Microclimatic Influences on Grape Quality

Total Page:16

File Type:pdf, Size:1020Kb

Microclimatic Influences on Grape Quality AusdemInstitutfürWeinanalytikundGetränkeforschung derHochschuleGeisenheimUniversity Prof.Dr.HelmutDietrich unddem InstitutfürPŇanzenbauundPŇanzenzüchtungII derJustusͲLiebigͲUniversitätGießen ProfessurfürBiometrieundPopulationsgenetik Prof.Dr.MatthiasFrisch Microclimaticinfluencesongrapequality Dissertation zurErlangungdesGradeseinesDoktors derAgrarwissenschaften imFachbereich Agrarwissenschaften,OekotrophologieundUmweltmanagement JustusͲLiebigͲUniversitätGießen Vorgelegtvon MatthiasFriedelausAlzenau Gießen,31.03.2017 Selbständigkeitserklärung Icherkläre:IchhabedievorgelegteDissertationselbständigundohneunerlaubte fremde Hilfe und nur mit den Hilfen angefertigt, die ich in der Dissertation angegebenhabe.AlleTextstellen,diewörtlichodersinngemäßausveröffentlichten Schriften entnommen sind, und alle Angaben, die auf mündlichen Auskünften beruhen,sindalssolchekenntlichgemacht.Beidenvonmirdurchgeführtenundin der Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der „Satzung der JustusͲLiebigͲUniversität Gießen zur Sicherung guter wissenschaftlicher Praxis“ niedergelegt sind, eingehalten. Declarationofauthorship Ideclare: thisdissertationsubmittedisaworkof myown,writtenwithoutany illegitimate help by any third party and only with materials indicated in the dissertation. I have indicated in the text where I have used text from already publishedsources,eitherwordforwordorinsubstance,andwhereIhavemade statements based on oral information given to me. At any time during the investigationscarriedoutbymeanddescribedinthedissertation,Ifollowedthe principlesofgoodscientificpracticeasdefinedinthe“StatutesoftheJustusLiebig UniversityGiessenfortheSafeguardingofGoodScientificPractice”. Ort,Datum MatthiasFriedel &RQWHQWV Chapter1 GeneralIntroduction.........................................................................1 Chapter2 Comparisonofdifferentmeasurementtechniquesandvariable selectionmethodsforFTͲMIRinwineanalysis1.............................11 Chapter3 Impactoflightexposureonfruitcompositionofwhite'Riesling' grapeberries(VitisviniferaL.)2.......................................................20 Chapter4 Lightpromotesexpressionofmonoterpeneandflavonolmetabolic genesandenhancesflavourofwinegrapeberries(VitisviniferaL. cv.Riesling)3....................................................................................32 Chapter5 Influenceofberrydiameterandcolouronsomedeterminantsof winecompositionofVitisviniferaL.cv.Riesling4...........................45 Chapter6 GeneralDiscussion..........................................................................57 Chapter7 Summary.........................................................................................71 Kapitel8 Zusammenfassung..........................................................................74 Appendix............................................................................................85 1FriedelM.,PatzC.D.