publications: Ecology and Safety Volume 8, ISSN 1314-7234 (Online), Published at: http://www.scientific-publications.net ON EFFICIENCY OF WIND POWER USE FOR POWER SUPPLY OF THE ARCTIC DISTRICTS OF YAKUTIA Irina Yu. Ivanova1, Tatiana F. Tuguzova1, Dmitry D. Nogovitsyn2, Vladislav A. Shakirov3, Zinaida M. Sheina2, Lyudmila P. Sergeeva2 1L.A. Melentiev Institute of energy systems, Siberian branch of the Russian Academy of Sciences (MIES SB RAS) 2V.P. Larionov Institute of physical and technical problems of the North, Siberian branch of the Russian Academy of Sciences (IPTPN SB RAS) 3Bratsk state University (FGBOU VPO Brest state University) Abstract Efficiency of wind power stations (WPS) for power supply of settlements of the eastern Arctic area of Russia has been assessed in the article on the example of the Allaikhovsky district of the Sakha Republic (Yakutia), Russia. Authors consider using of wind power as an additive energy source, as the power supply of the district in the near future will remain autonomous, and the diesel power will be basic and a guaranteed source of energy. Therefore, exploitation of wind power could partly reduce the consumption of fossil fuels. The work takes into account the changes of indicators of wind potential during one year, fuel prices, and annual electricity consumption schedule with the aim of financial and different types of wind turbines applying economic assessment for an Arctic settlement isolated from energetic systems. Key words: Renewable energy, WPS, decentralized consumer, autonomous energy source, economic efficiency, payback period In recent time, applying of the renewable energy sources for providing a capable energy supply of distant and arctic regions of the Sakha Republic (Yakutia), that are located on the area of decentralized energy supply with limited period of cargo delivery becomes more actual. -
Download Article (PDF)
Advances in Social Science, Education and Humanities Research, volume 364 International Conference on Sustainable Development of Cross-Border Regions: Economic, Social and Security Challenges (ICSDCBR 2019) Socio-economic development of the Arctic border regions of the Republic of Sakha (Yakutia) N Melnikova1* and N Fedorova1 1 M. K. Ammosov North-Eastern Federal University, 58 Belinsky str., Yakutsk 677027 Russia E-mail: [email protected] Abstract. The article attempts to comprehensively study the current state of socio-economic development of the Arctic border regions of the Republic of Sakha (Yakutia), taking into account economic and socio-psychological factors. A general assessment of the living conditions of the population, taking into account the main socio-economic indicators in the development of the five arctic cross-border regions of the Republic of Sakha (Yakutia) and based on interviews, observation, and questioning, showed an increase in the level of people’s discontent. The adoption of urgent measures at the state and regional levels of government, aimed at the development of not only productive but also social capital of the Arctic, is necessary. Keywords: socio-economic development, Arctic border regions, ulus, indicators 1. Introduction The socio-economic development of the Arctic border regions of the Russian Federation is characterized by the primary development of the mining industry, obsolescence of the material and technical base of social institutions, changes in people’s attitudes towards traditional forms of environmental management and the outflow of the population [4, 5]. Intensive growth in mining operations in selected Arctic areas contributes to increased investment in transport and energy infrastructure. However, the local population, mainly engaged in the sphere of state and municipal administration, budgetary organizations and agriculture, does not associate their future with the development of this industry. -
Wetlands in Russia
WETLANDS IN RUSSIA Volume 4 Wetlands in Northeastern Russia Compiled by A.V.Andreev Moscow 2004 © Wetlands International, 2004 All rights reserved. Apart from any fair dealing for the purpose of private study, research, criticism, or review (as permitted under the Copyright Designs and Patents Act 1988) no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrical, chemical, mechanical, optical, photocopying, recording or otherwise, without prior permission of the copyright holder. The production of this publication has been generously supported by the Ministry of Agriculture, Nature and Food Quality, The Netherlands Citation: Andreev, A.V. 2004. Wetlands in Russia, Volume 4: Wetlands in Northeastern Russia. Wetlands International–Russia Programme.198 pp. ISBN 90-5882-024-6 Editorial Board: V.O.Avdanin, V.G.Vinogradov, V.Yu. Iliashenko, I.E.Kamennova, V.G.Krivenko, V.A.Orlov, V.S.Ostapenko, V.E.Flint Translation: Yu.V.Morozov Editing of English text: D. Engelbrecht Layout: M.A.Kiryushkin Cover photograph: A.V.Andreev Designed and produced by KMK Scientific Press Available from: Wetlands International-Russia Programme Nikoloyamskaya Ulitsa, 19, stroeniye 3 Moscow 109240, Russia Fax: + 7 095 7270938; E-mail: [email protected] The presentation of material in this publication and the geographical designations employed do not imply the expression of any opinion whatsoever on the part of Wetlands International, concerning the legal status of any territory or area, -
