A GDSL Lipase-Like from Ipomoea Batatas Catalyzes Efficient
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Bioactive Compounds in Agricultural Products and Their Roles in Health Promoting Functions
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2015 The ioB active Compounds in Agricultural Products and Their Roles in Health Promoting Functions Yixiao Shen Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Life Sciences Commons Recommended Citation Shen, Yixiao, "The ioB active Compounds in Agricultural Products and Their Roles in Health Promoting Functions" (2015). LSU Doctoral Dissertations. 2791. https://digitalcommons.lsu.edu/gradschool_dissertations/2791 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THE BIOACTIVE COMPOUNDS IN AGRICULTURAL PRODUCTS AND THEIR ROLES IN HEALTH PROMOTING FUNCTIONS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The School of Nutrition and Food Sciences by Yixiao Shen B.S., Shenyang Agricultural University, 2010 M.S., Shenyang Agricultural University, 2012 December 2015 ACKNOWLEDGEMENTS This dissertation is a lively description of my whole Ph.D. life which is full of love from the ones who played an integral role in the completion of this degree. It is with my deepest gratitude to express my appreciation to those helping me realize my dream. To Dr. Zhimin Xu, thank you so much for offering me the opportunity to pursue my doctoral degree under your mentorship. -
Review Article Caffeates and Caffeamides: Synthetic Methodologies and Their Antioxidant Properties
Hindawi International Journal of Medicinal Chemistry Volume 2019, Article ID 2592609, 15 pages https://doi.org/10.1155/2019/2592609 Review Article Caffeates and Caffeamides: Synthetic Methodologies and Their Antioxidant Properties Merly de Armas-Ricard ,1 Enrique Ruiz-Reyes,2 and Oney Ramírez-Rodríguez 1 1Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén, Eusebio Lillo 667, Coyhaique 5951537, Aysén, Chile 2Department of Chemistry, Basic Sciences Institute, Technical University of Manabí (Universidad Técnica de Manabí), Av Urbina y Che Guevara, Portoviejo, Manabí, Ecuador Correspondence should be addressed to Merly de Armas-Ricard; [email protected] and Oney Ramírez-Rodríguez; [email protected] Received 29 April 2019; Accepted 25 July 2019; Published 11 November 2019 Academic Editor: Rosaria Volpini Copyright © 2019 Merly de Armas-Ricard et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Polyphenols are secondary metabolites of plants and include a variety of chemical structures, from simple molecules such as phenolic acids to condensed tannins and highly polymerized compounds. Caeic acid (3,4-dihydroxycinnamic acid) is one of the hydroxycinnamate metabolites more widely distributed in plant tissues. It is present in many food sources, including coee drinks, blueberries, apples, and cider, and also in several medications of popular use, mainly those based on propolis. Its derivatives are also known to possess anti-inammatory, antioxidant, antitumor, and antibacterial activities, and can contribute to the prevention of atherosclerosis and other cardiovascular diseases. is review is an overview of the available information about the chemical synthesis and antioxidant activity of caeic acid derivatives. -
Plant Extracts Rich in Polyphenols: Antibacterial Agents and Natural Preservatives for Meat and Meat Products
Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: https://www.tandfonline.com/loi/bfsn20 Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products Magdalena Efenberger-Szmechtyk, Agnieszka Nowak & Agata Czyzowska To cite this article: Magdalena Efenberger-Szmechtyk, Agnieszka Nowak & Agata Czyzowska (2020): Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2020.1722060 To link to this article: https://doi.org/10.1080/10408398.2020.1722060 Published online: 11 Feb 2020. Submit your article to this journal Article views: 104 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION https://doi.org/10.1080/10408398.2020.1722060 REVIEW Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products Magdalena Efenberger-Szmechtyk, Agnieszka Nowak, and Agata