Antioxidants

Total Page:16

File Type:pdf, Size:1020Kb

Antioxidants antioxidants Review Determination of Polyphenols Using Liquid Chromatography–Tandem Mass Spectrometry Technique (LC–MS/MS): A Review Olalla López-Fernández 1, Rubén Domínguez 1 , Mirian Pateiro 1 , Paulo E.S. Munekata 1, Gabriele Rocchetti 2 and José M. Lorenzo 1,3,* 1 Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; [email protected] (O.L.-F.); [email protected] (R.D.); [email protected] (M.P.); [email protected] (P.E.S.M.) 2 Department for sustainable food process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; [email protected] 3 Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain * Correspondence: [email protected]; Tel.: +34-988-548-277; Fax: +34-988-548-276 Received: 14 May 2020; Accepted: 31 May 2020; Published: 2 June 2020 Abstract: In recent years, the consumption of polyphenols has been increasing, largely due to its beneficial effects on health. They are present in a wide variety of foods, but their extraction and characterization are complicated since they are mostly in complex matrices. For this reason, the use of selective, sensitive, and versatile analytical techniques such as liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) is necessary. In this review, the most relevant studies of the last years regarding the analysis of polyphenols in different matrices by comprehensive LC–MS/MS are discussed. Relevant steps such as extraction, sample purification, and chromatographic analysis methods are emphasized. In particular, the following methodological aspects are discussed: (a) the proper selection of the extraction technique, (b) the extraction and elution solvents, (c) the purification step, (d) the selection of both stationary and mobile phases for the chromatographic separation of compounds, and (e) the different conditions for mass spectrometry. Overall, this review presents the data from the most recent studies, in a comprehensive way, thus providing and simplifying the information of the great variety of works that exist in the literature on this wide topic. Keywords: LC–MS/MS; electrospray ionization; analytical methods; anthocyanins; flavonols; phenolic compounds 1. Introduction Polyphenols are plant secondary metabolites that are found in a wide variety of foods [1–3]. These natural compounds constitute a group of molecules that are divided according to their chemical structure [2,4,5], although they can also be classified by their source of origin, natural distribution or biological function. In particular, according to their chemical structure, they can be classified into different groups, as function of the number of phenol rings contained and the structural elements that bind these rings [2], as can be seen in the Figure1. Antioxidants 2020, 9, 479; doi:10.3390/antiox9060479 www.mdpi.com/journal/antioxidants Antioxidants 2020, 9, x FOR PEER REVIEW 2 of 25 synthesized through the phenylpropanoid pathway [5,8]. Flavonoids are characterized by a phenyl benzo(c) pyrone-derived structure consisting of two benzene rings linked to a heterocyclic pyran or pyrone [9,10]. In general, they are found in a glycosylated form although they may also occur in their free form (aglycones) or polymerized [10,11]. The flavonoids are divided into anthocyanins, flavonols, flavanones, chalcones, isoflavones, flavones, and flavan-3-ols according to the degree of hydroxylation and the degree of polymerization [12]. Flavonoids can be found in vegetables (red onions, celery), cereal (buckwheat, beans), fruits and fruit by-products (apples, grapes, cherries, red Antioxidantswine, cherry2020 tomatoes),, 9, 479 spices and herbs (rosemary, oregano) [10]. 2 of 27 Figure 1. Polyphenols classification based on the number of phenol rings and their structural elements. TheFigure most 1. Polyphenols common classification classification ofbased polyphenols on the numb includeer of phenol five main rings classes, and their namely structural phenolic acids,elements. stilbenes, flavonoids, lignans, and others [5–7]. In nature, the most abundant group of phenolic compounds are flavonoids; this is because the phenolic compounds in plants are mainly synthesizedPhenolic through acids are the phenylpropanoidderivatives of benzoic pathway acid [ 5and,8]. Flavonoidscinnamic acid are characterizedcharacterized byby aa phenyl high benzo(c)antioxidant pyrone-derived activity, and structureconstitute consisting about one-thir of twod of benzene the phenolic rings linkedcompounds to a heterocyclic in the human pyran diet or pyrone[5,13]. They [9,10]. are In general,mainly found they are in foundstrawberries, in a glycosylated grape juice, form pomegranate although they juice, may pear, also apple, occur lemon, in their freeand formpeach, (aglycones) among others. or polymerized On the other [10 hand,,11]. Thea mino flavonoidsrity group are of divided polyphenol into anthocyanins,s is represented flavonols, by the flavanones,stilbenes. These chalcones, compounds isoflavones, are present flavones, in low and quanti flavan-3-olsties in the according human todiet the and degree are characterized of hydroxylation by anda 1,2-diphenylethylene the degree of polymerization backbone. Th [12ey]. Flavonoidscan be found can in begrapes, found berries, in vegetables peanuts, (red or onions,red wine celery), [14]. cerealThe