Synthesis of Novel Cyclopentadienyl Cobalt(I)-Complexes and Their Application in [2+2+2] Cycloaddition Reactions

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of Novel Cyclopentadienyl Cobalt(I)-Complexes and Their Application in [2+2+2] Cycloaddition Reactions Synthesis of Novel Cyclopentadienyl Cobalt(I)-Complexes and their Application in [2+2+2] Cycloaddition Reactions Dissertation to obtain the academic degree „Doktor der Naturwissenschaften“ (Dr. rer. nat.) submitted at the Mathematisch-Naturwissenschaftlichen Fakultät an der Universität Rostock submitted by MSc. Indre Thiel born on November 27th 1987 in Düsseldorf Rostock, September 13th 2013 I The work of this thesis was conducted between January 2011 and October 2013 under the supervision of Dr. Marko Hapke and Professor Dr. Uwe Rosenthal at the Leibniz-Institut für Katalyse an der Universität Rostock. Referees: 1st Referee: Professor Dr. Uwe Rosenthal, Leibniz-Institut für Katalyse e.V. and der Universität Rostock 2nd Referee: Professor Dr. Matthias Tamm, Technische Universität Braunschweig Thesis Submission: September 13th 2013 PhD Defense: December 3rd 2013 II III Acknowledgement Writing a dissertation takes all kinds of support. Therefore I would like to express my sincere gratitude to all those who made it possible and generously gave their time and expertise. First and foremost I am deeply indebted to my supervisor Dr. Marko Hapke for making me part of his group and providing me with this interesting research project but also giving me the space to pursue my own ideas. His endless believe in me made it possible to push through all the rough stretches that are part of research. My sincere appreciation for many helpful and complaisant discussions and continuous guidance goes to Professor Dr. Uwe Rosenthal. A huge “Thank you” goes to my group members and former group members Fabian Fischer, Phillip Jungk, Dr. Karolin Kral and Dr. Nico Weding. I could not have wished for a better group to share all my experimental successes as well as failures with. Working with you guys never seemed quite as much work than rather great times spend with friends! I will miss you! For creating a warm and welcoming working atmosphere I want to thank the entire Rosenthal group: Kai Altenburger, Dr. Perdita Arndt, Lisanne Becker, Dr. Torsten Beweries, Laura Dura, Christian Godemann, Marc Gongoll, Martin Hähnel, Dr. Sven Hansen, Dr. Katharina Kaleta, Dr. Marcus Klahn, Dr. Monty Kessler, Dr. Bernd H. Müller, Dr. Normen Peulecke, Kathleen Schubert, Johannes Thomas and Ute von Zweydorf. Special thanks are directed towards Dr. Guido Walther, not only because his help with the in situ NMR spectroscopy was essential but also for inspiring as well as diverting conversations. Without the Analytical Department this dissertation would not have been possible. Therefore I want to thank PD Dr. Wolfgang Baumann for all the extraordinary NMR measurements. Susann Buchholz, Kathrin Fiedler, Sigrun Rossmeisl, Susanne Schareina and Dr. Christine Fischer I owe thanks for all the chiral HPLC and mass spectroscopic analyses. I am indebted to Dr. Anke Spannenberg, who was able to determine all X-ray structures even if challenged with infinitely tiny crystals. And last but not least I am grateful to Astrid Lehmann IV and Anja Simmula for all elemental analyses. I would also like to recognize the help and interest extended to me along the way by all those that have not been mentioned explicitly. Finally I do owe more gratitude than I can express to both my parents, who supported me throughout everything and continuously encouraged me to pursue my own path and ideas. Thank you for always being there for me! All my friends I have to acknowledge for the good times and great memories outside the institute! And last but not least I am grateful to the Fonds der Chemischen Industrie for all the financial support throughout my dissertation in the form of a Kekulé scholarship. V Aspects of this thesis have already been published: 1. I. Thiel, H. Jiao, A. Spannenberg, M. Hapke, Chem. Eur. J. 2013, 19, 2548-2554. 2. I. Thiel, M. Hapke, Angew. Chem. 2013, 125, 6030-6032; Angew. Chem. Int. Ed. 2013, 52, 5916–5918. 3. I. Thiel, M. Lamác, H. Jiao, A. Spannenberg, M. Hapke, Organometallics 2013, 32, 11, 3415–3418. 4. I. Thiel, A. Spannenberg, M. Hapke, ChemCatChem 2013, 5, 2865–2868. 