Chlorogenic Acids – Their Properties, Occurrence and Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Extracts Rich in Polyphenols: Antibacterial Agents and Natural Preservatives for Meat and Meat Products
Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: https://www.tandfonline.com/loi/bfsn20 Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products Magdalena Efenberger-Szmechtyk, Agnieszka Nowak & Agata Czyzowska To cite this article: Magdalena Efenberger-Szmechtyk, Agnieszka Nowak & Agata Czyzowska (2020): Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2020.1722060 To link to this article: https://doi.org/10.1080/10408398.2020.1722060 Published online: 11 Feb 2020. Submit your article to this journal Article views: 104 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION https://doi.org/10.1080/10408398.2020.1722060 REVIEW Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products Magdalena Efenberger-Szmechtyk, Agnieszka Nowak, and Agata Czyzowska Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland ABSTRACT KEYWORDS Plant extracts contain large amounts of bioactive compounds, mainly polyphenols. Polyphenols Polyphenols; plant extracts; inhibit the growth of microorganisms, especially bacteria. Their mechanism of action is still not antibacterial activity; meat fully understood but may be related to their chemical structure. They can cause morphological changes in microorganisms, damage bacterial cell walls and influence biofilm formation. Polyphenols also influence protein biosynthesis, change metabolic processes in bacteria cells and inhibit ATP and DNA synthesis (suppressing DNA gyrase). -
Dcaeee2e425a50757de5fd8dedf
http://dx.doi.org/10.5935/0100-4042.20160063 Quim. Nova, Vol. 39, No. 4, 530-533, 2016 UNREMITTING PROBLEMS WITH CHLOROGENIC ACID NOMENCLATURE: A REVIEW Daniel Kremr, Tomáš Bajer, Petra Bajerová*, Silvie Surmová, and Karel Ventura University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic Recebido em 08/12/2015; aceito em 12/01/2016; publicado na web em 12/04/2016 Assuntos Gerais This paper summarizes a problematic nomenclature of isomers belonging to chlorogenic acid family since its first occurrence until present. During decades, there have been a high number of articles dealing with the family. Unfortunately, researchers who want to get knowledge about this topic may be strongly confused after reading a few articles. Due to gradual discoveries and isolations of the individual isomers from plenty of matrices and because of the changing system of terminology after these discoveries, discrepancies among articles are common. The cause of this confusion is that the main compound of the family, 5-caffeoylquinic acid (also well- known as chlorogenic acid), was truly called as 3-caffeoylquinic acid before 1976, when new rules for nomenclature were published. Many researchers and also chemicals suppliers, however, keep using the “pre-IUPAC” nomenclature and wrongly call 3-caffeoylquinic acid as chlorogenic acid, the main substituent of the family. Despite there have been some works struggling with this issue, the problem is still appearing. Therefore, the present work was written. Keywords: chlorogenic acid; neochlorogenic acid; nomenclature; coffee. INTRODUCTION nomenclature is still very common, thus the present paper focuses on a possibility of making this problem clear, thus helping further As is well known nowadays, chlorogenic acids (CGAs) are natu- authors to overcome potential misunderstandings of the nomencla- rally occurring compounds found in all higher plants. -
Value Addition of Southern African Monkey Orange (Strychnos Spp.): Composition, Utilization and Quality Ruth Tambudzai Ngadze