last (buckwheat, group of polyphenols beans), fruits is andthe lignans fruit by-products that are formed (apples, from grapes, two units cherries, of a redphenylpropane wine, cherry tomatoes),derivative. spices Overall, and there herbs are (rosemary, two major oregano) classes of [10 lignans,]. namely the dibenzylbutane lignans and the furofuranPhenolic lignans. acids are Lignans derivatives can be offound benzoic in rye, acid wheat, and onions, cinnamic citrus acid fruits, characterized etc. by a high antioxidantIn recent activity, years, and numerous constitute studies about have one-third shown of th theat phenolicthe consumption compounds of polyphenols in the human in diet the [diet5,13 ]. Theyprovides are mainlynumerous found health in strawberries,benefits. This grapeis largely juice, due pomegranate to the antioxidant juice, pear,properties apple, that lemon, help andto peach,prevent among various others. diseases Onassociated the other with hand, oxidative a minority stress [1,15,16]. group ofStudies polyphenols like those is of represented Scalbert et al. by the[17] stilbenes. and Seo et These al. [3] compounds demonstrated are presentthat the inantiox low quantitiesidant activity in the of plant human polyphenols diet and are can characterized retard the bydevelopment a 1,2-diphenylethylene of diseases such backbone. as cancer They and can cardio be foundvascular in grapes,and neurodegenerative berries, peanuts, diseases or red wine[3,18]. [14 ]. The lastBesides group the of health polyphenols implications, is the there lignans is a growing that are interest formed in from the use two of units new natural of a phenylpropane additives in derivative.food industry Overall, [19–21]. there It is are well two known major that classes oxidative of lignans, reactions namely are the the main dibenzylbutane non-microbial lignans cause andof thefood furofuran quality lignans.deterioration Lignans [22]. can beHowever, found in rye,consumers wheat, onions,are concerned citrus fruits, about etc. the diet–health relationship,In recent and years, demand numerous healthy studies and have natural shown foods, that forcing the consumption manufacturers of polyphenols to limit the in theuse dietof provides numerous health benefits. This is largely due to the antioxidant properties that help to prevent various diseases associated with oxidative stress [1,15,16]. Studies like those of Scalbert et al. [17] and Seo et al. [3] demonstrated that the antioxidant activity of plant polyphenols can retard the development of diseases such as cancer and cardiovascular and neurodegenerative diseases [3,18]. Besides the health implications, there is a growing interest in the use of new natural additives in food industry [19–21]. It is well known that oxidative reactions are the main non-microbial cause of food quality deterioration [22]. However, consumers are concerned about the diet–health relationship, and demand healthy and natural foods, forcing manufacturers to limit the use of synthetic antioxidants Antioxidants 2020, 9, 479 3 of 27 in food formulation. Thus, the use of polyphenol-rich extracts as synthetic additives replacers was an important strategy for food manufacturers [23–25]. However, the extraction and characterization of phenolic compounds in plant matrices are complex, since the phenolic compounds can be found in simple or highly polymerized structures, which can also form complexes with various other plant-matrix components. In this regard, many polyphenols are often associated with sugar moieties [2]. Thus, the use of different methods of extraction combined with proper solvents characterized by different polarities are strongly required to recover them [26]. According to Naczk and Shahidi [27], the extraction of phenolic compounds in plants is influenced by several factors. For example, some phenolic compounds are very photosensitive, as a result, rapid extraction methods are necessary to avoid the degradation of them [28]. Liquid–liquid extraction (LLE) and solid–liquid extraction (SLE) followed by a stage of concentration
Recommended publications
  • Cornus Canadensis Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, Francine Nagau-Lavoie, Vakhtang Mshvildadze, Jean Legault
    Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, Francine Nagau-Lavoie, Vakhtang Mshvildadze, Jean Legault To cite this version: Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, et al.. Chem- ical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis. BMC Complementary and Alternative Medicine, BioMed Central, 2017, 17 (1), pp.123. 10.1186/s12906-017-1618-2. pasteur-01534565 HAL Id: pasteur-01534565 https://hal-riip.archives-ouvertes.fr/pasteur-01534565 Submitted on 7 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License Lavoie et al. BMC Complementary and Alternative Medicine (2017) 17:123 DOI 10.1186/s12906-017-1618-2 RESEARCH ARTICLE Open Access Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis Serge Lavoie1, Isabelle Côté1, André Pichette1, Charles Gauthier1,2, Michaël Ouellet1, Francine Nagau-Lavoie1, Vakhtang Mshvildadze1 and Jean Legault1* Abstract Background: Many plants of boreal forest of Quebec have been used by Native Americans to treat a variety of microbial infections.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Lyme Disease (Chronic)
    Dr.