&DietrichH.2013.Comparisonofdifferentmeasurementtechniques andvariableselectionmethodsforFTͲMIRinwineanalysis.FoodChemistry141(4),4000Ͳ 4007 2FriedelM.,StollM.,PatzC.D.,WillF.&DietrichH.2015.Impactoflightexposureonfruit compositionofwhite‘Riesling’grapeberries(VitisviniferaL.).Vitis54(3),107Ͳ116 3FriedelM.,FrotscherJ.,NitschM.,HofmannM.,BogsJ.,StollM.&DietrichH.2016.Light promotesexpressionofmonoterpeneandflavonolmetabolicgenesandenhancesflavour ofwinegrapeberries(VitisviniferaL.cv.Riesling).AustralianJournalofGrapeandWine Research22(3),409Ͳ422 4FriedelM.,SorrentinoV.,Blank,M.&SchüttlerA.2016.Influenceofberrydiameterand colouronsomedeterminantsofwinecompositionofVitisviniferaL.cv.Riesling.Australian JournalofGrapeandWineResearch22(2),215Ͳ225 i &KDSWHU *HQHUDO,QWURGXFWLRQ 7KH*UDSHYLQH&DQRS\0LFURFOLPDWH 7KHIDFWWKDWPLFURFOLPDWLFFRQGLWLRQVSOD\DFUXFLDOUROHLQWKHSURGXFWLRQ RITXDOLW\DJULFXOWXUDOSURGXFHLQFOXGLQJZLQHJUDSHVKDVEHHQNQRZQWR DJULFXOWXUDO H[SHUWV VLQFH WKH FODVVLFDO DJH &ROXPHOOD :KLOHWKH GHILQLWLRQVRIWKHJHRJUDSKLFH[WHQWRIPLFURFOLPDWLFSKHQRPHQDYDU\WRD FHUWDLQGHJUHHWRWKLVGD\ )RNHQ WKHUHLVJHQHUDOFRQVHQWWKDWDOO FOLPDWLF YDULDWLRQV ZLWKLQ VWDQGV RI FURSV EHORQJ WR WKH PLFURVFDOH RI FOLPDWLFSKHQRPHQD0LFURFOLPDWLFSKHQRPHQDXVXDOO\EXLOGXSLQJURXQG QHDUDLUOD\HUVDQGDUHPDLQO\LQIOXHQFHGE\WKHSUHVHQWVXUIDFHVLQFOXGLQJ UHOLHIDQGYHJHWDWLRQFRYHUDQGWKHLUSK\VLFDOSURSHUWLHV 2UODQVNL 7KXVJUHDWGLIIHUHQFHVRIWHPSHUDWXUHDQGZLQGVSHHGFDQRFFXULQSODQW SRSXODWLRQV DV FRPSDUHG WR DPELHQW WHPSHUDWXUH ,Q YLWLFXOWXUHWKHWHUP PLFURFOLPDWH KDV PRVWO\ EHHQ XVHG WR GHVFULEH WKH PLFURFOLPDWH ZLWKLQ JUDSHYLQHFDQRSLHV 6PDUWHWDOD 7KLVGHILQLWLRQWDNHVLQDFFRXQW WHPSHUDWXUHUHODWLYHKXPLGLW\ZLQGVSHHGDQGDVRQHRIWKHPRVWLPSRUWDQW SDUDPHWHUVWKHSHQHWUDWLRQRIUDGLDWLRQLQWRWKHFDQRS\WKHODWWHURIZKLFK LVQRWLQFOXGHGLQPRVWGHILQLWLRQVRIFOLPDWLFSKHQRPHQD 7KHFDQRS\PLFURFOLPDWHLVLQIOXHQFHGE\DYDULHW\RIIDFWRUV7KHVHLQFOXGH WUHOOLVV\VWHPURZVSDFLQJFDQRS\KHLJKWFDQRS\ZLGWKURZRULHQWDWLRQ VKRRWGHQVLW\YLQHYLJRUURRWVWRFNDQGFXOWLYDUFDQRS\GLVWDQFHWRJURXQG VRLO W\SH DQG XQGHUJURZWK +RSSPDQQ 6PDUW 6PDUW HW DO D 0RVWRIWKHVHIDFWRUVOLNHYLQH\DUGDUFKLWHFWXUHDQGSODQWPDWHULDO FDQ RQO\ EH LQIOXHQFHG E\ ORQJWHUP FXOWXUDO GHFLVLRQV :LWK LQFUHDVLQJ DZDUHQHVVRIWKHPLFURFOLPDWLFHIIHFWVRQJUDSHTXDOLW\DQGSODQWKHDOWK VWUDWHJLHVWRPDQLSXODWHWKHPLFURFOLPDWHRIJUDSHYLQHFDQRSLHVKDYHEHHQ GHYHORSHGE\JURZHUVDQGUHVHDUFKHUV7KHVHFXOWXUDOSUDFWLFHVKDYHJDLQHG ZRUOGZLGH DWWHQWLRQ DQG KDYH WR EH FRQVLGHUHG DV PDLQ FRQWULEXWRUV WR FDQRS\ PLFURFOLPDWH 0LFURFOLPDWH PDQLSXODWLRQ SUDFWLFHV LQFOXGH WKH UHPRYDORIOHDYHVLQRUDERYHWKHEXQFK]RQHVKRRWUHPRYDODQGWULPPLQJ DQGKHGJLQJRIWKHFDQRS\ 0OOHUHWDO6PDUWDQG5RELQVRQ $VDOPRVWDOOTXDOLW\WUDLWVRIZLQHJUDSHVKDYHEHHQUHSRUWHGWRUHVSRQGWR Ͳ1Ͳ RQH RU PRUH FOLPDWLF IDFWRUV H[SHULPHQWV DERXW WKHLU LPSDFW KDYH EHHQ SXEOLVKHGDVHDUO\DV .HUQDQGY%DER 6LJQLILFDQFHDQG(YROXWLRQRI3HUFHSWLRQ ,QWHQVH UHVHDUFK RQ JUDSHYLQH FDQRS\ PLFURFOLPDWH KRZHYHU ZDVRQO\ FRQGXFWHGLQWKHWKFHQWXU\ZKHQWKHEUHHGLQJRIYLJRURXVURRWVWRFNVWKH ULVHRIPLQHUDOIHUWLOL]DWLRQDQGWKHHVWDEOLVKPHQWRIYLQH\DUGVRQIHUWLOHVRLOV OHGWRLQFUHDVLQJO\GHQVHFDQRSLHV'XHWRWKHLUXQIDYRUDEOHPLFURFOLPDWLF FRQGLWLRQV GHQVH FDQRSLHV W\SLFDOO\ OHG WR SUREOHPV OLNH DQ LQFUHDVHG GLVHDVHSUHVVXUHDORZHUJUDSHDQGZLQHTXDOLW\DQGDQH[FHVVLYHDPRXQW RI VKDGHG OHDYHV $ZDUHQHVV RI WKLV SUREOHP URVH LQ WKH V ZKHQ SURIHVVRU1HOVRQ6KDXOLVRI&RUQHOO8QLYHUVLW\EHJDQWRSURPRWHDEHWWHU OLJKWLQWHUFHSWLRQRIWKHJUDSHEXQFKHVDVDWRROWRRYHUFRPHWKHVHSUREOHPV +HDQGKLVGLVFLSOHVDPRQJWKHP$ODLQ&DUERQQHDXIURP)UDQFH5LFKDUG 6PDUW IURP $XVWUDOLD DQG *LRYDQQL &DUJQHOOR IURP ,WDO\ GHYHORSHG D YDULHW\RIYLQHWUDLQLQJV\VWHPVZLWKWKHDLPRILPSURYLQJWKHSHQHWUDWLRQ RIVXQOLJKWLQWRWKHFDQRS\DQGWKHVXQH[SRVXUHRIWKHJUDSHEXQFKHV7KHVH WUDLQLQJV\VWHPVLQFOXGH6KDXOLV¶*HQHYDGRXEOHFXUWDLQWKH6PDUW'\VRQ V\VWHPDQG&DUERQQHDX¶V/\UH &DUERQQHDX $OWKRXJKWKLVILUVWJHQHUDWLRQRIPLFURFOLPDWHUHVHDUFKHUVNHSWSURPRWLQJ QRYHOWUHOOLVV\VWHPVWRRSWLPL]HFDQRS\PLFURFOLPDWHDQGIUXLWTXDOLW\QRQH RI WKHVH QRYHO V\VWHPV JDLQHG VXIILFLHQW WUDFWLRQ LQ WKH ZLQH LQGXVWU\ FRPSHWHZLWKWKHSRSXODUYHUWLFDOVKRRWSRVLWLRQLQJ 963 V\VWHPZKLFK LQFUHDVLQJO\UHSODFHGWUDGLWLRQDOYLQHWUDLQLQJV\VWHPV7KHODERULQWHQVLYH KDUGO\ PHFKDQLVDEOH PDQDJHPHQW RI PDQ\ RI WKH QRYHO WUHOOLV V\VWHPV OLPLWHG WKHLU DSSOLFDWLRQ WR XOWUDSUHPLXP ZLQH SURGXFWLRQ :KHQ WKH HPHUJHQFH RI D QRYHO SK\OOR[HUD ELRW\SH OHG WR WKH UHSODQWLQJ RI ODUJH YLQH\DUG VXUIDFHV LQ &DOLIRUQLD LQ WKH PLG V PDQ\ RI WKH YLQH\DUGV WUDLQHGWRDWUDGLWLRQDO³&DOLIRUQLDVSUDZO´WUHOOLVV\VWHPZHUHUHSODFHGE\ 963 WUDLQHG YLQH\DUGV 'RNRR]OLDQ 7KLV GHYHORSPHQW ZDV DFFHOHUDWHGE\WKHSURGXFHUVRIDJULFXOWXUDOPDFKLQHU\ZKRRULHQWHGWKHLU GHYHORSPHQWVWRZDUGV963W\SHV\VWHPV$OWKRXJKWKHVHQRYHOWUHOOLVLQJ V\VWHPV GLG QRW SUHYDLO LQ WKH ZLQH LQGXVWU\ WKH ZRUN RI SLRQHHUV OLNH .OLHZHU6PDUWDQG%XWWURVHFDUULHGRXWPRVWO\LQDQJORSKRQHFRXQWULHV DUHVWLOOFRQVLGHUHGWKHIXQGDPHQWDOVRIPRGHUQFDQRS\PDQDJHPHQW7KHLU ZRUN VSDQQHG WKH IDFWRUV LQIOXHQFLQJ FDQRS\ PLFURFOLPDWH UHYLHZHG E\ 6PDUW HW DO DQG EHUU\ WHPSHUDWXUH 6PDUW DQG 6LQFODLU REVHUYDWLRQVRIOLJKWDQGWHPSHUDWXUHHIIHFWVRQJUDSHTXDOLW\FRPSRXQGV Ͳ2Ͳ VXFKDVDQWKRF\DQLQV %XWWURVHHWDO.OLHZHUD DPLQRDFLGV .OLHZHUDQG2XJK DQGRUJDQLFDFLGV /DNVRDQG.OLHZHU DQG WKHILUVWDSSOLFDWLRQVRIWDUJHWHGFDQRS\PDQLSXODWLRQ .OLHZHUE0D\ HWDO .QRZOHGJHDERXWWKHEHQHILWVRIFDQRS\PDQDJHPHQWFRQWLQXHGWRLQFUHDVH GXULQJWKHVDQGVDQGLQWKHILUVWFRQIHUHQFHIRFXVLQJSXUHO\ RQ WKH WDUJHWHG LPSURYHPHQW RI WKH FDQRS\ PLFURFOLPDWH E\ FDQRS\ PDQLSXODWLRQDQGYLJRUPDQDJHPHQWZDVKHOGDW8&'DYLV&DOLIRUQLD,Q SUDFWLFH PRVW FDQRS\ PDQDJHPHQW VWUDWHJLHV UHPDLQHG