On the Way to Carbene and Carbyne Complexes ERNST OTTO FISCHER

Total Page:16

File Type:pdf, Size:1020Kb

On the Way to Carbene and Carbyne Complexes ERNST OTTO FISCHER Advances in ORGANOMETALLIC CHEMISTRY VOLUME 14 CONTRIBUTORS TO THIS VOLUME V. G. Albano Kenneth P. Callahan P. Chini Ernst Otto Fischer M. Frederick Hawthorne James A. lbers Steven D. lttel M. F. Lappert P. W. Lednor G. Longoni Yoshio Matsumura Akira Nakamura Rokuro Okawara Sei Otsuka V. S. Petrosyan 0. A. Reutov Hubert Schmidbaur Dietmar Seyferth N. S. Yashina Advances in Organometallic Ch emis tr y EDITED BY F. G. A. STONE ROBERT WEST DEPARTMENT OF INORGANIC CHEMISTRY DEPARTMENT OF CHEMISTRY THE UNIVERSITY UNIVERSITY OF WISCONSIN BRISTOL, ENGLAND MADISON, WISCONSIN VOLUME 14 @ 1976 ACADEMIC PRESS New York * San Francisco * London A Subsidiary of Harcourt Brace Jovanovich, Publishers COPYRIGHT0 1976, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS. ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. 111 Fifth Avenue, New York. New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road. London NWI LIBRARYOF CONGRESSCATALOG CARD NUMBER: 64-16030 ISBN 0-12-031114-3 PRINTED IN THE UNITED STATES OF AMERICA Contents LIST OF CONTRIBUTORS . ix PREFACE xi On the Way to Carbene and Carbyne Complexes ERNST OTTO FISCHER I. Introduction . .1 11. Transition Metal-Carbene Complexes . .3 111. Other Syntheses of Cnrbene Complexes . .6 IV. Reaction Possibilities of Carbene Complexes . .8 V. Transition Metal-Carbyne Complexes . 21 VI . Reaction of Other Peptacarbonylcarbene Complexes with Boron Trihalides . 24 VII. Reaction of Pentacarbonylcarbene Complexes with Halides of Aluminum and Gallium . 27 VIII. Reaction of Lithium Benzoylpentacarbonyltungstate with Triphenyldibromophosphorane . 27 IX. Reactivity of the Carbyne Ligarid . 28 References . 29 Coordination of Unsaturated Molecules to Transition Metals STEVEN D. ITTEL and JAMES A. IBERS I. Introduction . 33 11. Theoretical Models . 35 111. Structural Results . 37 IV. Summary . 59 References . 60 Methyltin Halides and Their Molecular Complexes V. S. PETROSYAN, N. S. YASHINA, and 0. A. REUTOV I. Introduction . 63 11. Methods of Study . 64 111. Structures of Methyltin Halides . 68 IV. Molecular Complexes of Methyltin Halides . 76 V. Conclusion . 91 References . 92 V vi CONTENTS Chemistry of Carbon-Functional Alkylidynetricobalt Nonacarbonyl Cluster Complexes DIETMAR SEY FERTH I. Introduction : General Properties of Alkylidynetricobalt Nonacarbonyl Complexes . 98 11. Synthesis of Alkylidynetricobalt Nonacarbonyl Complexes . 100 111. Chemistry of the Trirobaltcarbon Decacnrbonyl Cation . 110 Iv. Highly Stable Nonacarbonyl Tricobaltcarbon-Substituted Carbonium Ions . 119 v. Decomposition Reactions and Derived Synthetic Applications of Alkylidynetricobalt Konacarbonyl Complexes . 135 VI. Concluding Remarks . 138 References . 141 Ten Years of Metallocarboranes KENNETH P. CALLAHAN and M. FREDERICK HAWTHORNE I. Introduction . 145 11. Metallocarboranes: Synthetic Methods , . 150 111. Twelve-Vertex Metallocarboranes . 155 IV. Thirteen-Vertex Metallocarboranes . 167 V. Fourteen-Vertex Metallocarboranes . 171 VI. Eleven-Vertex hletallocarboranes . 171 VII. Ten-Vertex Metallocarboranes . 175 VIII. Nine-Vertex Metallocarboranes . 178 IX. Oxidative Addition to B-H Bonds . 180 X. Metallocarboranes in Homogeneous Catalysis . 182 References . 183 Recent Advances in Organoantimony Chemistry ROKURO OKAWARA and YOSHIO MATSUMURA I. Introduction . 187 11. Hexacoordinate Mono- and Diorganoantimony Compounds . 188 111. Triorganostibine Sulfide . 192 IV. Tertiary Stibines . 197 References . 202 Pentaalkyls and Alkylidene Trialkyls of the Group V. Elements HUBERT SCHMIDBAUR I. Introduction . 205 11. Simple Nitrogen Ylides . 207 CONTENTS vii 111. Phosphorus Ylides and Pentaalkylphosphoranes . 209 IV. Arsenic Ylides and Pentaalkylarsoranes . 224 V. Antimony Ylides and Pentaalkylstiboranes . 23 1 VI. Bismuth Compounds . 236 VII. Related Compounds of Vanadium, Niobium, and Tantalum . 236 References . 240 Acetylene and Allene Complexes: Their Implication in Homogeneous Catalysis SEI OTSUKA and AKIRA NAKAMURA I. Introduction . 245 11. Acetylene Complexes. 246 111. Allene Complexes . 