Review Article Caffeates and Caffeamides: Synthetic Methodologies and Their Antioxidant Properties

Total Page:16

File Type:pdf, Size:1020Kb

Review Article Caffeates and Caffeamides: Synthetic Methodologies and Their Antioxidant Properties Hindawi International Journal of Medicinal Chemistry Volume 2019, Article ID 2592609, 15 pages https://doi.org/10.1155/2019/2592609 Review Article Caffeates and Caffeamides: Synthetic Methodologies and Their Antioxidant Properties Merly de Armas-Ricard ,1 Enrique Ruiz-Reyes,2 and Oney Ramírez-Rodríguez 1 1Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén, Eusebio Lillo 667, Coyhaique 5951537, Aysén, Chile 2Department of Chemistry, Basic Sciences Institute, Technical University of Manabí (Universidad Técnica de Manabí), Av Urbina y Che Guevara, Portoviejo, Manabí, Ecuador Correspondence should be addressed to Merly de Armas-Ricard; [email protected] and Oney Ramírez-Rodríguez; [email protected] Received 29 April 2019; Accepted 25 July 2019; Published 11 November 2019 Academic Editor: Rosaria Volpini Copyright © 2019 Merly de Armas-Ricard et al. ­is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Polyphenols are secondary metabolites of plants and include a variety of chemical structures, from simple molecules such as phenolic acids to condensed tannins and highly polymerized compounds. Caeic acid (3,4-dihydroxycinnamic acid) is one of the hydroxycinnamate metabolites more widely distributed in plant tissues. It is present in many food sources, including coee drinks, blueberries, apples, and cider, and also in several medications of popular use, mainly those based on propolis. Its derivatives are also known to possess anti-inammatory, antioxidant, antitumor, and antibacterial activities, and can contribute to the prevention of atherosclerosis and other cardiovascular diseases. ­is review is an overview of the available information about the chemical synthesis and antioxidant activity of caeic acid derivatives. Considering the relevance of these compounds in human health, many of them have been the focus of reviews, taking as a center their obtaining from the plants. ­ere are few revisions that compile the chemical synthesis methods, in this way, we consider that this review does an important contribution. 1. Introduction blueberries, apples, and cider [26], and also in several medica- tions of popular use, mainly those based on propolis. Its deriv- Polyphenols are secondary metabolites of plants and include atives are also known to possess anti-inammatory [27, 28], a variety of chemical structures, from simple molecules such antioxidant [29–31], antitumor [32–39] and antibacterial activ- as phenolic acids to condensed tannins and highly polymer- ities [40–42], and can contribute to the prevention of athero- ized compounds. ­e benets of polyphenols on human sclerosis and other cardiovascular diseases [30, 43]. health are oen ascribed to their potential ability to act as Although there are many literature reports that address antioxidants [1, 2]. ­e phenolic derivatives, such as caeic the dierent caeate biological activities, much research acid, catechol, catechin, vanillic acid, eugenol, and thymol, act remains to be done on this family of polyphenols, and new as natural antimicrobial agents. As components of herbs and derivatives with potentially higher activity than natural or spices, that oen provide unique avoring properties, many synthetic products reported can be obtained. In this review, of these compounds have been used by humans for centuries. we will show several synthetic methods and the antioxidant ­ese agents protect human health and extend the shelf life activity of these compounds. of foods [3]. Catechol derivateives with antitumor [4–14], antifungal [15] and antibacterial [16–23] activities, among others [24, 25], have been reported in the literature. 