Phenolic Composition of Grape and Winemaking By-Products of Brazilian Hybrid Cultivars BRS Violeta and BRS Lorena

Total Page:16

File Type:pdf, Size:1020Kb

Phenolic Composition of Grape and Winemaking By-Products of Brazilian Hybrid Cultivars BRS Violeta and BRS Lorena Food Chemistry 159 (2014) 95–105 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Phenolic composition of grape and winemaking by-products of Brazilian hybrid cultivars BRS Violeta and BRS Lorena Milene Teixeira Barcia a, Paula Becker Pertuzatti a, Sergio Gómez-Alonso b,c, Helena Teixeira Godoy a, ⇑ Isidro Hermosín-Gutiérrez c, a Universidade Estadual de Campinas (UNICAMP), Depto. Ciência de Alimentos, Faculdade de Engenharia de Alimentos, Cidade Universitária ‘‘Zeferino Vaz’’, S/N, CEP 13083862 Campinas, São Paulo, Brazil b Fundación Parque Científico y Tecnológico de Albacete, Paseo de la Innovación, 1, 02006 Albacete, Spain c Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain article info abstract Article history: The phenolic composition of grapes and winemaking by-products (skins from grape marc, and lees) from Received 19 September 2013 Brazilian hybrid cultivars BRS Violeta (red) and BRS Lorena (white) was studied. Two vintages, five classes Received in revised form 1 February 2014 of phenolic compounds, and recovery yields using three dehydration techniques were considered: oven- Accepted 27 February 2014 drying at 50 °C (D50); spray-drying (SD); and freeze-drying (FD). Recovery yields were higher using FD, Available online 12 March 2014 although less expensive SD was a good alternative for Violeta lees. D50 caused great recovery reduction in Violeta but yielded similar results for Lorena. Violeta winemaking by-products were excellent sources of Keywords: anthocyanins (mainly non-acylated and p-coumaroylated diglucosides), flavonols (mainly myricetin- Anthocyanins based) and hydroxycinnamic derivatives (mainly caffeic-based). Lorena winemaking by-products con- Pyranoanthocyanins Phenolic acids tained lesser amounts of phenolic compounds, around a tenth of the values found in Violeta grapes for Flavonols flavonols (mainly quercetin-based), hydroxycinnamic derivatives (mainly caffeic-based) and condensed Condensed tannins tannins. Lorena cultivar contained small amounts of trans-resveratrol and its 3-glucoside, which were Grape marc missing in Violeta cultivar. Lees Ó 2014 Elsevier Ltd. All rights reserved. Non-vinifera grape 1. Introduction ing the previously crushed grapes, in white wine production tech- nology, or after the maceration phase concurrent with The polyphenolic compounds present in the grape transfer to fermentation step, in red wine production technology. After must the wine during the maceration step of its elaboration until reach- fermentation, a decanting process takes place when the superna- ing equilibrium conditions that depend on the characteristics of tant wine is separated from the lees (mainly constituted by thin the winemaking process (e.g., maceration time, temperature, particle grape residues and death yeasts) (Maragkoudakis et al., intensity and duration of pressing, using of macerating enzymes, 2013; Paradelo, Moldes, & Barral, 2010). yeast strain, and used SO2 doses). As the major part of grape poly- Wine lees are mainly composed of microorganisms (mainly phenols comes from the solid grape parts, a high proportion of autolysed yeast cells), tartaric acid, inorganic matter and phenolic polyphenols still remains in the solid winemaking by-products or compounds (Pérez-Serradilla & Luque de Castro, 2008). The scarce grape marc (Gallego, García-Carpintero, Sánchez-Palomo, Viñas, & literature dealing with this topic has revealed the adsorption Hermosín-Gutiérrez, 2012). capacity of yeast cell wall with regards to anthocyanins and other Grape marc (a mixture of mainly grape skin and seeds) is one of phenolic compounds, like flavonols or hydroxycinnamic acids the most abundant by-products of the winemaking process, and (Morata, Gómez-Cordovés, Colomo, & Suárez, 2005; Pérez-Serradil- this presents problems of storage, transformation, or elimination, la & Luque de Castro, 2008; Pérez-Serradilla & Luque de Castro, from both ecological and economical points of view. However, it 2011). It is well known that grape residue from winemaking can be