Value addition of Southern African monkey orange ( Value addition of Southern African monkey orange (Strychnos spp.): composition, utilization and quality Strychnos spp.): composition, utilization and quality Ruth Tambudzai Ngadze 2018 Ruth Tambudzai Ngadze Propositions 1. Food nutrition security can be improved by making use of indigenous fruits that are presently wasted, such as monkey orange. (this thesis) 2. Bioaccessibility of micronutrients in maize-based staple foods increases by complementation with Strychnos cocculoides. (this thesis) 3. The conclusion from Baker and Oswald (2010) that social media improve connections, neglects the fact that it concomitantly promotes solitude. (Journal of Social and Personal Relationships 27:7, 873–889) 4. Sustainable agriculture in developed countries can be achieved by mimicking third world small-holder agrarian systems. 5. Like first time parenting, there is no real set of instructions to prepare for the PhD journey. 6. Undertaking a sandwich PhD is like participating in a survival reality show. Propositions belonging to the thesis, entitled: Value addition of Southern African monkey orange (Strychnos spp.): composition, utilization and quality Ruth T. Ngadze Wageningen, October 10, 2018 Value addition of Southern African monkey orange (Strychnos spp.): composition, utilization and quality Ruth Tambudzai Ngadze i Thesis committee Promotor Prof. Dr V. Fogliano Professor of Food Quality and Design Wageningen University & Research Co-promotors Dr A. R. Linnemann Assistant professor, Food Quality and Design Wageningen University & Research Dr R. Verkerk Associate professor, Food Quality and Design Wageningen University & Research Other members Prof. M. Arlorio, Università degli Studi del Piemonte Orientale A. Avogadro, Italy Dr A. Melse-Boonstra, Wageningen University & Research Prof. -
Isolation and Functional Characterization of a Cdna Coding A
Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L Cinzia Comino, Sergio Lanteri, Ezio Portis, Alberto Acquadro, Annalisa Romani, Alain Hehn, Romain Larbat, Frédéric Bourgaud To cite this version: Cinzia Comino, Sergio Lanteri, Ezio Portis, Alberto Acquadro, Annalisa Romani, et al.. Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenyl- propanoid biosynthesis in Cynara cardunculus L. BMC Plant Biology, BioMed Central, 2007, 7 (1), pp.14. 10.1186/1471-2229-7-14. hal-01738035 HAL Id: hal-01738035 https://hal.archives-ouvertes.fr/hal-01738035 Submitted on 20 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License BMC Plant Biology BioMed Central Research article Open Access Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus -
Wine-Making with Protection of Must Against Oxidation in a Warm, Semi-Arid Terroir O
Wine-making with Protection of Must against Oxidation in a Warm, Semi-arid Terroir o. Corona Dipartimento di Ingegneria e Tecnologie Agro-Forestali, Universita degli Studi di Palermo, 90128 Palermo, Italy Submitted for publication: November 2009 Accepted for publication: March 201 0 Key words: Enzymatic oxidation, protection against oxidation To protect varietal aromas from oxidation before alcoholic fermentation, two grape must samples were prepared from white grapes potentially low in copper, pre-cooled and supplemented with ascorbic acid and solid CO (trial 2 ) B )' AC02 or S02 (trial S02 The wines prepared from musts protected from oxidation had aroma descriptors that included "passion fruit" and "grapefruit skin". The lower concentrations offtavanols in the AC02 trial demonstrated that the use of solid CO2 as an oxidation preventative instead of S02 reduced the extraction of these polyphenols from the grape solids. The higher concentration of hydroxycinnamoyl tartaric acids of the wine from the AC02 trial with respect to BS02 was ascribed to the lower grape polyphenoloxidase activity induced by the lower oxygen level AC02 B " in the trial, or to the combination of caftaric acid quinone with the S02 in S02 Although the grapes were very ripe (alcohol in wines ~ 14.5% vol), the wines made with musts prepared by the two techniques were characterised by aroma descriptors like "passion fruit" and "grapefruit skin", and these aromas were not detected in the wines prepared from unprotected musts. F or the production of white wine, the grapes are usually pressed Darriet el aI., 1995; Bouchilloux el ai., 1998; Tominaga el ai., after destemming and crushing, and the must that is obtained after 1998; Peyrot des Gachons el ai., 2000; Murat el ai., 2001), can settling is fermented by yeasts at a temperature that generally be oxidised, with a loss of the varietal characters of the wine. -