265 References . 279 High Nuclearity Metal Carbonyl Clusters P. CHINI, G. LONGONI, and V. G. ALBANO I. Introduction . 285 11. Structural Data in the Solid State . 286 111. Structural Data in Solution . 306 IV. Syntheses. 311 V. Methods of Separation . 316 VI . Reactivity . 317 VII. Iron Derivatives . 323 VIII. Ruthenium Derivatives , 324 IX. Osmium Derivatives . 325 X. Cobalt Derivatives , 325 XI. Rhodium Derivatives . 327 XII. Iridium Derivatives . 332 XIII. Nickel Derivatives . 333 XIV. Platinum Derivatives . 334 xv. Bonding Theories . 336 References . 34 1 Free Radicals in Organometallic Chemistry M. F. LAPPERT and P. W. LEDNOR I. Introduction . 345 11. Metal-Centered Organometallic Radicals . 349 111. Other Organometallic Radicals . 367 IV. Bimolecular Homolytic Substitution (SH~)at the Metal Center of an Organometallic Substrate . 370 viii CONTENTS V. Addition or Elimination Radical Reactions , . 381 VI. Appendix . 390 References . 392 SUBJECTINDEX . 401 CUMULATIVELIST OF CONTRIBUTORS . 410 CUMULATIVELIST OF TITLES , . 412 fist of Contributors Numbers in parentheses indicate the pages on which the authors’ contributions begin. V. G. ALBANO(ass), Istiticto de Chtmicu Generale dell’ Universitd, Milano, Italy KENNETH1’. CALLAHAN(143), Metcalj Research Laboratory, Department of Chemistry, Brown University, Providence, Rhode Island P. CHINI(as,;), Istituto de Chirnica Generale dell’ Universitd, Milano, Italy ERNST OTTO FISCHER(1), Inorganic Chemistry Laboratory, Technical University, Munich, West Germany M. FREDERICKHAWTHORNE (143), Department of Chemistry, University of California, Los Angeles, Caltjornia JAMESA. IBERS(33), Depnrtntent oj Chemistry, Northwestern University, Evanston, Illinois STEVEND. ITTEL(33), Central Research and Development Department, E. I. du Pont de Nemours and (’onipany, Wilmington, Delaware M. F. LAPPERT(345), School of Molecular Sciences, University of Sussex, Brighton, England P. W. LEDNOR*(345), School of Molecular Sciences, University of Sussex, Brighton, England G. LONGONI(ass), Istituto de Chiniica Generale dell’ Universitd, Milano, Italy YOSHIOMATbUMURAt (187), Department of Applied Chemistry, Osaka University, Yamadakartzi, Suita, Osaka, Japan AKIRA NAKAliURA (24,5), Department of Chemistry, Faculty of Engineering Science, Osaka Universit!y, Toyonaka, Osaka, Japan ROKUROOKAWARA (187), Department of Applied Chemistry, Osaka Uni- versity, Yamadakami, Suita, Osaka, Japan * Present address: Institut fur Anorganische Chemie der Universitat Munchen, 8 Miinchen 2, Meiserstrasse 1, Germany. t Present address: Japan Synthetic Rubber Co., Ltd., Research Laboratory, 7569 Ikuta, Tama, Kawasaki, Japan. ix X LIST OF CONTRIBUTORS SEI OTSUKA(245), Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan V. S. PETROSYAN(63), Chemistry Department, M. 8. Lomonosov Moscow State University, MOSCOW,USSR 0. A. REUTOV(63), Cheniistry Department, M.V. Lomonosov Moscow State University, MOSCOW,USSR HUBERTScmmBAm (205), Anorganisch-chemisches Laboratorium, Tech- nische Universitat Munchen, Munich, West Germany DIETIIARSEYFEwrn (97), Department of Chemistry, Massachusetts Institute oj Technology, Cambridge, Massachusetts N. S. YAsnIxA (63), Chemistry Department, M.V. Lomonosov Moscow State University, Moscow , USSR Preface The first volume of Advances in Organometallic Chemistry was published early in 1964, and twelve other volumes have appeared since that date. The Editors have sought to produce a series of books containing specialist articles on all aspects of this field. The success of the series, as judged by the reviews of the books published in the journal literature, is due in large measure to the cooperation and help we have received from some one hundred and ten contributors. However, the demand for authoritative surveys of topics in organometallic chemistry derives mainly from the continued resilience of this area of endeavor, one measure of which is the annual appearance of over 2000 primary journal articles. After a little over a decade of publication it seemed to the Editors that we should arrange for the appearance of a commemorative Volume con- taining articles by distinguished chemists which would emphasize both the wide scope of organometallic