Czyzowska Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland ABSTRACT KEYWORDS Plant extracts contain large amounts of bioactive compounds, mainly polyphenols. Polyphenols Polyphenols; plant extracts; inhibit the growth of microorganisms, especially bacteria. Their mechanism of action is still not antibacterial activity; meat fully understood but may be related to their chemical structure. They can cause morphological changes in microorganisms, damage bacterial cell walls and influence biofilm formation. Polyphenols also influence protein biosynthesis, change metabolic processes in bacteria cells and inhibit ATP and DNA synthesis (suppressing DNA gyrase). -
Dcaeee2e425a50757de5fd8dedf
http://dx.doi.org/10.5935/0100-4042.20160063 Quim. Nova, Vol. 39, No. 4, 530-533, 2016 UNREMITTING PROBLEMS WITH CHLOROGENIC ACID NOMENCLATURE: A REVIEW Daniel Kremr, Tomáš Bajer, Petra Bajerová*, Silvie Surmová, and Karel Ventura University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic Recebido em 08/12/2015; aceito em 12/01/2016; publicado na web em 12/04/2016 Assuntos Gerais This paper summarizes a problematic nomenclature of isomers belonging to chlorogenic acid family since its first occurrence until present. During decades, there have been a high number of articles dealing with the family. Unfortunately, researchers who want to get knowledge about this topic may be strongly confused after reading a few articles. Due to gradual discoveries and isolations of the individual isomers from plenty of matrices and because of the changing system of terminology after these discoveries, discrepancies among articles are common. The cause of this confusion is that the main compound of the family, 5-caffeoylquinic acid (also well- known as chlorogenic acid), was truly called as 3-caffeoylquinic acid before 1976, when new rules for nomenclature were published. Many researchers and also chemicals suppliers, however, keep using the “pre-IUPAC” nomenclature and wrongly call 3-caffeoylquinic acid as chlorogenic acid, the main substituent of the family. Despite there have been some works struggling with this issue, the problem is still appearing. Therefore, the present work was written. Keywords: chlorogenic acid; neochlorogenic acid; nomenclature; coffee. INTRODUCTION nomenclature is still very common, thus the present paper focuses on a possibility of making this problem clear, thus helping further As is well known nowadays, chlorogenic acids (CGAs) are natu- authors to overcome potential misunderstandings of the nomencla- rally occurring compounds found in all higher plants. -
United States Patent (19) 11 Patent Number: 6,066,311 Cheetham Et Al
US006066311A United States Patent (19) 11 Patent Number: 6,066,311 Cheetham et al. (45) Date of Patent: May 23, 2000 54 PRODUCTION AND USES OF CAFFEIC 63–284117 11/1988 Japan. ACID AND DERVATIVES THEREOF 63–284118 11/1988 Japan. 63–284119 11/1988 Japan. 75 Inventors: Peter S. J. Cheetham; Nigel E. 1013018 1/1989 Japan. Banister, both of Canterbury, United 06199649 7/1994 Japan. Kingdom 06287105 10/1994 Japan. OTHER PUBLICATIONS 73 Assignee: Zylepsis Limited, Ashford, United Kingdom Ellis, B. E., and Amrhein, N., The NIH-Shift During Aromatic OrthoHydroxylation in Higher Plants, Phytochem Appl. No.: 08/750,227 istry, 10, pp. 3069-3072, 1971, Pergamon Press. Freudenberg Karl, Berichte der Deutschen Chemischen PCT Fed: Jun. 7, 1995 Gesellschaft, vol. 53, No. 1, 1920 Weinheim DE, pp. PCT No.: PCT/GB95/01324 232-239. In German-See Ref. AK. Gestentner B., and Conn, Eric E., “The 2-Hydroxylation of S371 Date: Mar. 14, 1997 trans-Cinnamic Acid by Chloroplasts from Melilotus alba S 102(e) Date: Mar. 14, 1997 Desr.” Archives of Biochemistry and Biophysics, 163, pp. 617-624, 1974, Academic Press. 87 PCT Pub. No.: WO95/33706 Sripad, G., Prakash, V., Narasinga Rao, M.S. “Extractability of polyphenols of Sunflower Seed in various Solvents.’, J. PCT Pub. Date: Dec. 14, 1995 BioSci., 4, No. 2, pp. 145-152, 1982. 30 Foreign Application Priority Data Tranchino L., Constantino R., and Sodini G., “Food grade oilseed protein processing, Sunflower and rapeseed.”, Qual Jun. 8, 1994 GB United Kingdom ................... 941 1539 Plant Foods Hum. Nutr., 32, pp. 305-334, 1983. -