considered as a low-cost source of natural antioxidants (seeds, skins) contain a high amount of secondary metabolites (Shojaee-Aliabadi et al., 2013). Grape marc is produced after press- including phenolic acids, flavan-3-ols and anthocyanins (Makris, Boskou, & Andrikopoulos, 2007). However, many studies have been focused on winemaking by-products from Vitis vinifera varieties ⇑ Corresponding author. Tel.: +34 926295300. but little is known about the polyphenol potential of non-vinifera E-mail address: [email protected] (I. Hermosín-Gutiérrez). grape varieties (Sant’Anna, Brandelli, Marczak, & Tessaro, 2012). http://dx.doi.org/10.1016/j.foodchem.2014.02.163 0308-8146/Ó 2014 Elsevier Ltd. All rights reserved. 96 M.T. Barcia et al. / Food Chemistry 159 (2014) 95–105 The non-vinifera hybrid grape varieties are characterized by Violeta (BRS Rúbea  IAC 1398-21) and BRS Lorena (Malvasia high productivity and high resistance to plant diseases affecting Bianca  Seyval). The samples were randomly collected in tripli- V. vinifera grape varieties (Abe, Mota, Lajolo, & Genovese, 2007). cate (3  500 g) during the harvest of 2011 and 2012 from a winery The Brazilian Agricultural Research Corporation Grape and Wine located in the region of São Roque (São Paulo, Brazil). The grape (Embrapa Uva e Vinho) have launched hybrid grape varieties samples were collected from different batches received at the win- adapted to the specific conditions demanded by the emerging ery, by manual picking of grape berries from different clusters at new grape-growing regions of Brazil. The red grape cultivar BRS different levels (top, medium and bottom parts of the clusters). Violeta is a complex hybrid obtained from the cross between BRS After the processing of the latter grapes, samples of the corre- Rúbea  IAC 1398-21, and maintains the general characteristics sponding winemaking by-products were collected, after their sep- of Vitis labrusca grapes with regards to vine morphology and grape aration from the must (fresh grape marc of Lorena) or wine taste. The BRS Violeta grape was initially launched as an alternative (fermented grape marc of Violeta, and wine lees of Lorena and Viol- to increase quality and competitiveness of table wine and grape eta). Grape berry samples were frozen at À20 °C for 24 h, cut in two juice produced in Brazil, because it is characterized by high levels halves, and further freeze-dried for 48 h. Samples of fermented of sugar concentration and color, and is especially suitable for cul- grape marc from Violeta, fresh grape marc from Lorena, and lees tivation in subtropical climate zones like the state of São Paulo from both grape varieties were frozen at À20 °C for 24 h and then (Camargo, Maia, & Nachtigal, 2005). The white hybrid grape culti- freeze-dried for 48 h. After that, skins were manually separated var BRS Lorena (Malvasia Bianca  Seyval) was developed in 2001 from the samples of dried grape marc. Dried samples of skins from as an alternative for elaboration of white wines, also presenting grape marc and lees were also obtained by oven drying at 50 °C un- high productivity, sugar-rich and relatively acid-rich musts that der forced air flow. Finally, a third drying treatment was applied to are suitable for production of both sparkling and still wines with lees: spray-drying. After drying, the samples of entire grapes and a well-balanced taste (Camargo & Guerra, 2001). skins were crushed and homogenized. All dried samples were The chemical characterization of the phenolic compounds still stored at À18 °C until analyses. present in winemaking by-products (grape marc and lees) consti- tutes basic information for the evaluation of the viability of using 2.3. Extraction of phenolic compounds food by-products in foodstuff, chemical, and pharmaceutical indus- tries. For this reason, the aim of this work was the study of the Dried samples in amounts of 2.5, 1.0, and 0.25 g (grapes, skins occurring phenolics in winemaking by-products (skins from grape and lees of Lorena, respectively) and 2.0, 0.25, and 0.25 g (grapes, marc, and wine lees) generated during the elaboration of red and skins and lees of Violeta, respectively) were extracted with 50 mL white wine from two hybrid grape varieties developed in Brazil (grape and lees) or 75 mL (skins) of a mixture 