    [Show full text]
  • Thesis of Potentially Sweet Dihydrochalcone Glycosides
    University of Bath PHD The synthesis of potentially sweet dihydrochalcone glycosides. Noble, Christopher Michael Award date: 1974 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 THE SYNTHESIS OF POTBTTIALLY SWEET DIHYDROCHALCOITB GLYCOSIDES submitted by CHRISTOPHER MICHAEL NOBLE for the degree of Doctor of Philosophy of the University of Bath. 1974 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author.This copy of the the­ sis has been supplied on condition that anyone who con­ sults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be pub­ lished without the prior written consent of the author.
    [Show full text]
  • Microclimatic Influences on Grape Quality
    AusdemInstitutfürWeinanalytikundGetränkeforschung derHochschuleGeisenheimUniversity Prof.Dr.HelmutDietrich unddem InstitutfürPŇanzenbauundPŇanzenzüchtungII derJustusͲLiebigͲUniversitätGießen ProfessurfürBiometrieundPopulationsgenetik Prof.Dr.MatthiasFrisch Microclimaticinfluencesongrapequality Dissertation zurErlangungdesGradeseinesDoktors derAgrarwissenschaften imFachbereich Agrarwissenschaften,OekotrophologieundUmweltmanagement JustusͲLiebigͲUniversitätGießen Vorgelegtvon MatthiasFriedelausAlzenau Gießen,31.03.2017 Selbständigkeitserklärung Icherkläre:IchhabedievorgelegteDissertationselbständigundohneunerlaubte fremde Hilfe und nur mit den Hilfen angefertigt, die ich in der Dissertation angegebenhabe.AlleTextstellen,diewörtlichodersinngemäßausveröffentlichten Schriften entnommen sind, und alle Angaben, die auf mündlichen Auskünften beruhen,sindalssolchekenntlichgemacht.Beidenvonmirdurchgeführtenundin der Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der „Satzung der JustusͲLiebigͲUniversität Gießen zur Sicherung guter wissenschaftlicher Praxis“ niedergelegt sind, eingehalten. Declarationofauthorship Ideclare: thisdissertationsubmittedisaworkof myown,writtenwithoutany illegitimate help by any third party and only with materials indicated in the dissertation. I have indicated in the text where I have used text from already publishedsources,eitherwordforwordorinsubstance,andwhereIhavemade statements based on oral information given to me. At any time during the investigationscarriedoutbymeanddescribedinthedissertation,Ifollowedthe
    [Show full text]
  • Treatment Protocol Copyright © 2018 Kostoff Et Al
    Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al PREVENTION AND REVERSAL OF ALZHEIMER'S DISEASE: TREATMENT PROTOCOL by Ronald N. Kostoffa, Alan L. Porterb, Henry. A. Buchtelc (a) Research Affiliate, School of Public Policy, Georgia Institute of Technology, USA (b) Professor Emeritus, School of Public Policy, Georgia Institute of Technology, USA (c) Associate Professor, Department of Psychiatry, University of Michigan, USA KEYWORDS Alzheimer's Disease; Dementia; Text Mining; Literature-Based Discovery; Information Technology; Treatments Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al CITATION TO MONOGRAPH Kostoff RN, Porter AL, Buchtel HA. Prevention and reversal of Alzheimer's disease: treatment protocol. Georgia Institute of Technology. 2018. PDF. https://smartech.gatech.edu/handle/1853/59311 COPYRIGHT AND CREATIVE COMMONS LICENSE COPYRIGHT Copyright © 2018 by Ronald N. Kostoff, Alan L. Porter, Henry A. Buchtel Printed in the United States of America; First Printing, 2018 CREATIVE COMMONS LICENSE This work can be copied and redistributed in any medium or format provided that credit is given to the original author. For more details on the CC BY license, see: http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License<http://creativecommons.org/licenses/by/4.0/>. DISCLAIMERS The views in this monograph are solely those of the authors, and do not represent the views of the Georgia Institute of Technology or the University of Michigan. This monograph is not intended as a substitute for the medical advice of physicians. The reader should regularly consult a physician in matters relating to his/her health and particularly with respect to any symptoms that may require diagnosis or medical attention.