chemistry and its international character. The number of contributors was necessarily limited by the need to keep the book to a reasonable length. This presented a problem in relation to selection of authors. Our choice is, therefore, a personal one guided to some degree by geographical distribution and the desire to balance transition metal chemistry versus main group metal chemistry. F. G. A. STONE It. WEST xi This Page Intentionally Left Blank Advances in ORGANOMETALLIC CHEMISTRY VOLUME 14 This Page Intentionally Left Blank On the Way to Carbene and Carbyne Complexes* ERNST OTTO FISCHER fnorganic Chemistry labardory Technical University Munich, West Germoqy I. Introduction . 11. Transition Metal-Carbene Complexes . A. Preparation of the First Carbene Complexes . B. Bonding Concepts and Spectroscopic Findings . 111. Other Syntheses of Carbene Complexes . IV. Reaction Possibilities of Carbene Complexes . A. Addition and CO Substitution . B. Transition Metal-Carbene Complex Residues aa
Recommended publications
  • Synthesis and Reactivity of Cyclopentadienyl Based Organometallic Compounds and Their Electrochemical and Biological Properties
    Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties Sasmita Mishra Department of Chemistry National Institute of Technology Rourkela Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties Dissertation submitted to the National Institute of Technology Rourkela In partial fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry by Sasmita Mishra (Roll Number: 511CY604) Under the supervision of Prof. Saurav Chatterjee February, 2017 Department of Chemistry National Institute of Technology Rourkela Department of Chemistry National Institute of Technology Rourkela Certificate of Examination Roll Number: 511CY604 Name: Sasmita Mishra Title of Dissertation: ''Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties We the below signed, after checking the dissertation mentioned above and the official record book(s) of the student, hereby state our approval of the dissertation submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry at National Institute of Technology Rourkela. We are satisfied with the volume, quality, correctness, and originality of the work. --------------------------- Prof. Saurav Chatterjee Principal Supervisor --------------------------- --------------------------- Prof. A. Sahoo. Prof. G. Hota Member (DSC) Member (DSC) ---------------------------
    [Show full text]
  • Molecular Summary Tables
    Summary Tables of Organic, Silicon, Boron, Aluminum and Organometallic Molecules and Exemplary Results on Condensed Matter Physics Tables summarizing the results of the calculated experimental parameters of 800 exemplary solved molecules follow. The closed-form derivations of these molecules can be found in The Grand Theory of Classical Physics posted at http://www.blacklightpower.com/theory/bookdownload.shtml Chapters 15–17, as well as Silicon in Chapter 20, Boron in Chapter 22, and Aluminum and Organometallics in Chapter 23. Condensed matter physics based on first principles with analytical solutions of (i) of the geometrical parameters and energies of the hydrogen bond of H2O in the ice and steam phases, and of H2O and NH3; (ii) analytical solutions of the geometrical parameters and interplane van der Waals cohesive energy of graphite; (iii) analytical solutions of the geometrical parameters and interatomic van der Waals cohesive energy of liquid helium and solid neon, argon, krypton, and xenon are given in Chapter 16. 1 SUMMARY TABLES OF ORGANIC, SILICON, BORON, ORGANOMETALLIC, AND COORDNINATE MOLECULES The results of the determination of the total bond energies with the experimental values are given in the following tables for a large array of functional groups and molecules per class for which the experimental data was available. Here, the total bond energies of exemplary organic, silicon, boron, organometallic, and coordinate molecules whose designation is based on the main functional group were calculated using the functional group composition and the corresponding energies derived previously [1] and compared to the experimental values. References for the experimental values are mainly from Ref.