50:48.5:1.5 (v/v) (BRS Violeta and BRS Lorena). The study was extended over two of CH3OH/H2O/HCOOH, helped by ultrasonic bath, during 2 min vintages and comprised different phenolic classes (anthocyanins and then centrifuged at 5000g at 5 °C for 5 min. A second and third and some pyranoanthocyanins, flavonols, hydroxycinnamic acid extractions of the samples pellets yielded nearly 99% of the sample derivatives, stilbenes, and condensed tannins); in addition, the ef- phenolic content, as confirmed by HPLC of successive extractions fect of three drying techniques applied to the winemaking by- (up to five). The combined supernatants were stored at À18 °C un- products has been considered: freeze-drying, oven-drying at til use. For analysis of non-anthocyanin phenolics, anthocyanin- 50 °C, and spray-drying. free fractions from sample extracts were obtained by solid phase extraction following a previously described method (Lago-Vanzela, Da-Silva, Gomes, García-Romero, & Hermosín-Gutiérrez, 2011a). 2. Materials and methods 2.4. Quantification of condensed tannins by precipitation
Recommended publications
  • The Bioactive Compounds in Agricultural Products and Their Roles in Health Promoting Functions
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2015 The ioB active Compounds in Agricultural Products and Their Roles in Health Promoting Functions Yixiao Shen Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Life Sciences Commons Recommended Citation Shen, Yixiao, "The ioB active Compounds in Agricultural Products and Their Roles in Health Promoting Functions" (2015). LSU Doctoral Dissertations. 2791. https://digitalcommons.lsu.edu/gradschool_dissertations/2791 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THE BIOACTIVE COMPOUNDS IN AGRICULTURAL PRODUCTS AND THEIR ROLES IN HEALTH PROMOTING FUNCTIONS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The School of Nutrition and Food Sciences by Yixiao Shen B.S., Shenyang Agricultural University, 2010 M.S., Shenyang Agricultural University, 2012 December 2015 ACKNOWLEDGEMENTS This dissertation is a lively description of my whole Ph.D. life which is full of love from the ones who played an integral role in the completion of this degree. It is with my deepest gratitude to express my appreciation to those helping me realize my dream. To Dr. Zhimin Xu, thank you so much for offering me the opportunity to pursue my doctoral degree under your mentorship.
    [Show full text]
  • Review Article Caffeates and Caffeamides: Synthetic Methodologies and Their Antioxidant Properties
    Hindawi International Journal of Medicinal Chemistry Volume 2019, Article ID 2592609, 15 pages https://doi.org/10.1155/2019/2592609 Review Article Caffeates and Caffeamides: Synthetic Methodologies and Their Antioxidant Properties Merly de Armas-Ricard ,1 Enrique Ruiz-Reyes,2 and Oney Ramírez-Rodríguez 1 1Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén, Eusebio Lillo 667, Coyhaique 5951537, Aysén, Chile 2Department of Chemistry, Basic Sciences Institute, Technical University of Manabí (Universidad Técnica de Manabí), Av Urbina y Che Guevara, Portoviejo, Manabí, Ecuador Correspondence should be addressed to Merly de Armas-Ricard; [email protected] and Oney Ramírez-Rodríguez; [email protected] Received 29 April 2019; Accepted 25 July 2019; Published 11 November 2019 Academic Editor: Rosaria Volpini Copyright © 2019 Merly de Armas-Ricard et al. ­is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Polyphenols are secondary metabolites of plants and include a variety of chemical structures, from simple molecules such as phenolic acids to condensed tannins and highly polymerized compounds. Caeic acid (3,4-dihydroxycinnamic acid) is one of the hydroxycinnamate metabolites more widely distributed in plant tissues. It is present in many food sources, including coee drinks, blueberries, apples, and cider, and also in several medications of popular use, mainly those based on propolis. Its derivatives are also known to possess anti-inammatory, antioxidant, antitumor, and antibacterial activities, and can contribute to the prevention of atherosclerosis and other cardiovascular diseases. ­is review is an overview of the available information about the chemical synthesis and antioxidant activity of caeic acid derivatives.