    [Show full text]
  • Frontespizio Tesi Per Commissari
    To my sister II II Table of Contents TABLE OF CONTENTS ABSTRACT I INTRODUCTION Introduction 3 Aim 4 Selected matrices 5 General conclusions 6 CHAPTER I AGRICULTURAL RESIDUES AS A SOURCE OF BIOACTIVE NATURAL PRODUCTS 1.1. Introduction 9 1.2. Agricultural residues 10 1.3. Valorisation processes 10 1.4. Recovery of bioactive natural products 12 1.5. Bioactive compounds from vegetable and fruit by-products 13 1.6. Remarks on the use of by-products and future prospects 16 1.7. Food waste valorisation: winery waste and by-products 18 CHAPTER II TECHNIQUES FOR ANALYSIS OF BIOACTIVE COMPOUNDS 2.1. Extraction 23 2.1.1. PLE 25 2.1.2. SFE 27 2.1.3. UAE 28 2.2. Analytical techniques 28 EXPERIMENTAL PART Table of Contents CHAPTER III SECTION A CHEMICAL PROFILE AND CELLULAR ANTIOXIDANT ACTIVITY OF ARTICHOKE BY-PRODUCTS 3A 1. Introduction 35 3A 2. Results and discussion 36 3A 2.1. Phenolic profile of artichoke by-products by UHPLC-DAD- 36 HRMS n 3A 2.2. Quantitative profile of artichoke by-products 41 3A 2.3. Inulin content of artichoke by-products 46 3A 2.4. Cellular antioxidant activity (CAA) of artichoke by- 46 products 3A 3. Conclusions 50 3A 4. Materials and methods 50 3A 4.1. Materials 50 3A 4.2. Artichoke by-product samples 51 3A 4.3. Phenolic compounds extraction 52 3A 4.4. UHPLC-DAD-HRMS n analysis 52 3A 4.5. Quantitative analysis by UHPLC-UV 53 3A 4.6. Determination of inulin 55 3A 4.7. Cell cultures, treatments and viability assay 56 3A 4.8.
    [Show full text]
  • Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites
    nutrients Review Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites Matej Sova 1,* and Luciano Saso 2 1 Faculty of Pharmacy, University of Ljubljana, Aškerˇceva7, 1000 Ljubljana, Slovenia 2 Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; [email protected] * Correspondence: matej.sova@ffa.uni-lj.si; Tel.: +386-1-476-9556 Received: 24 June 2020; Accepted: 22 July 2020; Published: 23 July 2020 Abstract: Hydroxycinnamic acids (HCAs) are important natural phenolic compounds present in high concentrations in fruits, vegetables, cereals, coffee, tea and wine. Many health beneficial effects have been acknowledged in food products rich in HCAs; however, food processing, dietary intake, bioaccessibility and pharmacokinetics have a high impact on HCAs to reach the target tissue in order to exert their biological activities. In particular, metabolism is of high importance since HCAs’ metabolites could either lose the activity or be even more potent compared to the parent compounds. In this review, natural sources and pharmacokinetic properties of HCAs and their esters are presented and discussed. The main focus is on their metabolism along with biological activities and health benefits. Special emphasis is given on specific effects of HCAs’ metabolites in comparison with their parent compounds. Keywords: diet; natural compounds; phenolic acids; hydroxycinnamic acids; metabolites; pharmacokinetic properties; biological activities; health effects 1. Introduction Our diet rich in plant food contains several health-beneficial ingredients. Among such ingredients, polyphenols represent one of the most important natural compounds. Phenolic compounds are members of probably the largest group of plant secondary metabolites and have the main function to protect the plants against ultraviolet radiation or invasion by pathogens [1,2].