2. Chemical Synthesis of Caffeic Acid ­ere are two fundamental classes of phenolic acids, Derivatives hydroxycinnamics (C6–C3) and hydroxybenzoics (C6–C1). Caeic acid (3,4-dihydroxycinnamic acid) is one of the hydrox- Polyphenol and its derivatives may be obtained through ycinnamate metabolites more widely distributed in plant tis- organic synthesis methodologies from caeic acid itself or sues. It is present in many food sources, including coee drinks, from other chemical precursors. 2 International Journal of Medicinal Chemistry N - O O PF 6 NHR R N HO 2 3 HO R2 OH N N N(CH3)2 BOP/NEt O 3 R3 P N(CH3)2 HO DMF/CH2Cl2 HO BOP reagent N(CH3)2 DCC, Amine RT or reux N C N O HO R DCC reagent N H HO CH3 . N N C N CH3 HCl N H3C N N N EDC reagent - PF - N N 6 Cl O N HATU reagent N N O Cl O n OH NH2 OAc O OTBS HO H3CO HO OAc Cl Cl OTBS O n= 1, 2, 3, 5, 7, 10 OCH3 CH Cl , HATU, 2 2 EDC/DMAP/CH Cl N,N-diisopropylethylamine, 2 2 r.t.,overnight OAc H O N OTBS OAc Cl O n O H CO O O 3 OTBS Cl Cl n= 1, 2, 3, 5, 7, 10 OCH3 F«¬®¯° 1: Synthesis of caeic acid amides using some coupling reagents. Caeic acid amides and esters have been synthesized by prepare amides and esters [62, 63]. Yang et al. [58] synthesize several methods. One of the most common methods is from N-Propargyl caeate amide (PACA) transforming this com- caeic acid using coupling reagents, such as (benzotri- pound into di-O-acetyl-caeic acid N-hydroxysuccinimide azol-1-yloxy)tris(dimethylamino)phosphonium hexauoro- ester via the reaction with N,N -disuccinimidyl carbonate in phosphate (BOP reagent), dicyclohexylcarbodiimide (DCC), DMF. ­is ester is transformed in propargyl amide by reaction 1-(bis(dimethylamino)methylene)-1H-[1,2,3]triazolo[4,5-b] with the corresponding amine, which′ simultaneously removes pyridine-1-ium 3-oxide hexauorophosphate (HATU), and the O-acetyl groups (Figure 2). N-Hydroxysuccinimide esters 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochlo- of p-coumaric, ferulic, and caeic acids are used to transfer ride (EDC). Rajan et al. [44], Fu et al. [45], Shi et al. [46], and hydroxycinnamic moiety to other structures. Stoekigt and Jitareanu et al. [47] report the use of BOP to prepare amides Zenk [64] prepared those esters using DCC in dry ethyl acetate from caeic. Fancelli et al. [48], Arliolo et al. [49], Dai et al. and Ishihara et al. [65], using the same protocol, synthesized [50], Misra et al. [41], Chen et al. [51], Misra et al. [40], and Liu avenanthramides (Figure 3). et al. [52], report the use of DCC. Li et al. [53] report the use Di-O-acetyl caeic acid can be transformed into amides HATU, while Kwon et al. [54], Takahashi et al. [55], Chen et al. via acid chloride too [59, 66, 67]. Doiron et al. [67] used [56], and Otero et al. [57] report the use of EDC (Figure 1). acetylated caeic acid to prepare esters and amides; thionyl Other methods use acetylated caeic acid. Caeic acid is chloride with catalytic DMF is preferred to obtain esters, while acetylated with acetic anhydride in basic media (pyridine or cold oxalyl chloride in dichloromethane