    [Show full text]
  • Chemical Redox Agents for Organometallic Chemistry
    Chem. Rev. 1996, 96, 877−910 877 Chemical Redox Agents for Organometallic Chemistry Neil G. Connelly*,† and William E. Geiger*,‡ School of Chemistry, University of Bristol, U.K., and Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125 Received October 3, 1995 (Revised Manuscript Received January 9, 1996) Contents I. Introduction 877 A. Scope of the Review 877 B. Benefits of Redox Agents: Comparison with 878 Electrochemical Methods 1. Advantages of Chemical Redox Agents 878 2. Disadvantages of Chemical Redox Agents 879 C. Potentials in Nonaqueous Solvents 879 D. Reversible vs Irreversible ET Reagents 879 E. Categorization of Reagent Strength 881 II. Oxidants 881 A. Inorganic 881 1. Metal and Metal Complex Oxidants 881 2. Main Group Oxidants 887 B. Organic 891 The authors (Bill Geiger, left; Neil Connelly, right) have been at the forefront of organometallic electrochemistry for more than 20 years and have had 1. Radical Cations 891 a long-standing and fruitful collaboration. 2. Carbocations 893 3. Cyanocarbons and Related Electron-Rich 894 Neil Connelly took his B.Sc. (1966) and Ph.D. (1969, under the direction Compounds of Jon McCleverty) degrees at the University of Sheffield, U.K. Post- 4. Quinones 895 doctoral work at the Universities of Wisconsin (with Lawrence F. Dahl) 5. Other Organic Oxidants 896 and Cambridge (with Brian Johnson and Jack Lewis) was followed by an appointment at the University of Bristol (Lectureship, 1971; D.Sc. degree, III. Reductants 896 1973; Readership 1975). His research interests are centered on synthetic A. Inorganic 896 and structural studies of redox-active organometallic and coordination 1.
    [Show full text]
  • View of Bicyclic Cobalt Cation 42
    University of Alberta Cobalt(III)-Mediated Cycloalkenyl-Alkyne Cycloaddition and Cycloexpansion Reactions by Bryan Chi Kit Chan A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy Chemistry ©Bryan Chi Kit Chan Spring 2010 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Examining Committee Jeffrey M. Stryker, Chemistry, University of Alberta Martin Cowie, Chemistry, University of Alberta Jillian M. Buriak, Chemistry, University of Alberta Frederick G. West, Chemistry, University of Alberta William C. McCaffrey, Chemical Engineering, University of Alberta Lisa Rosenberg, Chemistry, University of Victoria Abstract A comprehensive investigation of cycloalkenyl-alkyne coupling reactions mediated by cobalt(III) templates is presented. The in situ derived cationic η3- cyclohexenyl complexes of cobalt(III) react with some terminal alkynes to afford either η1,η4-bicyclo[4.3.1]decadienyl or η2,η3-vinylcyclohexenyl products, depending on the type and concentration of the alkyne. The mechanism for this cyclohexenyl-alkyne cycloaddition reaction is consistent with the previously reported cobalt-mediated [3 + 2 + 2] allyl-alkyne coupling reaction.