Chronology of the Key Historical Events on the Eastern Seas of the Russian Arctic (The Laptev Sea, the East Siberian Sea, the Chukchi Sea)
Chronology of the Key Historical Events on the Eastern Seas of the Russian Arctic (the Laptev Sea, the East Siberian Sea, the Chukchi Sea) Seventeenth century 1629 At the Yenisei Voivodes’ House “The Inventory of the Lena, the Great River” was compiled and it reads that “the Lena River flows into the sea with its mouth.” 1633 The armed forces of Yenisei Cossacks, headed by Postnik, Ivanov, Gubar, and M. Stadukhin, arrived at the lower reaches of the Lena River. The Tobolsk Cossack, Ivan Rebrov, was the first to reach the mouth of Lena, departing from Yakutsk. He discovered the Olenekskiy Zaliv. 1638 The first Russian march toward the Pacific Ocean from the upper reaches of the Aldan River with the departure from the Butalskiy stockade fort was headed by Ivan Yuriev Moskvitin, a Cossack from Tomsk. Ivan Rebrov discovered the Yana Bay. He Departed from the Yana River, reached the Indigirka River by sea, and built two stockade forts there. 1641 The Cossack foreman, Mikhail Stadukhin, was sent to the Kolyma River. 1642 The Krasnoyarsk Cossack, Ivan Erastov, went down the Indigirka River up to its mouth and by sea reached the mouth of the Alazeya River, being the first one at this river and the first one to deliver the information about the Chukchi. 1643 Cossacks F. Chukichev, T. Alekseev, I. Erastov, and others accomplished the sea crossing from the mouth of the Alazeya River to the Lena. M. Stadukhin and D. Yarila (Zyryan) arrived at the Kolyma River and founded the Nizhnekolymskiy stockade fort on its bank. -
2015Annual Report
JSCB «ALMAZERGIENbaNK» JSC ANNUAL REPORT 2015 73 ANNUAL 20REPORT 15 MANAGEMENT RESPONSIBILITY STATEMENT We confirm that to the best of our knowledge and belief: ` The financial statements, prepared in accordance with International Financial Reporting Standards, give a true and fair view of the assets, liabilities, financial position and profit or loss of Almazergien- bank ` The management report includes a fair review of the development and performance of the business and the position of Almazergienbank, together with a description of the principal risks and uncertainties that it faces. Chair of the Management Board of JSCB Almazergienbank JSC Lyudmila Nikolaeva JSCB «ALMAZERGIENbaNK» JSC ANNUAL REPORT 2015 75 TABLE OF CONTENTS FINANCIAL HIGHLIGHTS AND KEY CORPORATE GOVERNANCE. .108 EVENTS Of THE YEAR 2015 . 80 ` Corporate governance system . .108 ` Financial highlights. 80 ` General shareholders meeting . .110 ` Key events of the year 2015 . 81 ` Supervisory Board . .112 ` Committees of the Supervisory Board . .119 ` Management Board . .122 STRATEGY, MISSION AND VALUES . .82 ` Remuneration of the members of the Supervisory Board and Management Board . .126 ` Mission . 82 ` Internal control and audit . .128 ` Values . 82 ` The Bank’s strategic goals and objectives . 83 ` Implementation of the strategy. 84 SUSTAINABLE DEVELOPMENT . 132 ` Personnel . .132 EcONOMY, BANKING SECTOR ` Social responsibility . .133 AND POSITION IN THE SECTOR . .86 ` Environmental protection. .135 ` Information on the major transactions ` Economy . 86 and interested party transactions . .135 ` Banking sector . 88 ` The Bank’s position in the sector . 90 INFORMATION FOR SHAREHOLDERS. .136 MANAGEMENT REPORT . .92 ` Share capital. .136 ` Organizational structure. 92 ` Information on the dividend policy ` Operating review . 94 and dividend record. .136 ` Corporate business . -
Organic Matter Characterisation Along a River Delta to Shelf Transect in Eastern Siberia