Characterization and Differentiation of Spanish Vinegars from Jerez And
foods Article Characterization and Differentiation of Spanish Vinegars from Jerez and Condado de Huelva Protected Designations of Origin Enrique Durán-Guerrero 1,* ,Mónica Schwarz 2, M. Ángeles Fernández-Recamales 3, Carmelo G. Barroso 1 and Remedios Castro 1 1 Analytical Chemistry Department—IVAGRO, Faculty of Sciences, University of Cadiz, 11510 Puerto Real, Spain 2 “Salus Infirmorum” Faculty of Nursing, University of Cadiz, 11001 Cadiz, Spain 3 Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain * Correspondence: [email protected]; Tel.: +34-956-01645 Received: 23 July 2019; Accepted: 9 August 2019; Published: 12 August 2019 Abstract: Thirty one Jerez vinegar samples and 33 Huelva vinegar samples were analyzed for polyphenolic and volatile compound content in order to characterize them and attempt to differentiate them. Sixteen polyphenolic compounds were quantified by means of ultraperformance liquid chromatography method with diode array detection (UPLC–DAD), and 37 volatile compounds were studied by means of stir bar sorptive extraction–gas chromatography–mass spectrometry (SBSE–GC–MS). Spectrophotometric CIELab parameters were also measured for all the samples. The results obtained from the statistical multivariate treatment of the data evidenced a clear difference between vinegars from the two geographical indications with regard to their polyphenolic content, with Jerez vinegars exhibiting a greater phenolic content. Differentiation by the volatile compound content was, however, not so evident. Nevertheless, a considerable differentiation between the two groups of vinegars based on their volatile fraction was achieved. This may bring to light the grape varieties and geographical factors that have a clear influence on such differences. -
Chemical Constituents from Gnaphalium Affine and Their Xanthine Oxidase Inhibitory Activity
Chinese Journal of Natural Chinese Journal of Natural Medicines 2018, 16(5): 03470353 Medicines Chemical constituents from Gnaphalium affine and their xanthine oxidase inhibitory activity ZHANG Wei1, 2, WU Chun-Zhen1, 3, FAN Si-Yang 1, 2* 1 Department of Traditional Chinese Medicine, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China; 2 Innovation Center of Traditional Chinese Medicine, China State Institute of Pharmaceutical Industry, Shanghai 201203, China; 3 Sinopharm Health Industry Research Co., Ltd., Shanghai 201203, China Available online 20 May, 2018 [ABSTRACT] Gnaphalium affine D. Don, a medicinal and edible plant, has been used to treat gout in traditional Chinese medicine and popularly consumed in China for a long time. A detailed phytochemical investigation on the aerial part of G. affine led to the isola- tion of two new esters of caffeoylquinic acid named (−) ethyl 1, 4-di-O-caffeoylquinate (1) and (−) methyl 1, 4-di-O-caffeoylquinate (2), together with 35 known compounds (3−37). Their structures were elucidated by spectroscopic data and first-order multiplet analy- sis. All the isolated compounds were tested for their xanthine oxidase inhibitory activity with an in vitro enzyme inhibitory screening −1 −1 assay. Among the tested compounds, 1 (IC50 11.94 μmol·L ) and 2 (IC50 15.04 μmol·L ) showed a good inhibitory activity. The cur- rent results supported the medical use of the plant. [KEY WORDS] Gnaphalium affine; Compositae; Caffeoylquinate; Flavonoid; Xanthine oxidase inhibition [CLC Number] R284 [Document code] A [Article ID] 2095-6975(2018)05-0347-07 vestigation of the aerial part of G. affine that showed a re- Introduction markable secondary metabolite pattern. -
Wine and Grape Polyphenols — a Chemical Perspective