5-Caffeoylquinic Acid and Caffeic Acid Orally Administered Suppress P-Selectin Expression on Mouse Platelets ⁎ Jae B
Available online at www.sciencedirect.com Journal of Nutritional Biochemistry 20 (2009) 800–805 5-Caffeoylquinic acid and caffeic acid orally administered suppress P-selectin expression on mouse platelets ⁎ Jae B. Park Diet, Genomics, and Immunology Laboratory, BHNRC, ARS, USDA, Beltsville, MD 20705, USA Received 15 February 2008; received in revised form 18 July 2008; accepted 25 July 2008 Abstract Caffeic acid and 5-caffeoylquinic acid are naturally occurring phenolic acid and its quinic acid ester found in plants. In this article, potential effects of 5-caffeoylquinic acid and caffeic acid on P-selectin expression were investigated due to its significant involvement in platelet activation. First, the effects of 5-caffeoylquinic acid and caffeic acid on cyclooxygenase (COX) enzymes were determined due to their profound involvement in regulating P-selectin expression on platelets. At the concentration of 0.05 μM, 5-caffeoylquinic acid and caffeic acid were both able to inhibit COX-I enzyme activity by 60% (Pb.013) and 57% (Pb.017), respectively. At the same concentration, 5-caffeoylquinic acid and caffeic acid were also able to inhibit COX-II enzyme activity by 59% (Pb.012) and 56% (Pb.015), respectively. As expected, 5-caffeoylquinic acid and caffeic acid were correspondingly able to inhibit P-selectin expression on the platelets by 33% (Pb.011) and 35% (Pb.018), at the concentration of 0.05 μM. In animal studies, 5-caffeoylquinic acid and caffeic acid orally administered to mice were detected as intact forms in the plasma. Also, P-selectin expression was respectively reduced by 21% (Pb.016) and 44% (Pb.019) in the plasma samples from mice orally administered 5-caffeoylquinic acid (400 μg per 30 g body weight) and caffeic acid (50 μg per 30 g body weight). -
Production of Verbascoside, Isoverbascoside and Phenolic
molecules Article Production of Verbascoside, Isoverbascoside and Phenolic Acids in Callus, Suspension, and Bioreactor Cultures of Verbena officinalis and Biological Properties of Biomass Extracts Paweł Kubica 1 , Agnieszka Szopa 1,* , Adam Kokotkiewicz 2 , Natalizia Miceli 3 , Maria Fernanda Taviano 3 , Alessandro Maugeri 3 , Santa Cirmi 3 , Alicja Synowiec 4 , Małgorzata Gniewosz 4 , Hosam O. Elansary 5,6,7 , Eman A. Mahmoud 8, Diaa O. El-Ansary 9, Omaima Nasif 10, Maria Luczkiewicz 2 and Halina Ekiert 1,* 1 Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; [email protected] 2 Chair and Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416 Gda´nsk,Poland; [email protected] (A.K.); [email protected] (M.L.) 3 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; [email protected] (N.M.); [email protected] (M.F.T.); [email protected] (A.M.); [email protected] (S.C.) 4 Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, ul. Nowoursynowska 159c, 02-776 Warsaw, Poland; [email protected] (A.S.); [email protected] (M.G.) 5 Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; [email protected] 6 Floriculture, Ornamental Horticulture, -
Phenolic Compounds in Lycopersicon Esculentum L
Running title: Phenolic compounds in Lycopersicon esculentum L. Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmer’ varieties in Northeastern Portugal homegardens Lillian Barros1,2,a, Montserrat Dueñas2,a, José Pinela1, Ana Maria Carvalho1, Celestino Santos Buelga2,*, Isabel C.F.R. Ferreira1,* 1CIMO/Escola Superior Agrária, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal. 2Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain. * Authors to whom correspondence should be addressed (e-mail: [email protected]; telephone +34 923 294537; fax +34 923 294515; e-mail: [email protected], telephone +351273303219, fax +351273325405). A Both authors contributed equally 1 Abstract Tomato (Lycopersicon esculentum L.) is one of the most widely consumed fresh and processed vegetables in the world, and contains bioactive key components. Phenolic compounds are one of those components and, according to the present study, farmer’ varieties of tomato cultivated in homegardens from the northeastern Portuguese region are a source of phenolic compounds, mainly phenolic acid derivatives. Using HPLC-DAD-ESI/MS, it was concluded that a cis p-coumaric acid derivative was the most abundant compound in yellow (“Amarelo”) and round (“Batateiro”) tomato varieties, while 4-O-caffeolyquinic acid was the most abundant one in long (“Comprido”) and heart (“Coração”) varieties. The most abundant flavonoid was quercetin pentosylrutinoside in the four tomato varieties. Yellow tomato presented the highest levels of phenolic compounds (54.23 µg/g fw), including phenolic acids (43.30 µg/g fw) and flavonoids (10.93 µg/g fw). -
Evaluation of Cinnamic Acid and Six Analogues Against Eggs and Larvae of ⋆ Haemonchus Contortus T
Veterinary Parasitology 270 (2019) 25–30 Contents lists available at ScienceDirect Veterinary Parasitology journal homepage: www.elsevier.com/locate/vetpar Research paper Evaluation of cinnamic acid and six analogues against eggs and larvae of ⋆ Haemonchus contortus T Gabriela Mancilla-Montelongoa, Gloria Sarahi Castañeda-Ramírezb, ⁎ Juan Felipe de Jesús Torres-Acostab, Carlos Alfredo Sandoval-Castrob, , Rocío Borges-Argáezc a CONACYT – Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida-Xmatkuil, CP 97100, Mérida, Yucatán, Mexico b Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida-Xmatkuil, CP 97100, Mérida, Yucatán, Mexico c Centro de Investigación Científica de Yucatán, Calle 43 No. 130 × 32 Colonia Chuburná de Hidalgo, CP 97205, Mérida, Yucatán, Mexico ARTICLE INFO ABSTRACT Keywords: This study evaluated the in vitro anthelmintic (AH) activity of cinnamic acid and six analogues against eggs and Haemonchus contortus larvae of Haemonchus contortus. Stock solutions of each compound (trans-cinnamic acid, p-coumaric acid, caffeic Nematode acid, trans-ferulic acid, trans-sinapic acid, 3,4-dimethoxycinnamic acid, and chlorogenic acid) were prepared in Egg hatch test PBS:Tween-20 (1%) for use in the egg hatch test (EHT) and larval exsheathment inhibition test (LEIT) at different Larval exsheathment inhibition test concentrations (25–400 μg/mL). The respective effective concentration 50% (EC ) values with 95% confidence Cinnamic acid analogues 50 intervals were estimated. Mixtures made of all cinnamic acid and its analogues as well as some selected in- Chemical standards dividual compounds were also tested in the EHT. Only ferulic and chlorogenic acids showed AH activity in the EHT (EC50: 245.2 μg/mL (1.26 mM) and 520.8 μg/mL (1.47 mM), respectively) (P < 0.05). -
Agriculture and Forestry
Agriculture & Forestry, Vol. 62 Issue 1: 325-342, 2016, Podgorica 325 DOI: 10.17707/AgricultForest.62.1.35 Ljubica IVANOVIĆ, Ivana MILAŠEVIĆ, Dijana ĐUROVIĆ, Ana TOPALOVIĆ,Mirko KNEŽEVIĆ, Boban MUGOŠA, Miroslav M. VRVIĆ1 APPLICATION OF PLANT BIOTECHNOLOGY TECHNIQUES IN ANTIOXIDANT PRODUCTION SUMMARY Nowadays, antioxidant compounds are receiving increased attention in scholarly literature as well as in research. Antioxidants are a diverse group of compounds that can neutralize free radicals and thus help prevent diseases that are a consequence of oxidative stress. The most common antioxidant compounds are vitamins (A-carotenoids, C and E), thiols molecules (thioredoxins, glutathione), phenolic compounds (phenolic acids and flavonoids), enzymes and metal ions, as well as others. Plants have been shown to be an excellent source of antioxidant compounds, such as carotenoids, polyphenols, vitamins and betalains. Plant biotechnology uses the genetic engineering of agricultural crops as a means of producing foods rich in antioxidant nutrients, whilst plant cells and tissue culture techniques are used for the in vitro increment of antioxidant compounds in plant cells. There