UHVWULFWHGWRWKH SURGXFWLRQ RI KLJK TXDOLW\ UHG ZLQHJUDSHV DV WKH KLJK ODERU LQSXW IRU DFFXUDWH FDQRS\ PDQDJHPHQW ZKLFK ZDV WKHQ JHQHUDOO\ GRQH E\ KDQG *XEOHUHWDO SUHYHQWHGWKHIXUWKHUDGYDQFHLQWRWKHSURGXFWLRQRI ORZHU TXDOLW\ UHG RU ZKLWH JUDSHV ,Q TXDOLW\ UHG JUDSH DQG WDEOH JUDSH SURGXFWLRQ ZKHUH IXQJDO GLVHDVHV OHDG WR VHYHUH HFRQRPLF ORVVHV WKH SK\WRVDQLWDU\EHQHILWVRIFDQRS\PDQDJHPHQWDQGLWVDFWLRQDJDLQVWBotrytis cinereaLQIHFWLRQZHUHDPDLQGULYHURILWVDSSOLFDWLRQ *XEOHUHWDO .REOHW 7KHODERULQSXWUHTXLUHPHQWIXUWKHUFRQILQHGOHDIUHPRYDOWR SHULRGV ZLWK OLWWOH RWKHU YLQH\DUG ZRUN ZKLFK ZDV XVXDOO\ GXULQJ WKH ULSHQLQJSKDVH7KLVDQGWKHFRVWDQGFRPSOH[LW\RIJUDSHDQGZLQHDURPD DQDO\VLVPLJKWH[SODLQWKHDPRXQWRIZRUNGHGLFDWHGWRWKHUHVHDUFKRI PLFURFOLPDWLFHIIHFWVDURXQGYHUDLVRQRQEDVLFUHGJUDSHTXDOLW\ZKLOHWKHUH ZHUHOLWWOHVWXGLHVLQWKLVUHJDUGFRQGXFWHGRQZKLWHJUDSHV7KHVFRSHRI FDQRS\ PDQLSXODWLRQ VWDUWHG WR FKDQJH ZKHQ WKH VFLHQWLILF DQG SUDFWLFDO LQWHUHVW LQ OHDI UHPRYDO HQFRXUDJHG WHFKQLFDO SURJUHVV WRZDUGV WKH GHYHORSPHQWRIPHFKDQL]HGOHDIUHPRYDO 0HFKDQL]HGOHDIUHPRYDO $WWHPSWVWRPHFKDQL]HOHDIUHPRYDOZHUHPDGHIURPWKHVRQZDUGV +RZHYHUVROXWLRQVOLNHFKHPLFDORUWKHUPDOOHDIUHPRYDOZHUHQRWDFFHSWHG
Recommended publications
  • Antioxidant Capacities and Phenolic Levels of Different Varieties of Serbian White Wines
    Molecules 2010, 15, 2016-2027; doi:10.3390/molecules15032016 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Antioxidant Capacities and Phenolic Levels of Different Varieties of Serbian White Wines Milan N. Mitić, Mirjana V. Obradović, Zora B. Grahovac and Aleksandra N. Pavlović * Faculty of Sciences and Mathematics, Department of Chemistry, University of Niš, Višegradska 33, P.O.Box 224, 18000 Niš, Serbia; E-Mails: [email protected](M.N.M.); [email protected] (M.V.O.); [email protected] (Z.B.G.) ∗ Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 22 January 2010; in revised form: 23 February 2010 / Accepted: 9 March 2010 / Published: 22 March 2010 Abstract: The biologically active compounds in wine, especially phenolics, are responsible for reduced risk of developing chronic diseases (cardiovascular disrease, cancer, diabetes, etc.), due to their antioxidant activities. We determined the contents of total phenolics (TP) and total flavonoids (TF) in selected Serbian white wines by colorimetric methods. Total antioxidant activity (TAA) of the white wines was analyzed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay. Međaš beli had the highest content of TP, TF and TAA. The radical scavenging capacity (RSC) and total antioxidant activity (TAA) of white wines were 15.30% and 1.055 mM Trolox equivalent, respectively. Total phenolic (TP) and total flavonoid (TF) contents in white wines ranged from 238.3 to 420.6 mg gallic acid equivalent per L of wines and 42.64 to 81.32 mg catechin equivalent per L of wines, respectively.