Wine and grape polyphenols — A chemical perspective Jorge Garrido , Fernanda Borges abstract Phenolic compounds constitute a diverse group of secondary metabolites which are present in both grapes and wine. The phenolic content and composition of grape processed products (wine) are greatly influenced by the technological practice to which grapes are exposed. During the handling and maturation of the grapes several chemical changes may occur with the appearance of new compounds and/or disappearance of others, and con- sequent modification of the characteristic ratios of the total phenolic content as well as of their qualitative and quantitative profile. The non-volatile phenolic qualitative composition of grapes and wines, the biosynthetic relationships between these compounds, and the most relevant chemical changes occurring during processing and storage will be highlighted in this review. 1. Introduction Non-volatile phenolic compounds and derivatives are intrinsic com-ponents of grapes and related products, particularly wine. They constitute a heterogeneous family of chemical compounds with several compo-nents: phenolic acids, flavonoids, tannins, stilbenes, coumarins, lignans and phenylethanol analogs (Linskens & Jackson, 1988; Scalbert, 1993). Phenolic compounds play an important role on the sensorial characteris-tics of both grapes and wine because they are responsible for some of organoleptic properties: aroma, color, flavor, bitterness and astringency (Linskens & Jackson, 1988; Scalbert, 1993). The knowledge of the relationship between the quality of a particu-lar wine and its phenolic composition is, at present, one of the major challenges in Enology research. Anthocyanin fingerprints of varietal wines, for instance, have been proposed as an analytical tool for authen-ticity certification (Kennedy, 2008; Kontoudakis et al., 2011). -
Enzymatic Synthesis and Hydrolysis of Linear Alkyl and Steryl Hydroxycinnamic Acid Esters
Research Collection Doctoral Thesis Enzymatic Synthesis and Hydrolysis of Linear Alkyl and Steryl Hydroxycinnamic Acid Esters Author(s): Schär, Aline Lea Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010670414 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 23265 Enzymatic Synthesis and Hydrolysis of Linear Alkyl and Steryl Hydroxycinnamic Acid Esters A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by Aline Lea Schär MSc ETH in Food Science, ETH Zurich born on 24.01.1987 citizen of Madiswil (BE) accepted on the recommendation of Prof. Dr. Laura Nyström, examiner Dr. Pierre Villeneuve, co-examiner Prof. Dr. Evangelos Topakas, co-examiner 2016 Wir treten auf. Wir spielen. Wir treten ab. Moritz Leuenberger Abstract Phenolic acids are natural antioxidants found widely in the plant kingdom in various forms. In the focus of this thesis were hydroxycinnamic acids, namely ferulic acid, caffeic acid, sinapic acid and p-coumaric acid. In multiphase food systems, the polarity of the phenolic antioxidant is a crucial property, which can be adjusted through esterification. Nowadays, an enzymatic procedure is often preferred for this purpose over a chemically catalyzed reaction. However, a phenolic hydroxyl group in para-position in combination with an unsaturated side chain makes enzymatic esterification of hydroxycinnamic acids by lipases challenging. Since this is the case for the hydroxycinnamic acids mentioned above, it is of interest to find efficient ways to enzymatically esterify them. -
Characterization of Phytochemicals in Berry Fruit Wines Analyzed
foods Article Characterization of Phytochemicals in Berry Fruit Wines Analyzed by Liquid Chromatography Coupled to Photodiode-Array Detection and Electrospray Ionization/Ion Trap Mass Spectrometry (LC-DAD-ESI-MSn) and Their Antioxidant and Antimicrobial Activity Agata Czy˙zowska* , Agnieszka Wilkowska , Agnieszka Staszczak (Mianowska) and Agnieszka Nowak Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wolczanska Street, 90-924 Lodz, Poland; [email protected] (A.W.); [email protected] (A.S.); [email protected] (A.N.) * Correspondence: [email protected] Received: 29 September 2020; Accepted: 26 November 2020; Published: 1 December 2020 Abstract: Fruits are a valuable source of phytochemicals. However, there is little detailed information about the compounds contained in fruit wines. In this study, wines from six different berries were analyzed using HPLC-DAD-ESI-MSn. About 150 compounds were identified, including anthocyanins (34), hydroxycinnamic acids (12) and flavonols (36). Some of the compounds were