    [Show full text]
  • Microclimatic Influences on Grape Quality
    AusdemInstitutfürWeinanalytikundGetränkeforschung derHochschuleGeisenheimUniversity Prof.Dr.HelmutDietrich unddem InstitutfürPŇanzenbauundPŇanzenzüchtungII derJustusͲLiebigͲUniversitätGießen ProfessurfürBiometrieundPopulationsgenetik Prof.Dr.MatthiasFrisch Microclimaticinfluencesongrapequality Dissertation zurErlangungdesGradeseinesDoktors derAgrarwissenschaften imFachbereich Agrarwissenschaften,OekotrophologieundUmweltmanagement JustusͲLiebigͲUniversitätGießen Vorgelegtvon MatthiasFriedelausAlzenau Gießen,31.03.2017 Selbständigkeitserklärung Icherkläre:IchhabedievorgelegteDissertationselbständigundohneunerlaubte fremde Hilfe und nur mit den Hilfen angefertigt, die ich in der Dissertation angegebenhabe.AlleTextstellen,diewörtlichodersinngemäßausveröffentlichten Schriften entnommen sind, und alle Angaben, die auf mündlichen Auskünften beruhen,sindalssolchekenntlichgemacht.Beidenvonmirdurchgeführtenundin der Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der „Satzung der JustusͲLiebigͲUniversität Gießen zur Sicherung guter wissenschaftlicher Praxis“ niedergelegt sind, eingehalten. Declarationofauthorship Ideclare: thisdissertationsubmittedisaworkof myown,writtenwithoutany illegitimate help by any third party and only with materials indicated in the dissertation. I have indicated in the text where I have used text from already publishedsources,eitherwordforwordorinsubstance,andwhereIhavemade statements based on oral information given to me. At any time during the investigationscarriedoutbymeanddescribedinthedissertation,Ifollowedthe
    [Show full text]
  • Antioxidant Capacities and Phenolic Levels of Different Varieties of Serbian White Wines
    Molecules 2010, 15, 2016-2027; doi:10.3390/molecules15032016 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Antioxidant Capacities and Phenolic Levels of Different Varieties of Serbian White Wines Milan N. Mitić, Mirjana V. Obradović, Zora B. Grahovac and Aleksandra N. Pavlović * Faculty of Sciences and Mathematics, Department of Chemistry, University of Niš, Višegradska 33, P.O.Box 224, 18000 Niš, Serbia; E-Mails: [email protected](M.N.M.); [email protected] (M.V.O.); [email protected] (Z.B.G.) ∗ Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 22 January 2010; in revised form: 23 February 2010 / Accepted: 9 March 2010 / Published: 22 March 2010 Abstract: The biologically active compounds in wine, especially phenolics, are responsible for reduced risk of developing chronic diseases (cardiovascular disrease, cancer, diabetes, etc.), due to their antioxidant activities. We determined the contents of total phenolics (TP) and total flavonoids (TF) in selected Serbian white wines by colorimetric methods. Total antioxidant activity (TAA) of the white wines was analyzed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay. Međaš beli had the highest content of TP, TF and TAA. The radical scavenging capacity (RSC) and total antioxidant activity (TAA) of white wines were 15.30% and 1.055 mM Trolox equivalent, respectively. Total phenolic (TP) and total flavonoid (TF) contents in white wines ranged from 238.3 to 420.6 mg gallic acid equivalent per L of wines and 42.64 to 81.32 mg catechin equivalent per L of wines, respectively.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 6,066,311 Cheetham Et Al