    [Show full text]
  • Frontespizio Tesi Per Commissari
    To my sister II II Table of Contents TABLE OF CONTENTS ABSTRACT I INTRODUCTION Introduction 3 Aim 4 Selected matrices 5 General conclusions 6 CHAPTER I AGRICULTURAL RESIDUES AS A SOURCE OF BIOACTIVE NATURAL PRODUCTS 1.1. Introduction 9 1.2. Agricultural residues 10 1.3. Valorisation processes 10 1.4. Recovery of bioactive natural products 12 1.5. Bioactive compounds from vegetable and fruit by-products 13 1.6. Remarks on the use of by-products and future prospects 16 1.7. Food waste valorisation: winery waste and by-products 18 CHAPTER II TECHNIQUES FOR ANALYSIS OF BIOACTIVE COMPOUNDS 2.1. Extraction 23 2.1.1. PLE 25 2.1.2. SFE 27 2.1.3. UAE 28 2.2. Analytical techniques 28 EXPERIMENTAL PART Table of Contents CHAPTER III SECTION A CHEMICAL PROFILE AND CELLULAR ANTIOXIDANT ACTIVITY OF ARTICHOKE BY-PRODUCTS 3A 1. Introduction 35 3A 2. Results and discussion 36 3A 2.1. Phenolic profile of artichoke by-products by UHPLC-DAD- 36 HRMS n 3A 2.2. Quantitative profile of artichoke by-products 41 3A 2.3. Inulin content of artichoke by-products 46 3A 2.4. Cellular antioxidant activity (CAA) of artichoke by- 46 products 3A 3. Conclusions 50 3A 4. Materials and methods 50 3A 4.1. Materials 50 3A 4.2. Artichoke by-product samples 51 3A 4.3. Phenolic compounds extraction 52 3A 4.4. UHPLC-DAD-HRMS n analysis 52 3A 4.5. Quantitative analysis by UHPLC-UV 53 3A 4.6. Determination of inulin 55 3A 4.7. Cell cultures, treatments and viability assay 56 3A 4.8.
    [Show full text]
  • Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites
    nutrients Review Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites Matej Sova 1,* and Luciano Saso 2 1 Faculty of Pharmacy, University of Ljubljana, Aškerˇceva7, 1000 Ljubljana, Slovenia 2 Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; [email protected] * Correspondence: matej.sova@ffa.uni-lj.si; Tel.: +386-1-476-9556 Received: 24 June 2020; Accepted: 22 July 2020; Published: 23 July 2020 Abstract: Hydroxycinnamic acids (HCAs) are important natural phenolic compounds present in high concentrations in fruits, vegetables, cereals, coffee, tea and wine. Many health beneficial effects have been acknowledged in food products rich in HCAs; however, food processing, dietary intake, bioaccessibility and pharmacokinetics have a high impact on HCAs to reach the target tissue in order to exert their biological activities. In particular, metabolism is of high importance since HCAs’ metabolites could either lose the activity or be even more potent compared to the parent compounds. In this review, natural sources and pharmacokinetic properties of HCAs and their esters are presented and discussed. The main focus is on their metabolism along with biological activities and health benefits. Special emphasis is given on specific effects of HCAs’ metabolites in comparison with their parent compounds. Keywords: diet; natural compounds; phenolic acids; hydroxycinnamic acids; metabolites; pharmacokinetic properties; biological activities; health effects 1. Introduction Our diet rich in plant food contains several health-beneficial ingredients. Among such ingredients, polyphenols represent one of the most important natural compounds. Phenolic compounds are members of probably the largest group of plant secondary metabolites and have the main function to protect the plants against ultraviolet radiation or invasion by pathogens [1,2].
    [Show full text]
  • Influence Des Phénomènes D'oxydation Lors De L'élaboration Des Moûts Sur La Qualité Aromatique Des Vins De Melon B. Et
    CENTRE INTERNATIONAL D’ETUDES SUPERIEURES EN SCIENCES AGRONOMIQUES – MONTPELLIER SUPAGRO THESE Pour obtenir le grade de DOCTEUR DU CENTRE INTER NATIONAL D’ETUDES SUPERIEURES EN SCIENCES AGRONOMIQUES – MONTPELLIER SUPAGRO Ecole Doctorale : Sciences des Procédés – Sciences des Aliments Spécialité : Biochimie, Chimie, Technologie des Aliments Présentée et soutenue publiquement par Aurélie ROLAND Le 4 Novembre 2010 Influence des phénomènes d’oxydation lors de l’élaboration des moûts sur la qualité aromatique des vins de Melon B. et de Sauvignon Blanc en Val de Loire JURY Doris Rauhut Professeur, Forschungsanstalt Geisenheim, Fachgebiet Rapporteur Mikrobologie und Biochemie, Allemagne Juan Cacho Professeur, Universidad de Zaragoza, Departamento de Rapporteur Química Analítica, Espagne Eric Spinnler Professeur, AgroParisTech, Département Sciences et Examinateur Procédés des Aliments et Bioproduits, Grignon, France Florine Cavelier Directeur de Recherche CNRS, Institut des Biomolécules Examinateur Max Mousseron, Montpellier, France Frédéric Charrier Ingénieur Œnologue, Institut Français de la Vigne et du Vin, Membre Invité Pôle Val de Loire, Vertou, France Etienne Goulet Directeur Technique, Interloire, Angers, France Membre Invité Alain Razungles Professeur, Montpellier Supagro, UMR Sciences pour Directeur de Thèse l’œnologie , France Rémi Schneider Directeur UMT Qualinov, Institut Français de la Vigne et du Directeur de Thèse Vin, Pôle Rhône Méditerranée, Montpellier, France REMERCIEMENTS Ce travail de thèse a été réalisé au sein du Plateau Technique des Volatils à l’INRA de Montpellier dans le cadre d’un contrat CIFRE avec INTERLOIRE et en partenariat avec l’Institut Français de la Vigne et du Vin et la SICAVAC de Sancerre. En premier lieu, je souhaite remercier très sincèrement Rémi Schneider , mon directeur de thèse, pour avoir dirigé ce travail avec rigueur et enthousiasme, pour m’avoir encouragé e dans mes choix et fait confiance tout au long de ma thèse.