    [Show full text]
  • Visiting Professors
    RESEARCH ACTIVITIES Visiting Professors Visiting Professor KITAGAWA, Hiroshi (from Kyushu University) Creation of Novel Functional Nano Materials Based on Proton-Coupled Electronic Properties Dynamics of molecules and ions in “coordination nano-space” are acted by characteristic nano-fields such as intermolecular interaction, coulomb interaction, catalytic action, etc. This project is to reveal a basic principle of an unusual nano-field acting on coordination space, and to create the nano space where the energy conversions can be easily operated. In particular, we aim at the construction of coordination nano space system which is able to control a series of energy operations such as generation, separation, storage, material conversion of an energy molecule H2, or electron/ion transport. In this year, we have explored a novel hydrogen-energy functional coordination nano-space by using proton-coupled redox and electron-proton interaction. In the present project, we will create new 1) hydrogen- storage nano-materials, 2) highly proton-conductive coordinatiom polymers, 3) highly electron-proton conductive matrerials, etc. Visiting Associate Professor KANAMORI-KATAYAMA, Mutsumi (from RIKEN) Development of the Assay System for Protein-RNA Interactions Recently, it has been cleared that a large amount of non-coding RNA (ncRNA) existed in mammalian cells. Though some ncRNAs are analyzed and cleared to have important functions, what most ncRNAs do is largely unknown. These ncRNAs are thought to function with Protein, RNA or DNA rather than by themselves. Therefore, it is thought that the information of interactions will play an important role to annotate the function of ncRNAs. So, we focused on the protein-RNA interaction (PRI), and have been developing the assay system to obtain PRI information efficiently.
    [Show full text]
  • Cp* Non-Innocence Leads to a Remarkably Weak C−H Bond Via
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors Subscriber access provided by Caltech Library Article Cp* Non-innocence Leads to a Remarkably Weak C-H Bond via Metallocene Protonation Matthew J. Chalkley, Paul H. Oyala, and Jonas C. Peters J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.9b00193 • Publication Date (Web): 21 Feb 2019 Downloaded from http://pubs.acs.org on February 21, 2019 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
    [Show full text]
  • Synthesis, Characterization, and Molecular Structure of Bis(Tetraphenylcyclopentdienyl)Rhodium(II)⊗ James E
    Marshall University Marshall Digital Scholar Chemistry Faculty Research Chemistry 1995 Synthesis, Characterization, and Molecular Structure of Bis(tetraphenylcyclopentdienyl)rhodium(II)⊗ James E. Collins Michael Castellani Marshall University, [email protected] Arnold L. Rheingold Edward J. Miller William E. Geiger See next page for additional authors Follow this and additional works at: http://mds.marshall.edu/chemistry_faculty Part of the Chemistry Commons Recommended Citation Collins, J. E.; Castellani, M. P.; Rheingold, A. L.; Miller, E. J.; Geiger, W. E.; Rieger, A. L.; Rieger, P. H., Synthesis, Characterization, and Molecular Structure of Bis (tetraphenylcyclopentdienyl) rhodium (II). Organometallics 1995, 14 (3), 1232-1238. This Article is brought to you for free and open access by the Chemistry at Marshall Digital Scholar. It has been accepted for inclusion in Chemistry Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. Authors James E. Collins, Michael Castellani, Arnold L. Rheingold, Edward J. Miller, William E. Geiger, Anne L. Rieger, and Philip H. Rieger This article is available at Marshall Digital Scholar: http://mds.marshall.edu/chemistry_faculty/20 Synthesis, Characterization, and Molecular Structure of Bis(tetraphenylcyclopentdienyl)rhodium(II)⊗ James E. Collins,†1Michael P. Castellani,*,† Arnold L. Rheingold,*,‡ Edward J. Miller,§,♦ William E. Geiger,*,§ Anne L. Rieger,∇1and Philip H. Rieger*,∇ Departments of Chemistry, Marshall University, Huntington, West Virginia 25755; University of Delaware, Newark, Delaware, 19716; University of Vermont, Burlington, Vermont, 05405; and Brown University, Providence, Rhode Island, 02912. Abstract A 5 day diglyme reflux of Rh(acac)3 and K(C5HPh4), followed by treatment with aqueous HPF6, produces orange-yellow [(C5HPh4)2Rh]PF6 in 40 - 50% yield.