is preferred in the its derivatives [58–60] or sodium hydroxide [61]) to yield synthesis of the caeamides (Figure 2). ­e acetyl protecting di-O-acetyl caeic acid. ­is intermediate can be used to groups can be removed under basic [58, 62, 63, 67] or acid [53, International Journal of Medicinal Chemistry 3 O O O O O N O O N O O O Ac O/Py O HO 2 OH O O O N OH O O RT/6 h O DMF, 60 °C, 6 h O O HO O O Condition 2 O Condition 1 SOCl Cl 2 Cl DMF, 50 °C, 8 h H N O 2 DMFcat / CH2Cl2 / 0 °C / 3 h O O O O H N N3 Cl AcO N3 2 HO N O N H Py/RT/12 h O H AcO HO O (1) R-NH2/Py, acetone, 0 °C–RT, 20 h; (2) MeOH, THF, HCl, 60 °C, 1 h. O HO R N H HO F«¬®¯° 2: Synthesis of caeic acid amides using di-O-acetyl caeic acid as intermediate. O O O O DCC HO N HO O OH + HO N AcOEt (dry) O HO HO O N-hydroxysuccinimide ester HO COOH Acetone/H2O 24 h HO NH2 OH OH O HO N H COOH HO F«¬®¯° 3: Synthesis of avenanthramides reported by Ishihara et al. [65]. O O O O O O O O S MeO Cl O MeO Cl MeO S OH N nOH N nO H H H N nOH RT MeO 2 MeO MeO RT TPP 130 °C 18 h or 150 °C MW, 90 min O O HO Ph BBr3 MeO Ph N nP N nP H Ph H Ph Ph –70 °C to RT/12 h Ph HO – MeO – CH3SO3 CH3SO3 F«¬®¯° 4: Synthesis of caeic acid derivatives from methylated acid. 4 International Journal of Medicinal Chemistry O O HO TPP/DIAD HO OH + HO R O R THF/RT/2 days HO HO R = 2-(thiophen-2-yl) ethyl, pyridin-4-ylmethyl, pyridin-3-ylmethyl, 2-(pyridin-2-yl) ethyl, pyridin-2-ylmethyl F«¬®¯° 5: Synthesis of caeates by Mitsunobu reaction. O HO O + HO Vinyl ca eate HO Sitosterol Enzyme / 45 °C hexane:2-butanone (9:1, v/v) + HO O O HO O HO Sitosteryl ca eate F«¬®¯° 6: Enzymatic transesterication of vinyl caeate with sitosterol. 59] mild conditions. Other authors use ethyl chloroformate to compounds are caeic acid and 3,4-dihydroxybenzaldehyde. obtain amides from protected caeic acid (Figure 4) [68, 69]. From caeic acid, some authors synthesize alkyl caeates by Hydroxyl groups of caeic acid can be protected by meth- nucleophilic displacement of a halogen atom from an alkyl ylation too. Amides can be synthesized by all methods already halide in a basic medium [60, 73].
Recommended publications
  • The Bioactive Compounds in Agricultural Products and Their Roles in Health Promoting Functions
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2015 The ioB active Compounds in Agricultural Products and Their Roles in Health Promoting Functions Yixiao Shen Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Life Sciences Commons Recommended Citation Shen, Yixiao, "The ioB active Compounds in Agricultural Products and Their Roles in Health Promoting Functions" (2015). LSU Doctoral Dissertations. 2791. https://digitalcommons.lsu.edu/gradschool_dissertations/2791 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THE BIOACTIVE COMPOUNDS IN AGRICULTURAL PRODUCTS AND THEIR ROLES IN HEALTH PROMOTING FUNCTIONS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The School of Nutrition and Food Sciences by Yixiao Shen B.S., Shenyang Agricultural University, 2010 M.S., Shenyang Agricultural University, 2012 December 2015 ACKNOWLEDGEMENTS This dissertation is a lively description of my whole Ph.D. life which is full of love from the ones who played an integral role in the completion of this degree. It is with my deepest gratitude to express my appreciation to those helping me realize my dream. To Dr. Zhimin Xu, thank you so much for offering me the opportunity to pursue my doctoral degree under your mentorship.