ORGANIC MATTER CHARACTERISATION ALONG A RIVER DELTA TO SHELF TRANSECT IN EASTERN SIBERIA D.J. Jong1, L.M. Bröder1, K.H. Keskitalo1, T. Tesi2, N. Zimov3, A. Davydova3, N. Haghipour4, T.I. Eglinton4, J.E. Vonk1 1Vrije Universiteit Amsterdam, the Netherlands 2National Research Council, Institute of Marine Sciences, Italy 3Northeast Science Station, Russian Academy of Sciences, Russia 4Swiss Federal Institute of Technology, Switzerland Abstract The Arctic Ocean receives an estimated amount of 40 × 1012 g organic carbon (OC) through inflow of rivers every year (Holmes et al., 2012; McClelland et al., 2016). A large part of the Arctic Ocean watershed is underlain by permafrost that experiences widescale warming exposing more OC to thaw and degradation (Biskaborn et al., 2019). Arctic Rivers will be increasingly affected by the hydrological and biogeochemical effects of thawing permafrost. During transport, permafrost-OC can be degraded into greenhouse gasses and potentially add to further climate warming (Schuur et al., 2015). However, a significant amount of this OC is transported all the way to the shelf and is buried in marine sediments, attenuating greenhouse gas emissions (Vonk & Gustafsson, 2013). The East Siberian Arctic Shelf is the largest and shallowest shelf in the Arctic Ocean (Stein & MacDonald, 2004). It receives significant amounts of terrestrial OC, delivered through coastal erosion and fluvial input (Gustafsson et al., 2011; Sánchez-García et al., 2011; Vonk et al., 2012). This region is also warming rapidly, and is strongly affected by the loss of sea ice, increasing the open water extent and wave, storm and tidal impact on the coast (Biskaborn et al., 2019; IPCC, 2014). -
«C Budget of Ecosystems and Cities and Villages on Permafrost in Eastern Russian Arctic»
«C budget of ecosystems and cities and villages on permafrost in eastern Russian Arctic» Образец подзаголовка Tuyara Gavrilyeva, Research Professor of Institute of Engineering & Technology of North-Eastern Federal University, Yakutsk, Russia RFBR project № 15-54-71003 «Task 2b Energy consumptions in cities and villages» • Comparative study on life and energy consumption between cities and small settlements. «Task 2c Economic growth and development» • The main sectors influencing CO2 emissions: industries, transport, housing and communal services. Fig. 1. Electricity generation in the Republic of Sakha (Yakutia), mln. KW. h Fig. 2. Energy districts in the Republic of Sakha (Yakutia) Table. 1. The structure of electricity generation in the Sakha Republic (Yakutia) in 2014 The volume Energy Districts of of Type of Settlement Structure,% district RS(Y) production, fuel MW Natural gas, Central Yakutsk Yakutsk 420,4 17,1% coal Hydropower Western Mirninsky district Svetly 1228,3 50,1% and other Neryungrinsky Serebryany Southern 618 25,2% Coal district Bor Northern and The various Diesel fuel, Northern Eastern Yakutia, northern 187,2 7,6% coal Arctic zone settlements Total 2453,9 100,0% Table. 2. The structure of electricity suppliers in settlements Energy Settlement Districts of RS (Y) Electricity suppliers districts Belaya Gora Abyysky District Northern JSC "Sakhaenergo" Urasalahsky nasleg (Suturuokha) Abyysky District Northern JSC "Sakhaenergo" Chokurdakh Allaikhovsky District Northern JSC "Sakhaenergo" Russko-Ustyinsky Nasleg Allaikhovsky -
The Following Section on Early History Was Written by Professor William (Bill) Barr, Arctic Historian, the Arctic Institute of North America, University of Calgary
The following section on early history was written by Professor William (Bill) Barr, Arctic Historian, The Arctic Institute of North America, University of Calgary. Prof. Barr has published numerous books and articles on the history of exploration of the Arctic. In 2006, William Barr received a Lifetime Achievement Award for his contributions to the recorded history of the Canadian North from the Canadian Historical Association. As well, Prof. Barr, a known admirer of Russian Arctic explorers, has been credited with making known to the wider public the exploits of Polar explorations by Russia and the Soviet Union. HISTORY OF ARCTIC SHIPPING UP UNTIL 1945 Northwest Passage The history of the search for a navigable Northwest Passage by ships of European nations is an extremely long one, starting as early as 1497. Initially the aim of the British and Dutch was to find a route to the Orient to grab their share of the lucrative trade with India, Southeast Asia and China, till then monopolized by Spain and Portugal which controlled the route via the Cape of Good Hope. In 1497 John Cabot (Giovanni Caboto), sponsored by King Henry VII of England, sailed from Bristol in Mathew; he made a landfall variously identified as on the coast of Newfoundland or of Cape Breton, but came no closer to finding the Passage (Williamson 1962). Over the following decade or so, he was followed (unsuccessfully) by the Portuguese seafarers Gaspar Corte Real and his brother Miguel, and also by John Cabot’s brother Sebastian, who some theorize, penetrated Hudson Strait (Hoffman 1961). The first expeditions in search of the Northwest Passage that are definitely known to have reached the Arctic were those of the English captain, Martin Frobisher in 1576, 1577 and 1578 (Collinson 1867; Stefansson 1938).