identified for the first time in berry wines. The blackberry wines were found to contain the largest number of bioactive compounds (59). Elderberry wines where the richest source of polyphenols (over 1000 mg/L) and contained the largest amounts of all of the analyzed groups of compounds (hydroxycinnamic acids, anthocyanins and flavonols). The lowest concentration of polyphenols was observed in the wines made from cranberries and bilberries (less than 500 mg/L). The antioxidant activity was determined in relation to ABTS+, DPPH, and FRAP. The highest values were observed in the blackberry wines, and the lowest for the cranberry wines. -
Plantago Media L.—Explored and Potential Applications of an Underutilized Plant
plants Review Plantago media L.—Explored and Potential Applications of an Underutilized Plant Radu Claudiu Fierascu 1,2, Irina Fierascu 1,3,* , Alina Ortan 3 and Alina Paunescu 4 1 National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; fi[email protected] 2 Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania 3 University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania; [email protected] 4 Department of Natural Sciences, University of Pitesti, 1 Targu din Vale Str., Pitesti, 110040 Arges, Romania; [email protected] * Correspondence: [email protected] Abstract: The search of valuable natural compounds should be directed towards alternative vegetal resources, and to the re-discovery of underutilized plants. Belonging to the Plantaginaceae family, the hoary plantain (Plantago media L.) represents one of the lesser studied species from the Plantago genus. The literature study revealed the under-utilization of the hoary plantain, a surprising aspect, considering its widespread. If the composition of Plantago media L. is rather well established, its applications are not nearly studied as for other Plantago species. The goal of the present paper is to summarize the findings regarding the applications of P. media, and, having as starting point the applications of related species, to propose new emerging areas of research, such as the biomedical applications validation through in vivo assays, and the evaluation of its potential towards indus- trial applications (i.e., development of food or personal care products), pisciculture or zootechny, phytoremediation and other environmental protection applications, or in the nanotechnology area Citation: Fierascu, R.C.; Fierascu, I.; (materials phytosynthesis). -
Comprehensive Chemical and Sensory Assessment of Wines Made from White Grapes of Vitis Vinifera Cultivars Albillo Dorado And
foods Article Comprehensive Chemical and Sensory Assessment of Wines Made from White Grapes of Vitis vinifera Cultivars Albillo Dorado and Montonera del Casar: A Comparative Study with Airén José Pérez-Navarro 1 , Pedro Miguel Izquierdo-Cañas 2,3, Adela Mena-Morales 2, Juan Luis Chacón-Vozmediano 2, Jesús Martínez-Gascueña 2, Esteban García-Romero 2, 1, 1, Isidro Hermosín-Gutiérrez y and Sergio Gómez-Alonso * 1 Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain; [email protected] 2 Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), Ctra. Albacete s/n, 13700 Tomelloso, Spain; [email protected] (P.M.I.-C.); [email protected] (A.M.-M.); [email protected] (J.L.C.-V.); [email protected] (J.M.-G.); [email protected] (E.G.-R.) 3 Parque Científico y Tecnológico de Castilla-La Mancha, Paseo de la Innovación 1, 02006 Albacete, Spain * Correspondence: [email protected] In memoriam. y Received: 17 August 2020; Accepted: 10 September 2020; Published: 12 September 2020 Abstract: The ability to obtain different wines with a singular organoleptic profile is one of the main factors for the wine industry’s growth, in order to appeal to a broad cross section of consumers. Due to this, white wines made from the novel grape genotypes Albillo Dorado and Montonera del Casar (Vitis vinifera L.) were studied and compared to the well-known Airén at two consecutive years. Wines were evaluated by physicochemical, spectrophotometric, high-performance liquid chromatography–diode array detection–mass spectrometry, gas chromatography–mass spectrometry and sensory analyses.