    US006066311A United States Patent (19) 11 Patent Number: 6,066,311 Cheetham et al. (45) Date of Patent: May 23, 2000 54 PRODUCTION AND USES OF CAFFEIC 63–284117 11/1988 Japan. ACID AND DERVATIVES THEREOF 63–284118 11/1988 Japan. 63–284119 11/1988 Japan. 75 Inventors: Peter S. J. Cheetham; Nigel E. 1013018 1/1989 Japan. Banister, both of Canterbury, United 06199649 7/1994 Japan. Kingdom 06287105 10/1994 Japan. OTHER PUBLICATIONS 73 Assignee: Zylepsis Limited, Ashford, United Kingdom Ellis, B. E., and Amrhein, N., The NIH-Shift During Aromatic OrthoHydroxylation in Higher Plants, Phytochem Appl. No.: 08/750,227 istry, 10, pp. 3069-3072, 1971, Pergamon Press. Freudenberg Karl, Berichte der Deutschen Chemischen PCT Fed: Jun. 7, 1995 Gesellschaft, vol. 53, No. 1, 1920 Weinheim DE, pp. PCT No.: PCT/GB95/01324 232-239. In German-See Ref. AK. Gestentner B., and Conn, Eric E., “The 2-Hydroxylation of S371 Date: Mar. 14, 1997 trans-Cinnamic Acid by Chloroplasts from Melilotus alba S 102(e) Date: Mar. 14, 1997 Desr.” Archives of Biochemistry and Biophysics, 163, pp. 617-624, 1974, Academic Press. 87 PCT Pub. No.: WO95/33706 Sripad, G., Prakash, V., Narasinga Rao, M.S. “Extractability of polyphenols of Sunflower Seed in various Solvents.’, J. PCT Pub. Date: Dec. 14, 1995 BioSci., 4, No. 2, pp. 145-152, 1982. 30 Foreign Application Priority Data Tranchino L., Constantino R., and Sodini G., “Food grade oilseed protein processing, Sunflower and rapeseed.”, Qual Jun. 8, 1994 GB United Kingdom ................... 941 1539 Plant Foods Hum. Nutr., 32, pp. 305-334, 1983.
    [Show full text]
  • Characterization and Differentiation of Spanish Vinegars from Jerez And
    foods Article Characterization and Differentiation of Spanish Vinegars from Jerez and Condado de Huelva Protected Designations of Origin Enrique Durán-Guerrero 1,* ,Mónica Schwarz 2, M. Ángeles Fernández-Recamales 3, Carmelo G. Barroso 1 and Remedios Castro 1 1 Analytical Chemistry Department—IVAGRO, Faculty of Sciences, University of Cadiz, 11510 Puerto Real, Spain 2 “Salus Infirmorum” Faculty of Nursing, University of Cadiz, 11001 Cadiz, Spain 3 Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain * Correspondence: [email protected]; Tel.: +34-956-01645 Received: 23 July 2019; Accepted: 9 August 2019; Published: 12 August 2019 Abstract: Thirty one Jerez vinegar samples and 33 Huelva vinegar samples were analyzed for polyphenolic and volatile compound content in order to characterize them and attempt to differentiate them. Sixteen polyphenolic compounds were quantified by means of ultraperformance liquid chromatography method with diode array detection (UPLC–DAD), and 37 volatile compounds were studied by means of stir bar sorptive extraction–gas chromatography–mass spectrometry (SBSE–GC–MS). Spectrophotometric CIELab parameters were also measured for all the samples. The results obtained from the statistical multivariate treatment of the data evidenced a clear difference between vinegars from the two geographical indications with regard to their polyphenolic content, with Jerez vinegars exhibiting a greater phenolic content. Differentiation by the volatile compound content was, however, not so evident. Nevertheless, a considerable differentiation between the two groups of vinegars based on their volatile fraction was achieved. This may bring to light the grape varieties and geographical factors that have a clear influence on such differences.