    [Show full text]
  • Phytochemical Analysis and Antimicrobial Activity of Myrcia Tomentosa (Aubl.) DC
    molecules Article Phytochemical Analysis and Antimicrobial Activity of Myrcia tomentosa (Aubl.) DC. Leaves Fabyola Amaral da Silva Sa 1,3, Joelma Abadia Marciano de Paula 2, Pierre Alexandre dos Santos 3, Leandra de Almeida Ribeiro Oliveira 3, Gerlon de Almeida Ribeiro Oliveira 4, Luciano Morais Liao 4 , Jose Realino de Paula 3,* and Maria do Rosario Rodrigues Silva 1,* 1 Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, Brazil; [email protected] 2 Unit of Exact and Technologic Sciences, Goias State University, Anápolis 75132-400, Brazil; [email protected] 3 Faculty of Pharmacy, Federal University of Goias, Goiânia 74605-170, Brazil; [email protected] (P.A.d.S.); [email protected] (L.d.A.R.O.) 4 Chemistry Institute, Federal University of Goiás, Goiânia 74690-900, Brazil; [email protected] (G.d.A.R.O.); [email protected] (L.M.L.) * Correspondence: [email protected] (J.R.d.P.); [email protected] (M.d.R.R.S.); Tel.: +55-62-3209-6127 (M.d.R.R.S.); Fax: +55-62-3209-6363 (M.d.R.R.S.) Academic Editor: Isabel C. F. R. Ferreira Received: 23 May 2017; Accepted: 29 June 2017; Published: 4 July 2017 Abstract: This work describes the isolation and structural elucidation of compounds from the leaves of Myrcia tomentosa (Aubl.) DC. (goiaba-brava) and evaluates the antimicrobial activity of the crude extract, fractions and isolated compounds against bacteria and fungi. Column chromatography was used to fractionate and purify the extract of the M. tomentosa leaves and the chemical structures of the compounds were determined using spectroscopic techniques.
    [Show full text]
  • Absorption of Dietary Licorice Isoflavan Glabridin to Blood Circulation in Rats
    J Nutr Sci Vitaminol, 53, 358–365, 2007 Absorption of Dietary Licorice Isoflavan Glabridin to Blood Circulation in Rats Chinatsu ITO1, Naomi OI1, Takashi HASHIMOTO1, Hideo NAKABAYASHI1, Fumiki AOKI2, Yuji TOMINAGA3, Shinichi YOKOTA3, Kazunori HOSOE4 and Kazuki KANAZAWA1,* 1Laboratory of Food and Nutritional Chemistry, Graduate School of Agriculture, Kobe University, Rokkodai, Nada-ku, Kobe 657–8501, Japan 2Functional Food Ingredients Division, Kaneka Corporation, 3–2–4 Nakanoshima, Kita-ku, Osaka 530–8288, Japan 3Functional Food Ingredients Division, and 4Life Science Research Laboratories, Life Science RD Center Kaneka Corporation, 18 Miyamae-machi, Takasago, Hyogo 676–8688, Japan (Received February 19, 2007) Summary Bioavailability of glabridin was elucidated to show that this compound is one of the active components in the traditional medicine licorice. Using a model of intestinal absorption, Caco-2 cell monolayer, incorporation of glabridin was examined. Glabridin was easily incorporated into the cells and released to the basolateral side at a permeability coef- ficient of 1.70Ϯ0.16 cm/sϫ105. The released glabridin was the aglycone form and not a conjugated form. Then, 10 mg (30 ␮mol)/kg body weight of standard chemical glabridin and licorice flavonoid oil (LFO) containing 10 mg/kg body weight of glabridin were adminis- tered orally to rats, and the blood concentrations of glabridin was determined. Glabridin showed a maximum concentration 1 h after the dose, of 87 nmol/L for standard glabridin and 145 nmol/L for LFO glabridin, and decreased gradually over 24 h after the dose. The level of incorporation into the liver was about 0.43% of the dosed amount 2 h after the dose.