    [Show full text]
  • Characterisation of Extracts Obtained from Unripe Grapes and Evaluation
    foods Article Characterisation of Extracts Obtained from Unripe Grapes and Evaluation of Their Potential Protective Effects against Oxidation of Wine Colour in Comparison with Different Oenological Products Giovanna Fia * , Ginevra Bucalossi and Bruno Zanoni DAGRI—Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies, University of Florence, Via Donizetti, 6-50144 Firenze, Italy; ginevra.bucalossi@unifi.it (G.B.); bruno.zanoni@unifi.it (B.Z.) * Correspondence: giovanna.fia@unifi.it; Tel.: +39-055-2755503 Abstract: Unripe grapes (UGs) are a waste product of vine cultivation rich in natural antioxidants. These antioxidants could be used in winemaking as alternatives to SO2. Three extracts were obtained by maceration from Viognier, Merlot and Sangiovese UGs. The composition and antioxidant activity of the UG extracts were studied in model solutions at different pH levels. The capacity of the UG extracts to protect wine colour was evaluated in accelerated oxidation tests and small-scale trials on both red and white wines during ageing in comparison with sulphur dioxide, ascorbic acid and commercial tannins. The Viognier and Merlot extracts were rich in phenolic acids while the Sangiovese extract was rich in flavonoids. The antioxidant activity of the extracts and commercial Citation: Fia, G.; Bucalossi, G.; tannins was influenced by the pH. In the oxidation tests, the extracts and commercial products Zanoni, B. Characterisation of Extracts showed different wine colour protection capacities in function of the type of wine. During ageing, Obtained from Unripe Grapes and Evaluation of Their Potential Protective the white wine with the added Viognier UG extract showed the lowest level of colour oxidation.
    [Show full text]
  • Performance of a Protein Extracted from Potatoes for Fining of White Musts
    Food Chemistry 190 (2016) 237–243 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Performance of a protein extracted from potatoes for fining of white musts ⇑ Angelita Gambuti a, Alessandra Rinaldi a,b, , Raffaele Romano c, Nadia Manzo c, Luigi Moio a a Dipartimento Agraria, Università degli Studi di Napoli Federico II, Sezione di Scienze della Vigna e del Vino, Viale Italia, 83100 Avellino, Italy b Biolaffort, 126 Quai de la Sauys, 33100 Bordeaux, France c Dipartimento Agraria, Università degli Studi di Napoli Federico II, via Università 100, 80055 Portici (NA), Italy article info abstract Article history: In this study, the potentiality of Patatin (P), a protein extracted from potato, as must fining agent was Received 4 March 2015 investigated on musts obtained from two South Italy grape cultivars (Falanghina and Greco). Besides P, Received in revised form 14 May 2015 fining agents as bentonite (B) and potassium caseinate (C) were assayed at different concentrations. Accepted 15 May 2015 The rate of sedimentation, the decline of turbidity during time, the absorbance at 420 nm, the GRP (grape Available online 16 May 2015 reaction products) and hydroxycinnamic acids (HCA) concentrations were determined. The comparative trials showed that P is a suitable fining agent to prevent browning and decrease haze Keywords: during must settling because its effect on grape phenolics, brown pigments and turbidity is comparable Must fining and/or better than that detected for C. Its use as single fining agent or in combination with B depends on Potato proteins Browning must characteristics. Fining agents Ó 2015 Published by Elsevier Ltd.
    [Show full text]
  • Wine and Grape Polyphenols — a Chemical Perspective
    Wine and grape polyphenols — A chemical perspective Jorge Garrido , Fernanda Borges abstract Phenolic compounds constitute a diverse group of secondary metabolites which are present in both grapes and wine. The phenolic content and composition of grape processed products (wine) are greatly influenced by the technological practice to which grapes are exposed. During the handling and maturation of the grapes several chemical changes may occur with the appearance of new compounds and/or disappearance of others, and con- sequent modification of the characteristic ratios of the total phenolic content as well as of their qualitative and quantitative profile. The non-volatile phenolic qualitative composition of grapes and wines, the biosynthetic relationships between these compounds, and the most relevant chemical changes occurring during processing and storage will be highlighted in this review. 1. Introduction Non-volatile phenolic compounds and derivatives are intrinsic com-ponents of grapes and related products, particularly wine. They constitute a heterogeneous family of chemical compounds with several compo-nents: phenolic acids, flavonoids, tannins, stilbenes, coumarins, lignans and phenylethanol analogs (Linskens & Jackson, 1988; Scalbert, 1993). Phenolic compounds play an important role on the sensorial characteris-tics of both grapes and wine because they are responsible for some of organoleptic properties: aroma, color, flavor, bitterness and astringency (Linskens & Jackson, 1988; Scalbert, 1993). The knowledge of the relationship between the quality of a particu-lar wine and its phenolic composition is, at present, one of the major challenges in Enology research. Anthocyanin fingerprints of varietal wines, for instance, have been proposed as an analytical tool for authen-ticity certification (Kennedy, 2008; Kontoudakis et al., 2011).