    [Show full text]
  • Influence Des Phénomènes D'oxydation Lors De L'élaboration Des Moûts Sur La Qualité Aromatique Des Vins De Melon B. Et
    CENTRE INTERNATIONAL D’ETUDES SUPERIEURES EN SCIENCES AGRONOMIQUES – MONTPELLIER SUPAGRO THESE Pour obtenir le grade de DOCTEUR DU CENTRE INTER NATIONAL D’ETUDES SUPERIEURES EN SCIENCES AGRONOMIQUES – MONTPELLIER SUPAGRO Ecole Doctorale : Sciences des Procédés – Sciences des Aliments Spécialité : Biochimie, Chimie, Technologie des Aliments Présentée et soutenue publiquement par Aurélie ROLAND Le 4 Novembre 2010 Influence des phénomènes d’oxydation lors de l’élaboration des moûts sur la qualité aromatique des vins de Melon B. et de Sauvignon Blanc en Val de Loire JURY Doris Rauhut Professeur, Forschungsanstalt Geisenheim, Fachgebiet Rapporteur Mikrobologie und Biochemie, Allemagne Juan Cacho Professeur, Universidad de Zaragoza, Departamento de Rapporteur Química Analítica, Espagne Eric Spinnler Professeur, AgroParisTech, Département Sciences et Examinateur Procédés des Aliments et Bioproduits, Grignon, France Florine Cavelier Directeur de Recherche CNRS, Institut des Biomolécules Examinateur Max Mousseron, Montpellier, France Frédéric Charrier Ingénieur Œnologue, Institut Français de la Vigne et du Vin, Membre Invité Pôle Val de Loire, Vertou, France Etienne Goulet Directeur Technique, Interloire, Angers, France Membre Invité Alain Razungles Professeur, Montpellier Supagro, UMR Sciences pour Directeur de Thèse l’œnologie , France Rémi Schneider Directeur UMT Qualinov, Institut Français de la Vigne et du Directeur de Thèse Vin, Pôle Rhône Méditerranée, Montpellier, France REMERCIEMENTS Ce travail de thèse a été réalisé au sein du Plateau Technique des Volatils à l’INRA de Montpellier dans le cadre d’un contrat CIFRE avec INTERLOIRE et en partenariat avec l’Institut Français de la Vigne et du Vin et la SICAVAC de Sancerre. En premier lieu, je souhaite remercier très sincèrement Rémi Schneider , mon directeur de thèse, pour avoir dirigé ce travail avec rigueur et enthousiasme, pour m’avoir encouragé e dans mes choix et fait confiance tout au long de ma thèse.