    [Show full text]
  • Thesis P.Murciano Martinez 29 February 2016
    Alkaline pretreatments of lignin-rich by-products and their implications for enzymatic degradation Patricia Murciano Martínez Thesis committee Promotor Prof. Dr H. Gruppen Professor of Food Chemistry Wagenigen University Co-promotor Dr M. A. Kabel Assistant Professor, Laboratory of Food Chemistry Wageningen University Other members Prof. Dr G. Zeeman, Wageningen University Prof. Dr C. Felby, University of Copenhagen Dr R. J. A. Gosselink, Wageningen UR Food & Biobased Research Dr J. Wery, Corbion-Purac Biochem, Gorinchem This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Alkaline pretreatments of lignin-rich by-products and their implications for enzymatic degradation Patricia Murciano Martínez Thesis Submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 1 April 2016 at 4 p.m. in the Aula. Patricia Murciano Martínez Alkaline pretreatments of lignin-rich by-products and their implications for enzymatic degradation 162 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in English ISBN: 978-94-6257-662-9 Table of contents Chapter 1 General introduction 1 Chapter 2 Delignification outperforms alkaline extraction as 25 pretreatment for enzymatic fingerprinting of xylan from oil palm
    [Show full text]
  • United States Patent (19) 11 Patent Number: 6,066,311 Cheetham Et Al
    US006066311A United States Patent (19) 11 Patent Number: 6,066,311 Cheetham et al. (45) Date of Patent: May 23, 2000 54 PRODUCTION AND USES OF CAFFEIC 63–284117 11/1988 Japan. ACID AND DERVATIVES THEREOF 63–284118 11/1988 Japan. 63–284119 11/1988 Japan. 75 Inventors: Peter S. J. Cheetham; Nigel E. 1013018 1/1989 Japan. Banister, both of Canterbury, United 06199649 7/1994 Japan. Kingdom 06287105 10/1994 Japan. OTHER PUBLICATIONS 73 Assignee: Zylepsis Limited, Ashford, United Kingdom Ellis, B. E., and Amrhein, N., The NIH-Shift During Aromatic OrthoHydroxylation in Higher Plants, Phytochem Appl. No.: 08/750,227 istry, 10, pp. 3069-3072, 1971, Pergamon Press. Freudenberg Karl, Berichte der Deutschen Chemischen PCT Fed: Jun. 7, 1995 Gesellschaft, vol. 53, No. 1, 1920 Weinheim DE, pp. PCT No.: PCT/GB95/01324 232-239. In German-See Ref. AK. Gestentner B., and Conn, Eric E., “The 2-Hydroxylation of S371 Date: Mar. 14, 1997 trans-Cinnamic Acid by Chloroplasts from Melilotus alba S 102(e) Date: Mar. 14, 1997 Desr.” Archives of Biochemistry and Biophysics, 163, pp. 617-624, 1974, Academic Press. 87 PCT Pub. No.: WO95/33706 Sripad, G., Prakash, V., Narasinga Rao, M.S. “Extractability of polyphenols of Sunflower Seed in various Solvents.’, J. PCT Pub. Date: Dec. 14, 1995 BioSci., 4, No. 2, pp. 145-152, 1982. 30 Foreign Application Priority Data Tranchino L., Constantino R., and Sodini G., “Food grade oilseed protein processing, Sunflower and rapeseed.”, Qual Jun. 8, 1994 GB United Kingdom ................... 941 1539 Plant Foods Hum. Nutr., 32, pp. 305-334, 1983.
    [Show full text]
  • Characterization and Differentiation of Spanish Vinegars from Jerez And
    foods Article Characterization and Differentiation of Spanish Vinegars from Jerez and Condado de Huelva Protected Designations of Origin Enrique Durán-Guerrero 1,* ,Mónica Schwarz 2, M. Ángeles Fernández-Recamales 3, Carmelo G. Barroso 1 and Remedios Castro 1 1 Analytical Chemistry Department—IVAGRO, Faculty of Sciences, University of Cadiz, 11510 Puerto Real, Spain 2 “Salus Infirmorum” Faculty of Nursing, University of Cadiz, 11001 Cadiz, Spain 3 Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain * Correspondence: [email protected]; Tel.: +34-956-01645 Received: 23 July 2019; Accepted: 9 August 2019; Published: 12 August 2019 Abstract: Thirty one Jerez vinegar samples and 33 Huelva vinegar samples were analyzed for polyphenolic and volatile compound content in order to characterize them and attempt to differentiate them. Sixteen polyphenolic compounds were quantified by means of ultraperformance liquid chromatography method with diode array detection (UPLC–DAD), and 37 volatile compounds were studied by means of stir bar sorptive extraction–gas chromatography–mass spectrometry (SBSE–GC–MS). Spectrophotometric CIELab parameters were also measured for all the samples. The results obtained from the statistical multivariate treatment of the data evidenced a clear difference between vinegars from the two geographical indications with regard to their polyphenolic content, with Jerez vinegars exhibiting a greater phenolic content. Differentiation by the volatile compound content was, however, not so evident. Nevertheless, a considerable differentiation between the two groups of vinegars based on their volatile fraction was achieved. This may bring to light the grape varieties and geographical factors that have a clear influence on such differences.