    [Show full text]
  • Chemical Composition of Red Wines Made from Hybrid Grape and Common Grape (Vitis Vinifera L.) Cultivars
    444 Proceedings of the Estonian Academy of Sciences, 2014, 63, 4, 444–453 Proceedings of the Estonian Academy of Sciences, 2014, 63, 4, 444–453 doi: 10.3176/proc.2014.4.10 Available online at www.eap.ee/proceedings Chemical composition of red wines made from hybrid grape and common grape (Vitis vinifera L.) cultivars Priit Pedastsaara*, Merike Vaherb, Kati Helmjab, Maria Kulpb, Mihkel Kaljurandb, Kadri Karpc, Ain Raald, Vaios Karathanose, and Tõnu Püssaa a Department of Food Hygiene, Estonian University of Life Sciences, Kreutzwaldi 58A, 51014 Tartu, Estonia b Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia c Department of Horticulture, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia d Department of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia e Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., Athens, Greece Received 21 June 2013, revised 8 May 2014, accepted 23 May 2014, available online 20 November 2014 Abstract. Since the formulation of the “French paradox”, red grape wines are generally considered to be health-promoting products rather than culpable alcoholic beverages. The total wine production, totalling an equivalent of 30 billion 750 mL bottles in 2009, only verifies the fact that global demand is increasing and that the polyphenols present in wines are accounting for a significant proportion of the daily antioxidant intake of the general population. Both statements justify the interest of new regions to be self-sufficient in the wine production. Novel cold tolerant hybrid grape varieties also make it possible to produce wines in regions where winter temperatures fall below – 30 °C and the yearly sum of active temperatures does not exceed 1750 °C.
    [Show full text]
  • Metabolism of Nonesterified and Esterified Hydroxycinnamic Acids In
    Article pubs.acs.org/JAFC Metabolism of Nonesterified and Esterified Hydroxycinnamic Acids in Red Wines by Brettanomyces bruxellensis † ‡ § § † Lauren M. Schopp, Jungmin Lee, James P. Osborne, Stuart C. Chescheir, and Charles G. Edwards*, † School of Food Science, Washington State University, Pullman, Washington 99164−6376, United States ‡ USDA−ARS−HCRU worksite, Parma, Idaho 83660, United States § Department of Food Science and Technology, Oregon State University, Corvallis, Oregon 97331, United States ABSTRACT: While Brettanomyces can metabolize nonesterified hydroxycinnamic acids found in grape musts/wines (caffeic, p- coumaric, and ferulic acids), it was not known whether this yeast could utilize the corresponding tartaric acid esters (caftaric, p- coutaric, and fertaric acids, respectively). Red wines from Washington and Oregon were inoculated with B. bruxellensis, while hydroxycinnamic acids were monitored by HPLC. Besides consuming p-coumaric and ferulic acids, strains I1a, B1b, and E1 isolated from Washington wines metabolized 40−50% of caffeic acid, a finding in contrast to strains obtained from California wines. Higher molar recoveries of 4-ethylphenol and 4-ethylguaiacol synthesized from p-coumaric and ferulic acids, respectively, were observed in Washington Cabernet Sauvignon and Syrah but not Merlot. This finding suggested that Brettanomyces either (a) utilized vinylphenols formed during processing of some wines or (b) metabolized other unidentified phenolic precursors. None of the strains of Brettanomyces studied metabolized caftaric or p-coutaric acids present in wines from Washington or Oregon. KEYWORDS: Brettanomyces, hydroxycinnamic acids, phenolic acids, cinnamates, volatile phenols ■ INTRODUCTION pool of precursors available for conversion to volatile phenols. 21 Brettanomyces has been regarded by some as the most severe In fact, Nikfardjam et al.