    [Show full text]
  • Chemical Constituents from Gnaphalium Affine and Their Xanthine Oxidase Inhibitory Activity
    Chinese Journal of Natural Chinese Journal of Natural Medicines 2018, 16(5): 03470353 Medicines Chemical constituents from Gnaphalium affine and their xanthine oxidase inhibitory activity ZHANG Wei1, 2, WU Chun-Zhen1, 3, FAN Si-Yang 1, 2* 1 Department of Traditional Chinese Medicine, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China; 2 Innovation Center of Traditional Chinese Medicine, China State Institute of Pharmaceutical Industry, Shanghai 201203, China; 3 Sinopharm Health Industry Research Co., Ltd., Shanghai 201203, China Available online 20 May, 2018 [ABSTRACT] Gnaphalium affine D. Don, a medicinal and edible plant, has been used to treat gout in traditional Chinese medicine and popularly consumed in China for a long time. A detailed phytochemical investigation on the aerial part of G. affine led to the isola- tion of two new esters of caffeoylquinic acid named (−) ethyl 1, 4-di-O-caffeoylquinate (1) and (−) methyl 1, 4-di-O-caffeoylquinate (2), together with 35 known compounds (3−37). Their structures were elucidated by spectroscopic data and first-order multiplet analy- sis. All the isolated compounds were tested for their xanthine oxidase inhibitory activity with an in vitro enzyme inhibitory screening −1 −1 assay. Among the tested compounds, 1 (IC50 11.94 μmol·L ) and 2 (IC50 15.04 μmol·L ) showed a good inhibitory activity. The cur- rent results supported the medical use of the plant. [KEY WORDS] Gnaphalium affine; Compositae; Caffeoylquinate; Flavonoid; Xanthine oxidase inhibition [CLC Number] R284 [Document code] A [Article ID] 2095-6975(2018)05-0347-07 vestigation of the aerial part of G. affine that showed a re- Introduction markable secondary metabolite pattern.
    [Show full text]
  • Characterisation of Extracts Obtained from Unripe Grapes and Evaluation
    foods Article Characterisation of Extracts Obtained from Unripe Grapes and Evaluation of Their Potential Protective Effects against Oxidation of Wine Colour in Comparison with Different Oenological Products Giovanna Fia * , Ginevra Bucalossi and Bruno Zanoni DAGRI—Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies, University of Florence, Via Donizetti, 6-50144 Firenze, Italy; ginevra.bucalossi@unifi.it (G.B.); bruno.zanoni@unifi.it (B.Z.) * Correspondence: giovanna.fia@unifi.it; Tel.: +39-055-2755503 Abstract: Unripe grapes (UGs) are a waste product of vine cultivation rich in natural antioxidants. These antioxidants could be used in winemaking as alternatives to SO2. Three extracts were obtained by maceration from Viognier, Merlot and Sangiovese UGs. The composition and antioxidant activity of the UG extracts were studied in model solutions at different pH levels. The capacity of the UG extracts to protect wine colour was evaluated in accelerated oxidation tests and small-scale trials on both red and white wines during ageing in comparison with sulphur dioxide, ascorbic acid and commercial tannins. The Viognier and Merlot extracts were rich in phenolic acids while the Sangiovese extract was rich in flavonoids. The antioxidant activity of the extracts and commercial Citation: Fia, G.; Bucalossi, G.; tannins was influenced by the pH. In the oxidation tests, the extracts and commercial products Zanoni, B. Characterisation of Extracts showed different wine colour protection capacities in function of the type of wine. During ageing, Obtained from Unripe Grapes and Evaluation of Their Potential Protective the white wine with the added Viognier UG extract showed the lowest level of colour oxidation.
    [Show full text]
  • Performance of a Protein Extracted from Potatoes for Fining of White Musts
    Food Chemistry 190 (2016) 237–243 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Performance of a protein extracted from potatoes for fining of white musts ⇑ Angelita Gambuti a, Alessandra Rinaldi a,b, , Raffaele Romano c, Nadia Manzo c, Luigi Moio a a Dipartimento Agraria, Università degli Studi di Napoli Federico II, Sezione di Scienze della Vigna e del Vino, Viale Italia, 83100 Avellino, Italy b Biolaffort, 126 Quai de la Sauys, 33100 Bordeaux, France c Dipartimento Agraria, Università degli Studi di Napoli Federico II, via Università 100, 80055 Portici (NA), Italy article info abstract Article history: In this study, the potentiality of Patatin (P), a protein extracted from potato, as must fining agent was Received 4 March 2015 investigated on musts obtained from two South Italy grape cultivars (Falanghina and Greco). Besides P, Received in revised form 14 May 2015 fining agents as bentonite (B) and potassium caseinate (C) were assayed at different concentrations. Accepted 15 May 2015 The rate of sedimentation, the decline of turbidity during time, the absorbance at 420 nm, the GRP (grape Available online 16 May 2015 reaction products) and hydroxycinnamic acids (HCA) concentrations were determined. The comparative trials showed that P is a suitable fining agent to prevent browning and decrease haze Keywords: during must settling because its effect on grape phenolics, brown pigments and turbidity is comparable Must fining and/or better than that detected for C. Its use as single fining agent or in combination with B depends on Potato proteins Browning must characteristics. Fining agents Ó 2015 Published by Elsevier Ltd.