    [Show full text]
  • First-Principles Simulations of the Interaction of Metal-Organic Molecules with a Surface and As Building Blocks for Nanodevices
    Universite´ de Strasbourg IPCMS: CNRS - UMR 7504 These` de Doctorat FIRST-PRINCIPLES SIMULATIONS OF THE INTERACTION OF METAL-ORGANIC MOLECULES WITH A SURFACE AND AS BUILDING BLOCKS FOR NANODEVICES par Burak Ozdamar¨ pr´esent´eeen vue d'obtenir le grade de Docteur de l'Universit´ede Strasbourg Sp´ecialit´e:Physique de la mati`erecondens´eeet des mat´eriaux Soutenue publiquement le 28/10/2016 `al'IPCMS devant le jury compos´ede: Prof. Dr. Roberto Marquardt UdS-LCQ Pr´esident Prof. Dr. J¨urg Hutter UZH-CMSZH Rapporteur Prof. Dr. Andres Saul AMU-CINaM Rapporteur Prof. Dr. Fabrizio Cleri UL1-IEMN Rapporteur Dr. S´ebastien Le Roux UdS-IPCMS Examinateur Prof. Dr. Mauro Boero UdS-IPCMS Directeur de th`ese Tired of lying in the sunshine staying home to watch the rain You are young and life is long and there is time to kill today And then one day you find ten years have got behind you No one told you when to run, you missed the starting gun. Roger Waters iii Abstract UNIVERSITE´ DE STRASBOURG Institut de Physique et Chimie des Mat´eriauxde Strasbourg Doctor of Philosophy FIRST-PRINCIPLES SIMULATIONS OF THE INTERACTION OF METAL-ORGANIC MOLECULES WITH A SURFACE AND AS BUILDING BLOCKS FOR NANODEVICES by Burak Ozdamar¨ The purpose of this study is to investigate the interaction of organometallic com- plexes with transition metals. This topic in question has a broad array of applica- tions in a number of domain; realization of nanojunctions for molecular nanoelec- tronics, biological imaging and nanocatalysis. Within this general framework, this PhD project aims to model the fundamental interactions of molecular building blocks at the atomic level in order to understand their role in the assembly and functionalization of nanostructures.
    [Show full text]
  • Synthesis of Novel Cyclopentadienyl Cobalt(I)-Complexes and Their Application in [2+2+2] Cycloaddition Reactions
    Synthesis of Novel Cyclopentadienyl Cobalt(I)-Complexes and their Application in [2+2+2] Cycloaddition Reactions Dissertation to obtain the academic degree „Doktor der Naturwissenschaften“ (Dr. rer. nat.) submitted at the Mathematisch-Naturwissenschaftlichen Fakultät an der Universität Rostock submitted by MSc. Indre Thiel born on November 27th 1987 in Düsseldorf Rostock, September 13th 2013 I The work of this thesis was conducted between January 2011 and October 2013 under the supervision of Dr. Marko Hapke and Professor Dr. Uwe Rosenthal at the Leibniz-Institut für Katalyse an der Universität Rostock. Referees: 1st Referee: Professor Dr. Uwe Rosenthal, Leibniz-Institut für Katalyse e.V. and der Universität Rostock 2nd Referee: Professor Dr. Matthias Tamm, Technische Universität Braunschweig Thesis Submission: September 13th 2013 PhD Defense: December 3rd 2013 II III Acknowledgement Writing a dissertation takes all kinds of support. Therefore I would like to express my sincere gratitude to all those who made it possible and generously gave their time and expertise. First and foremost I am deeply indebted to my supervisor Dr. Marko Hapke for making me part of his group and providing me with this interesting research project but also giving me the space to pursue my own ideas. His endless believe in me made it possible to push through all the rough stretches that are part of research. My sincere appreciation for many helpful and complaisant discussions and continuous guidance goes to Professor Dr. Uwe Rosenthal. A huge “Thank you” goes to my group members and former group members Fabian Fischer, Phillip Jungk, Dr. Karolin Kral and Dr. Nico Weding.