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • Chemical Constituents from Gnaphalium Affine and Their Xanthine Oxidase Inhibitory Activity
    Chinese Journal of Natural Chinese Journal of Natural Medicines 2018, 16(5): 03470353 Medicines Chemical constituents from Gnaphalium affine and their xanthine oxidase inhibitory activity ZHANG Wei1, 2, WU Chun-Zhen1, 3, FAN Si-Yang 1, 2* 1 Department of Traditional Chinese Medicine, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China; 2 Innovation Center of Traditional Chinese Medicine, China State Institute of Pharmaceutical Industry, Shanghai 201203, China; 3 Sinopharm Health Industry Research Co., Ltd., Shanghai 201203, China Available online 20 May, 2018 [ABSTRACT] Gnaphalium affine D. Don, a medicinal and edible plant, has been used to treat gout in traditional Chinese medicine and popularly consumed in China for a long time. A detailed phytochemical investigation on the aerial part of G. affine led to the isola- tion of two new esters of caffeoylquinic acid named (−) ethyl 1, 4-di-O-caffeoylquinate (1) and (−) methyl 1, 4-di-O-caffeoylquinate (2), together with 35 known compounds (3−37). Their structures were elucidated by spectroscopic data and first-order multiplet analy- sis. All the isolated compounds were tested for their xanthine oxidase inhibitory activity with an in vitro enzyme inhibitory screening −1 −1 assay. Among the tested compounds, 1 (IC50 11.94 μmol·L ) and 2 (IC50 15.04 μmol·L ) showed a good inhibitory activity. The cur- rent results supported the medical use of the plant. [KEY WORDS] Gnaphalium affine; Compositae; Caffeoylquinate; Flavonoid; Xanthine oxidase inhibition [CLC Number] R284 [Document code] A [Article ID] 2095-6975(2018)05-0347-07 vestigation of the aerial part of G. affine that showed a re- Introduction markable secondary metabolite pattern.
    [Show full text]
  • Wine and Grape Polyphenols — a Chemical Perspective
    Wine and grape polyphenols — A chemical perspective Jorge Garrido , Fernanda Borges abstract Phenolic compounds constitute a diverse group of secondary metabolites which are present in both grapes and wine. The phenolic content and composition of grape processed products (wine) are greatly influenced by the technological practice to which grapes are exposed. During the handling and maturation of the grapes several chemical changes may occur with the appearance of new compounds and/or disappearance of others, and con- sequent modification of the characteristic ratios of the total phenolic content as well as of their qualitative and quantitative profile. The non-volatile phenolic qualitative composition of grapes and wines, the biosynthetic relationships between these compounds, and the most relevant chemical changes occurring during processing and storage will be highlighted in this review. 1. Introduction Non-volatile phenolic compounds and derivatives are intrinsic com-ponents of grapes and related products, particularly wine. They constitute a heterogeneous family of chemical compounds with several compo-nents: phenolic acids, flavonoids, tannins, stilbenes, coumarins, lignans and phenylethanol analogs (Linskens & Jackson, 1988; Scalbert, 1993). Phenolic compounds play an important role on the sensorial characteris-tics of both grapes and wine because they are responsible for some of organoleptic properties: aroma, color, flavor, bitterness and astringency (Linskens & Jackson, 1988; Scalbert, 1993). The knowledge of the relationship between the quality of a particu-lar wine and its phenolic composition is, at present, one of the major challenges in Enology research. Anthocyanin fingerprints of varietal wines, for instance, have been proposed as an analytical tool for authen-ticity certification (Kennedy, 2008; Kontoudakis et al., 2011).