    [Show full text]
  • Wine and Grape Polyphenols — a Chemical Perspective
    Wine and grape polyphenols — A chemical perspective Jorge Garrido , Fernanda Borges abstract Phenolic compounds constitute a diverse group of secondary metabolites which are present in both grapes and wine. The phenolic content and composition of grape processed products (wine) are greatly influenced by the technological practice to which grapes are exposed. During the handling and maturation of the grapes several chemical changes may occur with the appearance of new compounds and/or disappearance of others, and con- sequent modification of the characteristic ratios of the total phenolic content as well as of their qualitative and quantitative profile. The non-volatile phenolic qualitative composition of grapes and wines, the biosynthetic relationships between these compounds, and the most relevant chemical changes occurring during processing and storage will be highlighted in this review. 1. Introduction Non-volatile phenolic compounds and derivatives are intrinsic com-ponents of grapes and related products, particularly wine. They constitute a heterogeneous family of chemical compounds with several compo-nents: phenolic acids, flavonoids, tannins, stilbenes, coumarins, lignans and phenylethanol analogs (Linskens & Jackson, 1988; Scalbert, 1993). Phenolic compounds play an important role on the sensorial characteris-tics of both grapes and wine because they are responsible for some of organoleptic properties: aroma, color, flavor, bitterness and astringency (Linskens & Jackson, 1988; Scalbert, 1993). The knowledge of the relationship between the quality of a particu-lar wine and its phenolic composition is, at present, one of the major challenges in Enology research. Anthocyanin fingerprints of varietal wines, for instance, have been proposed as an analytical tool for authen-ticity certification (Kennedy, 2008; Kontoudakis et al., 2011).
    [Show full text]
  • Enzymatic Synthesis and Hydrolysis of Linear Alkyl and Steryl Hydroxycinnamic Acid Esters
    Research Collection Doctoral Thesis Enzymatic Synthesis and Hydrolysis of Linear Alkyl and Steryl Hydroxycinnamic Acid Esters Author(s): Schär, Aline Lea Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010670414 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 23265 Enzymatic Synthesis and Hydrolysis of Linear Alkyl and Steryl Hydroxycinnamic Acid Esters A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by Aline Lea Schär MSc ETH in Food Science, ETH Zurich born on 24.01.1987 citizen of Madiswil (BE) accepted on the recommendation of Prof. Dr. Laura Nyström, examiner Dr. Pierre Villeneuve, co-examiner Prof. Dr. Evangelos Topakas, co-examiner 2016 Wir treten auf. Wir spielen. Wir treten ab. Moritz Leuenberger Abstract Phenolic acids are natural antioxidants found widely in the plant kingdom in various forms. In the focus of this thesis were hydroxycinnamic acids, namely ferulic acid, caffeic acid, sinapic acid and p-coumaric acid. In multiphase food systems, the polarity of the phenolic antioxidant is a crucial property, which can be adjusted through esterification. Nowadays, an enzymatic procedure is often preferred for this purpose over a chemically catalyzed reaction. However, a phenolic hydroxyl group in para-position in combination with an unsaturated side chain makes enzymatic esterification of hydroxycinnamic acids by lipases challenging. Since this is the case for the hydroxycinnamic acids mentioned above, it is of interest to find efficient ways to enzymatically esterify them.
    [Show full text]