    [Show full text]
  • Comparative Study of Molecular Orbitals of Cobaltocene and Nickelocene Based on Molecular Mechanics
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 2011, 3 (2):297-310 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Comparative Study of Molecular Orbitals of Cobaltocene and Nickelocene Based on Molecular Mechanics Gayasuddin Khan Department of Physics, K. S. Saket Post Graduate College, Ayodhya, Faizabad, U.P. INDIA _____________________________________________________________________________ ABSTRACT Magnitude of contribution of AOs and contribution of electron in each occupied molecular orbital of cobaltocene and nickelocene based on eigenvalues, eigenvectors and population analysis have been studied. The 3D structure of both cobaltocene and nickelocene were drawn on workspace software associated with CAChe and their geometries were optimized with DFT method. The evaluation of eigenvalues, eigenvector and other parameters were done by using molecular mechanics with EHT option. The study has concluded that the first eight MOs in cobaltocene and nickelocene have contribution from 2p z orbitals of carbon of C5H5¯ and 3d orbitals of metal. The total involvement in respect of bonding between C 5H5¯ and the metal orbitals as derived from coefficient value is 22.346 in cobaltocene and 23.5716 in nickelocene. The population analysis shows that only 2p z orbitals of carbon of C 5H5¯ and 3d orbitals of metal provide electrons to MOs of cobaltocene and nickelocene. Keywords: Cobaltocene, Nickelocene, atomic orbital, molecular orbital, eigenvector, eigenvalue and population analysis. _____________________________________________________________________________ INTRODUCTION In the last decade, there has been a phenomenal advancement in theoretical inorganic chemistry [1, 2], much faster computers are available and commercial programs incorporating the latest methods have become widely available and are capable of providing more information about molecular orbitals (MOs), with a sample input of chemical formula.
    [Show full text]
  • Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title THE SYNTHESES AND ELECTRONIC STRUCTURES OF DECAMETHYLMETALLOCENES Permalink https://escholarship.org/uc/item/4ds15643 Author Robbins, J.L. Publication Date 1981-03-01 eScholarship.org Powered by the California Digital Library University of California LBL-12258 (' r To be published in the Journal of the American Chemical Society THE SYNTHESES AND ELECTRONIC STRUCTURES OF DECAMETHYLMETALLOCENES J.L. Robbins, N. Edelstein, B. Spencer, and J.C. Smart March 1981 TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tedt Info. Diu is ion, Ext. 6782 Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 I ":c/ '] I DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
    [Show full text]
  • THE REACTIONS of TRIMETHYL GROUP Va LEWIS BASES with SIMPLE BORON LEWIS ACIDS
    THE REACTIONS OF TRIMETHYL GROUP Va LEWIS BASES WITH SIMPLE BORON LEWIS ACIDS by DONALD CHARLES MENTE, B.A. A DISSERTATION IN CHEMISTRY Submitted to the Graduate Faculty of Texas Tech University m Partial FulfiHment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved May, 1975 AJO'^ ACKNOWLEDGMENTS The author wishes to express his sincere gratitude to Dr. Jerry L. Mills for his direction of this dissertation and to Dr. Roy E. Mitchell for his aid during the calori- metric determinations. Also acknowledged are the Texas Tech Graduate School and the Robert A. Welch Foundation for their generous financial support. 11 CONTENTS ACKNOWLEDGMENTS ii LIST OF TABLES iv LIST OF FIGURES vi I. INTRODUCTION 1 II. EXPERIMENTAL 5 Instrumental 5 Special Apparatus 6 Gas-Phase Calorimetry 8 Preparations 16 III. RESULTS AND DISCUSSION 22 Calorimetry 22 Nmr Spectra 30 Vibrational Spectra 33 Mass Spectra 44 Conductivity Data ^ 44 Tensiometric Titrations 47 Gas-Phase Displacement Reactions 49 Melting Point Data 50 IV. SUMMARY AND CONCLUSIONS 52 REFERENCES 53 APPENDICES 57 A. REPRESENTATIVE SPECTRA 57 B. SUGGESTIONS FOR FURTHER INVESTIGATION 59 • • • 111 LIST OF TABLES I. Measured Enthalpies, AH (kcal/mole ) . 24 II. NMR Data: Chemical Shifts of Lewis Base Methyl Protons in Benzene-d^ Solvent .... 31 III. NMR Data: Chemical Shifts of Lewis Base Methyl Protons in Methylene Chloride Solvent 33 IV. ~^ Infrared Spectral Absorptions of Trimethyphos- phine and Trimethylphosphine Adducts with Tentative Assignments 34 V. Infrared Spectral Absorptions of Trimethyl- arsine and Trimethylarsine Adducts with Tentative Assignments 35 VI. Infrared Spectral Absorptions of Trimethyl- stibine and Trimethylstibine Adducts with Tentative Assignments 36 VII.
    [Show full text]