    [Show full text]
  • Enzymatic Synthesis and Hydrolysis of Linear Alkyl and Steryl Hydroxycinnamic Acid Esters
    Research Collection Doctoral Thesis Enzymatic Synthesis and Hydrolysis of Linear Alkyl and Steryl Hydroxycinnamic Acid Esters Author(s): Schär, Aline Lea Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010670414 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 23265 Enzymatic Synthesis and Hydrolysis of Linear Alkyl and Steryl Hydroxycinnamic Acid Esters A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by Aline Lea Schär MSc ETH in Food Science, ETH Zurich born on 24.01.1987 citizen of Madiswil (BE) accepted on the recommendation of Prof. Dr. Laura Nyström, examiner Dr. Pierre Villeneuve, co-examiner Prof. Dr. Evangelos Topakas, co-examiner 2016 Wir treten auf. Wir spielen. Wir treten ab. Moritz Leuenberger Abstract Phenolic acids are natural antioxidants found widely in the plant kingdom in various forms. In the focus of this thesis were hydroxycinnamic acids, namely ferulic acid, caffeic acid, sinapic acid and p-coumaric acid. In multiphase food systems, the polarity of the phenolic antioxidant is a crucial property, which can be adjusted through esterification. Nowadays, an enzymatic procedure is often preferred for this purpose over a chemically catalyzed reaction. However, a phenolic hydroxyl group in para-position in combination with an unsaturated side chain makes enzymatic esterification of hydroxycinnamic acids by lipases challenging. Since this is the case for the hydroxycinnamic acids mentioned above, it is of interest to find efficient ways to enzymatically esterify them.
    [Show full text]
  • A GDSL Lipase-Like from Ipomoea Batatas Catalyzes Efficient
    ARTICLE https://doi.org/10.1038/s42003-020-01387-1 OPEN A GDSL lipase-like from Ipomoea batatas catalyzes efficient production of 3,5-diCQA when expressed in Pichia pastoris Sissi Miguel1,6, Guillaume Legrand2,6, Léonor Duriot1, Marianne Delporte2, Barbara Menin3, Cindy Michel1, 1234567890():,; Alexandre Olry3, Gabrielle Chataigné2, Aleksander Salwinski1, Joakim Bygdell4, Dominique Vercaigne2, ✉ ✉ ✉ Gunnar Wingsle5, Jean Louis Hilbert 2,7, Frédéric Bourgaud1,7 , Alain Hehn 3,7 & David Gagneul2,7 The synthesis of 3,5-dicaffeoylquinic acid (3,5-DiCQA) has attracted the interest of many researchers for more than 30 years. Recently, enzymes belonging to the BAHD acyl- transferase family were shown to mediate its synthesis, albeit with notably low efficiency. In this study, a new enzyme belonging to the GDSL lipase-like family was identified and proven to be able to transform chlorogenic acid (5-O-caffeoylquinic acid, 5-CQA, CGA) in 3,5- DiCQA with a conversion rate of more than 60%. The enzyme has been produced in different expression systems but has only been shown to be active when transiently synthesized in Nicotiana benthamiana or stably expressed in Pichia pastoris. The synthesis of the molecule could be performed in vitro but also by a bioconversion approach beginning from pure 5-CQA or from green coffee bean extract, thereby paving the road for producing it on an industrial scale. 1 Plant Advanced Technologies, Vandœuvre-lès-Nancy, France. 2 UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, 59000 Lille, France. 3 UniversitédeLorraine-INRAE,LAE,54000Nancy,France.
    [Show full text]
  • Hydrolysis of Phenolic Acid Esters by Esterase Enzymes from Caco-2 Cells and Rat Intestinal Tissue
    MSc project, School of Food Science and Nutrition, University of Leeds, 2012 “Submitted in partial fulfilment of the requirements for the Degree of Master of Science” Hydrolysis of phenolic acid esters by esterase enzymes from Caco-2 cells and rat intestinal tissue. Name Surname 29 August 2012 Abstract Regular consumption of coffee has been associated with a number of health benefits including a reduced risk of type 2 diabetes, and cholorgenic acids and their hydroxycinnamic acid metabolites are thought to be important mediators. However their effectiveness is dependent on their hydrolysis, metabolism and absorption from the gastrointestinal tract. Previous research has shown that hydrolysis occurs in the stomach and large intestine, however little is known about the fate of chlorogenic acids in the small intestine. Chlorogenic acid isomers and phenolic acid methyl esters were incubated with Caco-2 cells and rat intestinal tissue extract to determine if esterase enzymes from these models could hydrolyse the ester link in the compounds. Results of the 2 hour incubations showed that methyl ferulate (19.8% hydrolysis) and methyl caffeate (11.4% hydrolysis) were better hydrolysed than 5-O-caffeoylquinic acid (0.02% hydrolysis) and 3-O- caffeoylquinic acid (0.18% hydrolysis). There was also evidence that hydrolysis occurs via a predominantly intracellular mechanism, as during the 24 hour incubation, 57.1% of methyl ferulate incubated directly with Caco-2 cells was hydrolysed to ferulic acid, compared with 0.25% that was hydrolysed when incubated in medium that had been pre-incubated with Caco-2 cells to test for extracellular esterase activity. Incubation with rat intestine extract showed ability to hydrolyse methyl ferulate but not 5-O-caffeoylquinic acid.