    [Show full text]
  • Fighting Bisphenol A-Induced Male Infertility: the Power of Antioxidants
    antioxidants Review Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants Joana Santiago 1 , Joana V. Silva 1,2,3 , Manuel A. S. Santos 1 and Margarida Fardilha 1,* 1 Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (J.S.); [email protected] (J.V.S.); [email protected] (M.A.S.S.) 2 Institute for Innovation and Health Research (I3S), University of Porto, 4200-135 Porto, Portugal 3 Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal * Correspondence: [email protected]; Tel.: +351-234-247-240 Abstract: Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and poly- carbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestra- diol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants.
    [Show full text]
  • In Chemistry, Glycosides Are Certain Molecules in Which a Sugar Part Is
    GLYCOSIDES Glycosides may be defined as the organic compounds from plants or animal sources, which on enzymatic or acid hydrolysis give one or more sugar moieties along with non- sugar moiety. Glycosides play numerous important roles in living organisms. Many plants store important chemicals in the form of inactive glycosides; if these chemicals are needed, the glycosides are brought in contact with water and an enzyme, and the sugar part is broken off, making the chemical available for use. Many such plant glycosides are used as medications. In animals (including humans), poisons are often bound to sugar molecules in order to remove them from the body. Formally, a glycoside is any molecule in which a sugar group is bonded through its carbon atom to another group via an O-glycosidic bond or an S-glycosidic bond; glycosides involving the latter are also called thioglycosides. The sugar group is then known as the glycone and the non-sugar group as the aglycone or genin part of the glycoside. The glycone can consist of a single sugar group (monosaccharide) or several sugar groups (oligosaccharide). Classification Classification based on linkages Based on the linkage of sugar moiety to aglycone part 1. O-Glycoside:-Here the sugar is combined with alcoholic or phenolic hydroxyl function of aglycone.eg:-digitalis. 2. N-glycosides:-Here nitrogen of amino group is condensed with a sugar ,eg- Nucleoside 3. S-glycoside:-Here sugar is combined with sulphur of aglycone,eg- isothiocyanate glycosides. 4. C-glycosides:-By condensation of a sugar with a cabon atom, eg-Cascaroside, aloin. Glycosides can be classified by the glycone, by the type of glycosidic bond, and by the aglycone.
    [Show full text]
  • Nine Traditional Chinese Herbal Formulas for the Treatment of Depression: an Ethnopharmacology, Phytochemistry, and Pharmacology Review
    Journal name: Neuropsychiatric Disease and Treatment Article Designation: Review Year: 2016 Volume: 12 Neuropsychiatric Disease and Treatment Dovepress Running head verso: Feng et al Running head recto: Chinese herbal formulas as antidepressants open access to scientific and medical research DOI: http://dx.doi.org/10.2147/NDT.S114560 Open Access Full Text Article REVIEW Nine traditional Chinese herbal formulas for the treatment of depression: an ethnopharmacology, phytochemistry, and pharmacology review Dan-dan Feng Abstract: Depression is a major mental disorder, and is currently recognized as the Tao Tang second-leading cause of disability worldwide. However, the therapeutic effect of antidepressants Xiang-ping Lin remains unsatisfactory. For centuries, Chinese herbal formulas (CHFs) have been widely used in Zhao-yu Yang the treatment of depression, achieving better therapeutic effects than placebo and having fewer Shu Yang side effects than conventional antidepressants. Here, we review the ethnopharmacology, phy- Zi-an Xia tochemistry, and pharmacology studies of nine common CHFs: “banxia houpo” decoction, “chaihu shugansan”, “ganmaidazao” decoction, “kaixinsan”, “shuganjieyu” capsules, “sinisan”, Yun Wang “wuling” capsules, “xiaoyaosan”, and “yueju”. Eight clinical trials and seven meta-analyses have Piao Zheng supported the theory that CHFs are effective treatments for depression, decreasing Hamilton Yang Wang Depression Scale scores and showing few adverse effects. Evidence from 75 preclinical studies Chun-hu Zhang has also elucidated the multitarget and multipathway mechanisms underlying the antidepres- Laboratory of Ethnopharmacology, sant effect of the nine CHFs. Decoctions, capsules, and pills all showed antidepressant effects, Institute of Integrated Traditional ranked in descending order of efficacy. According to traditional Chinese medicine theory, these Chinese and Western Medicine, Xiangya Hospital, Central South CHFs have flexible compatibility and mainly act by soothing the liver and relieving depression.
    [Show full text]