are numerous inspiring and promising reports about the possibilities of plant biotechnology that should provoke and encourage more research focused on antioxidant production from plants. The exogenous antioxidant molecules of important to human health (since endogenous antioxidants can be produced by the human cell itself) and the use of genetic engineering and plant cell culture techniques in antioxidant production in commonly used crops are presented in this paper. Keywords: antioxidants, plant biotechnology, genetic engineering, plant tissue culture INTRODUCTION There has been a growing interest in the role of antioxidants in chronic diseases caused by oxidative stress. -
Characterization of Phytochemicals in Berry Fruit Wines Analyzed
foods Article Characterization of Phytochemicals in Berry Fruit Wines Analyzed by Liquid Chromatography Coupled to Photodiode-Array Detection and Electrospray Ionization/Ion Trap Mass Spectrometry (LC-DAD-ESI-MSn) and Their Antioxidant and Antimicrobial Activity Agata Czy˙zowska* , Agnieszka Wilkowska , Agnieszka Staszczak (Mianowska) and Agnieszka Nowak Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wolczanska Street, 90-924 Lodz, Poland; [email protected] (A.W.); [email protected] (A.S.); [email protected] (A.N.) * Correspondence: [email protected] Received: 29 September 2020; Accepted: 26 November 2020; Published: 1 December 2020 Abstract: Fruits are a valuable source of phytochemicals. However, there is little detailed information about the compounds contained in fruit wines. In this study, wines from six different berries were analyzed using HPLC-DAD-ESI-MSn. About 150 compounds were identified, including anthocyanins (34), hydroxycinnamic acids (12) and flavonols (36). Some of the compounds were identified for the first time in berry wines. The blackberry wines were found to contain the largest number of bioactive compounds (59). Elderberry wines where the richest source of polyphenols (over 1000 mg/L) and contained the largest amounts of all of the analyzed groups of compounds (hydroxycinnamic acids, anthocyanins and flavonols). The lowest concentration of polyphenols was observed in the wines made from cranberries and bilberries (less than 500 mg/L). The antioxidant activity was determined in relation to ABTS+, DPPH, and FRAP. The highest values were observed in the blackberry wines, and the lowest for the cranberry wines. -
A GDSL Lipase-Like from Ipomoea Batatas Catalyzes Efficient
ARTICLE https://doi.org/10.1038/s42003-020-01387-1 OPEN A GDSL lipase-like from Ipomoea batatas catalyzes efficient production of 3,5-diCQA when expressed in Pichia pastoris Sissi Miguel1,6, Guillaume Legrand2,6, Léonor Duriot1, Marianne Delporte2, Barbara Menin3, Cindy Michel1, 1234567890():,; Alexandre Olry3, Gabrielle Chataigné2, Aleksander Salwinski1, Joakim Bygdell4, Dominique Vercaigne2, ✉ ✉ ✉ Gunnar Wingsle5, Jean Louis Hilbert 2,7, Frédéric Bourgaud1,7 , Alain Hehn 3,7 & David Gagneul2,7 The synthesis of 3,5-dicaffeoylquinic acid (3,5-DiCQA) has attracted the interest of many researchers for more than 30 years. Recently, enzymes belonging to the BAHD acyl- transferase family were shown to mediate its synthesis, albeit with notably low efficiency. In this study, a new enzyme belonging to the GDSL lipase-like family was identified and proven to be able to transform chlorogenic acid (5-O-caffeoylquinic acid, 5-CQA, CGA) in 3,5- DiCQA with a conversion rate of more than 60%. The enzyme has been produced in different expression systems but has only been shown to be active when transiently synthesized in Nicotiana benthamiana or stably expressed in Pichia pastoris. The synthesis of the molecule could be performed in vitro but also by a bioconversion approach beginning from pure 5-CQA or from green coffee bean extract, thereby paving the road for producing it on an industrial scale. 1 Plant Advanced Technologies, Vandœuvre-lès-Nancy, France. 2 UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, 59000 Lille, France. 3 UniversitédeLorraine-INRAE,LAE,54000Nancy,France.