    [Show full text]
  • Inhibition of Tyrosinase-Induced Enzymatic Browning by Sulfite and Natural Alternatives
    Inhibition of tyrosinase-induced enzymatic browning by sulfite and natural alternatives Tomas F.M. Kuijpers Thesis committee Promotor Prof. Dr H. Gruppen Professor of Food Chemistry Wageningen University Co-promotor Dr J-P. Vincken Assistant professor, Laboratory of Food Chemistry Wageningen University Other members Prof. Dr M.A.J.S van Boekel, Wageningen University Dr H.T.W.M. van der Hijden, Unilever R&D, Vlaardingen, The Netherlands Dr C.M.G.C. Renard, INRA, Avignon, France Prof. Dr H. Hilz, Hochschule Bremerhaven, Germany This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Inhibition of tyrosinase-induced enzymatic browning by sulfite and natural alternatives Tomas F.M. Kuijpers Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 25 October 2013 at 4 p.m. in the Aula. Tomas F.M. Kuijpers Inhibition of tyrosinase-mediated enzymatic browning by sulfite and natural alternatives 136 pages PhD thesis, Wageningen University, Wageningen, NL (2013) With references, with summaries in English and Dutch ISBN: 978-94-6173-668-0 ABSTRACT Although sulfite is widely used to counteract enzymatic browning, its mechanism has remained largely unknown. We describe a double inhibitory mechanism of sulfite on enzymatic browning, affecting both the enzymatic oxidation of phenols into o-quinones, as well as the non-enzymatic reactions of these o-quinones into brown pigments.
    [Show full text]
  • 'Vranac', 'Kratošija' and 'Cabernet Sauvignon' from Montenegro According to Their Polyphenolic Composition
    11 Mitteilungen Klosterneuburg 64 (2014): 9-19 Varietal differentiation of grapes cv. 'Vranac', 'Kratošija' and 'Cabernet Sauvignon' from Montenegro according to their polyphenolic composition Radmila Pajović1, Silvia Wendelin2, Astrid Forneck3 and Reinhard Eder2 1 Department for Viticulture and Enology, Biotechnical Faculty, University of Montenegro ME-81000 Podgorica, Mihaila Lalića 1 E-Mail: [email protected] 2 Höhere Bundeslehranstalt und Bundesamt für Wein- und Obstbau Klosterneuburg A-3400 Klosterneuburg, Wiener Straße 74 3 University of Natural Resources and Life Sciences, Department of Crop Sciences, Division of Viticulture and Pomology, UFT Tulln A-3430 Tulln, Konrad Lorenz-Straße 24 This paper presents the results of investigations into the polyphenolic profile of grapes from the red grape varieties 'Vranac', 'Kratošija' and 'Cabernet Sauvignon' grown in the Montenegrin wine region. Using an RP-HPLC method the composition of anthocyanins and hydroxycinnamic acids (HCA) in the fresh grapes was analysed. Results of the analysis of anthocyanins show that the Montenegrin grape varieties have the same order of the relative concentration of monoglucosid, non-acylated anthocyanins: Mv-3-gl > Pn-3-gl > Pt-3-gl > Dp-3-gl > Cy-3-gl, but with a different relative amount of anthocyanins in 'Vranac' and 'Kratošija'. The concentration of p-coumarylated derivates was higher than the concentration of acetylated ones in 'Vranac' and 'Kratošija'. In contrary, grapes of the variety 'Cabernet Sau- vignon' have a relatively high amount of acylated derivates and more acetylated anthocyanins than p-coumarylated ones. Therefore the ratio between acetylated and coumarylated anthocyanins varied widely among the varieties: 'Vranac' 0.46, 'Kratošija' 0.15 and 'Cabernet Sauvignon' 2.07.
    [Show full text]
  • Studies on the Occurrence of Thiol Related Aromas in Wine
    FACOLTÀ DI SCIENZE AGRARIE E ALIMENTARI Department of Food, Environmental and Nutritional Sciences (DeFENS) Graduate School in Molecular Sciences and Plant, Food and Environmental Biotechnology PhD programme in Food Science, Technology and Biotechnology XXV cycle Studies on the occurrence of thiol related aromas in wine Scientific field AGR/15 FEDERICO PIANO Tutor: Prof. Antonio Tirelli Co-tutors: Dr. Daniela Borsa (CRA-ENO, Centro di Ricerca per l’Enologia, Asti, Italy) Dr. Bruno Fedrizzi (Wine Science Programme, School of Chemical Sciences, The University of Auckland, Auckland, New Zealand) PhD Coordinator: Prof. Maria Grazia Fortina 2011/2012 Studies on the occurrence of thiol related aromas in wine Federico Piano ________________________________________________________________________________________________ Abstract Thiol related aromas play a key role in sensory profile of certain wines. In particular, 3- mercaptohexan-1-ol, 3-mercaptohexyl acetate and 4-mercapto-4-methypentan-2-one were firstly identified in Sauvignon blanc wines. Same molecules were then evaluated to contribute to several wine made from different grape varieties. The strong smelling properties of volatile thiols explain their importance, even if such molecules are present at extremely low concentration in wine (ng/L). This characteristic represents the main issue in their identification and quantification in wine. Aromatic thiols are present in grape and juice as non-volatile compounds. In particular, glutathione and cysteine conjugates were identified to be precursors of such smelling molecules. During vinification process, yeast activity is responsible for their release from the cysteinilated precursors. The amount of thiol precursor in juice is influenced by oenological practices. Despite this, no direct correlation between the level of precursors in juice and concentration of thiol in wine has been observed, thus suggesting that alternative biogenetic pathway and/or more complex interaction are responsible for occurrence of aromatic thiol in wine.
    [Show full text]