    [Show full text]
  • Characterization of Cell Wall Degrading Enzymes from Chrysosporium Lucknowense C1 and Their Use to Degrade Sugar Beet Pulp
    Characterization of cell wall degrading enzymes from Chrysosporium lucknowense C1 and their use to degrade sugar beet pulp Stefan Kühnel Thesis committee Thesis supervisor Prof. dr. ir. H. Gruppen Professor of Food Chemistry Wageningen University Thesis co-supervisor Dr. H. A. Schols Associate Professor, Laboratory of Food Chemistry Wageningen University Other members Dr. E. Bonnin Institut National de la Recherche Agronomique (INRA), Nantes, France Prof. dr. J. van der Oost Wageningen University Prof. dr. J. G. M. Sanders Wageningen University Dr. J. A. M. de Bont C5 Yeast Company B. V., Bergen op Zoom This research was conducted under the auspices of the Graduate School VLAG (Graduate School of Nutrition, Food Technology, Agrobiotechnology and Health Sciences) Characterization of cell wall degrading enzymes from Chrysosporium lucknowense C1 and their use to degrade sugar beet pulp Stefan Kühnel Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M. J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 9 September 2011 at 4 p.m. in the Aula. Stefan Kühnel Characterization of cell wall degrading enzymes from Chrysosporium lucknowense C1 and their use to degrade sugar beet pulp 192 pages PhD thesis Wageningen University, NL (2011) With references, with summaries in English, Dutch and German ISBN: 978-90-8585-978-9 Abstract Kühnel, S Characterization of cell wall degrading enzymes from Chrysosporium lucknowense C1 and their use to degrade sugar beet pulp Ph.D. thesis Wageningen University, The Netherlands, 2011 Key words Pectin, arabinan, biorefinery, mode of action, branched arabinose oligomers, ferulic acid esterase, arabinohydrolase, pretreatment Sugar beet pulp is the cellulose and pectin-rich debris remaining after sugar extrac- tion from sugar beets.
    [Show full text]
  • Comprehensive Chemical and Sensory Assessment of Wines Made from White Grapes of Vitis Vinifera Cultivars Albillo Dorado And
    foods Article Comprehensive Chemical and Sensory Assessment of Wines Made from White Grapes of Vitis vinifera Cultivars Albillo Dorado and Montonera del Casar: A Comparative Study with Airén José Pérez-Navarro 1 , Pedro Miguel Izquierdo-Cañas 2,3, Adela Mena-Morales 2, Juan Luis Chacón-Vozmediano 2, Jesús Martínez-Gascueña 2, Esteban García-Romero 2, 1, 1, Isidro Hermosín-Gutiérrez y and Sergio Gómez-Alonso * 1 Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain; [email protected] 2 Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), Ctra. Albacete s/n, 13700 Tomelloso, Spain; [email protected] (P.M.I.-C.); [email protected] (A.M.-M.); [email protected] (J.L.C.-V.); [email protected] (J.M.-G.); [email protected] (E.G.-R.) 3 Parque Científico y Tecnológico de Castilla-La Mancha, Paseo de la Innovación 1, 02006 Albacete, Spain * Correspondence: [email protected] In memoriam. y Received: 17 August 2020; Accepted: 10 September 2020; Published: 12 September 2020 Abstract: The ability to obtain different wines with a singular organoleptic profile is one of the main factors for the wine industry’s growth, in order to appeal to a broad cross section of consumers. Due to this, white wines made from the novel grape genotypes Albillo Dorado and Montonera del Casar (Vitis vinifera L.) were studied and compared to the well-known Airén at two consecutive years. Wines were evaluated by physicochemical, spectrophotometric, high-performance liquid chromatography–diode array detection–mass spectrometry, gas chromatography–mass spectrometry and sensory analyses.
    [Show full text]