5. I. Thiel, M. Hapke, J. Mol. Catal. A: Chem 2014, DOI:10.1016/j.molcata.2013.12.002. Presentations at national and international conferences: Oral Presentations: 1. I. Thiel, CO2 – Vom Schornstein in den Kolben, 3. Mainzer Wissenschaftsgespräche, Mainz, Germany, September 30th - October 1st 2011 (invited speaker) 2. I. Thiel, M. Hapke, Activity versus Stability – A Compromise, 15th Nordic Symposium on Catalysis, Mariehamn, Åland, Finland, June 10th - 12th 2012, O52 3. I. Thiel, M. Hapke, Two Sides of the (Cobalt-) Medal: Activity vs. Stability, CaSus Workshop, Rostock, Germany, September 16th - 18th 2013, T15 4. I. Thiel, M. Hapke, Two Sides of the (Cobalt-) Medal, YoungChem 2013, Poznan, Poland, October 9th - 13th 2013 Poster Presentations: 1. I. Thiel, N. Weding, M. Hapke, Neue Übergangsmetallkomplexe in der Katalyse von [2+2+2]-Cycloadditionsreaktionen, HTI (7. Tagung Hochschule trifft Industrie – Ein Dialog), Schlangenbad, Germany, September 14th - 16th 2011, P2 (invitation) 2. I. Thiel, M. Hapke, New Transition Metal Complexes for [2+2+2] Cycloaddition Reactions, 15th JCF Frühjahrssymposium, Rostock, Germany, March 18th - 21th 2012, P185 VI 3. I. Thiel, M. Hapke, Ligand Influence on the Stability and Activity of Novel Cobalt Complexes for [2+2+2] Cycloaddition Reactions, International Conference Catalysis in Organic Synthesis, Moscow, Russia, September 15th - 20th 2012, P255 4. I. Thiel, M. Hapke, Ligand Influence on the Stability and Activity of Novel Cobalt Complexes for [2+2+2] Cycloaddition Reactions, Frontiers of Organometallic Chemistry (Post-Conference Symposium), St. Petersburg, Russia, September 21st - 22nd 2012, P83 5. I. Thiel, M. Hapke, Ligand Influence on the Stability and Activity of Novel Cobalt Complexes for [2+2+2] Cycloaddition Reactions, ORCHEM, Weimar, Germany, September 24th - 26th 2012, P9 VII “The most exciting phrase to hear in science, the one that heralds the most discoveries is not ‘Eureka!’ but ‘That's funny...’.” Isaac Asimov (1920-1992) VIII IX Table of Contents 1. INTRODUCTION ................................................................................................................ 1 1.1 Benzene and Pyridine as Motives in Natural Substances – Synthetic Approaches ............. 2 1.2 [2+2+2] Cycloaddition ......................................................................................................... 4 1.2.1 Mechanism.................................................................................................................... 4 1.2.2 DFT Calculations .......................................................................................................... 5 1.2.3 Effect of the Ligands .................................................................................................... 8 1.3 Further Modifications of Cobalt(I)-Complexes ................................................................. 12 2. INTENTION OF THIS THESIS ...................................................................................... 17 3. RESULTS AND DISCUSSION ......................................................................................... 19 3.1 Synthesis of Novel CpCo(I)-Complexes for [2+2+2] Cycloaddition Reactions................ 19 3.1.1 Synthesis of [CpCo(H2C=CHSiMe3)(phosphite)]-Complexes – Variation of Phosphites .................................................................................................................. 19 3.1.2 Synthesis of [CpCo(phosphite)2]-Complexes ............................................................. 20 3.1.3 Synthesis of [CpCo(olefin)(phosphite)]-Complexes – Variation of Olefins .............. 22 3.1.4 Synthesis of CpCo-Complexes with Chelating Phosphite-Olefin Ligands ................ 25 3.2 Catalytic Screening ............................................................................................................ 30 3.2.1 Catalytic Screening of the Synthesized CpCo(I)-Complexes ..................................... 30 3.2.2 Performance of 18 and 25 under Various Conditions ................................................ 34 3.2.3 Performance of 19, 23, 25 and 7 under Conventional Heating Conditions and Irradiation with Light ................................................................................................. 34 3.2.4 Comparison of the Reactivity of 6, 11 and 18 ............................................................ 38 3.2.5 Substrate Screening .................................................................................................... 39 3.3 Recycling Experiments ...................................................................................................... 44 3.4 DFT Calculations ............................................................................................................... 46 3.4.1 DFT Calculations for the Synthesis of Complexes Starting from 6 ........................... 46 3.4.2 DFT Calculations for the Synthesis of Complexes Starting from 1 ........................... 48 3.4.3 DFT Calculations for the Synthesis of Chelating Complexes Starting from 1 .......... 49 3.5 In situ NMR Spectroscopy of Photocatalytic Cycloaddition Reactions ............................ 51 3.5.1 Reaction of 3 to 18...................................................................................................... 52 3.5.2 Reaction of 23 to 25.................................................................................................... 54 X 3.5.3 Reaction of 31 to
Recommended publications
  • Synthesis and Reactivity of Cyclopentadienyl Based Organometallic Compounds and Their Electrochemical and Biological Properties
    Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties Sasmita Mishra Department of Chemistry National Institute of Technology Rourkela Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties Dissertation submitted to the National Institute of Technology Rourkela In partial fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry by Sasmita Mishra (Roll Number: 511CY604) Under the supervision of Prof. Saurav Chatterjee February, 2017 Department of Chemistry National Institute of Technology Rourkela Department of Chemistry National Institute of Technology Rourkela Certificate of Examination Roll Number: 511CY604 Name: Sasmita Mishra Title of Dissertation: ''Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties We the below signed, after checking the dissertation mentioned above and the official record book(s) of the student, hereby state our approval of the dissertation submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry at National Institute of Technology Rourkela. We are satisfied with the volume, quality, correctness, and originality of the work. --------------------------- Prof. Saurav Chatterjee Principal Supervisor --------------------------- --------------------------- Prof. A. Sahoo. Prof. G. Hota Member (DSC) Member (DSC) ---------------------------
    [Show full text]
  • Chemical Redox Agents for Organometallic Chemistry
    Chem. Rev. 1996, 96, 877−910 877 Chemical Redox Agents for Organometallic Chemistry Neil G. Connelly*,† and William E. Geiger*,‡ School of Chemistry, University of Bristol, U.K., and Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125 Received October 3, 1995 (Revised Manuscript Received January 9, 1996) Contents I. Introduction 877 A. Scope of the Review 877 B. Benefits of Redox Agents: Comparison with 878 Electrochemical Methods 1. Advantages of Chemical Redox Agents 878 2. Disadvantages of Chemical Redox Agents 879 C. Potentials in Nonaqueous Solvents 879 D. Reversible vs Irreversible ET Reagents 879 E. Categorization of Reagent Strength 881 II. Oxidants 881 A. Inorganic 881 1. Metal and Metal Complex Oxidants 881 2. Main Group Oxidants 887 B. Organic 891 The authors (Bill Geiger, left; Neil Connelly, right) have been at the forefront of organometallic electrochemistry for more than 20 years and have had 1. Radical Cations 891 a long-standing and fruitful collaboration. 2. Carbocations 893 3. Cyanocarbons and Related Electron-Rich 894 Neil Connelly took his B.Sc. (1966) and Ph.D. (1969, under the direction Compounds of Jon McCleverty) degrees at the University of Sheffield, U.K. Post- 4. Quinones 895 doctoral work at the Universities of Wisconsin (with Lawrence F. Dahl) 5. Other Organic Oxidants 896 and Cambridge (with Brian Johnson and Jack Lewis) was followed by an appointment at the University of Bristol (Lectureship, 1971; D.Sc. degree, III. Reductants 896 1973; Readership 1975). His research interests are centered on synthetic A. Inorganic 896 and structural studies of redox-active organometallic and coordination 1.
    [Show full text]
  • View of Bicyclic Cobalt Cation 42
    University of Alberta Cobalt(III)-Mediated Cycloalkenyl-Alkyne Cycloaddition and Cycloexpansion Reactions by Bryan Chi Kit Chan A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy Chemistry ©Bryan Chi Kit Chan Spring 2010 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Examining Committee Jeffrey M. Stryker, Chemistry, University of Alberta Martin Cowie, Chemistry, University of Alberta Jillian M. Buriak, Chemistry, University of Alberta Frederick G. West, Chemistry, University of Alberta William C. McCaffrey, Chemical Engineering, University of Alberta Lisa Rosenberg, Chemistry, University of Victoria Abstract A comprehensive investigation of cycloalkenyl-alkyne coupling reactions mediated by cobalt(III) templates is presented. The in situ derived cationic η3- cyclohexenyl complexes of cobalt(III) react with some terminal alkynes to afford either η1,η4-bicyclo[4.3.1]decadienyl or η2,η3-vinylcyclohexenyl products, depending on the type and concentration of the alkyne. The mechanism for this cyclohexenyl-alkyne cycloaddition reaction is consistent with the previously reported cobalt-mediated [3 + 2 + 2] allyl-alkyne coupling reaction.
    [Show full text]
  • Visiting Professors
    RESEARCH ACTIVITIES Visiting Professors Visiting Professor KITAGAWA, Hiroshi (from Kyushu University) Creation of Novel Functional Nano Materials Based on Proton-Coupled Electronic Properties Dynamics of molecules and ions in “coordination nano-space” are acted by characteristic nano-fields such as intermolecular interaction, coulomb interaction, catalytic action, etc. This project is to reveal a basic principle of an unusual nano-field acting on coordination space, and to create the nano space where the energy conversions can be easily operated. In particular, we aim at the construction of coordination nano space system which is able to control a series of energy operations such as generation, separation, storage, material conversion of an energy molecule H2, or electron/ion transport. In this year, we have explored a novel hydrogen-energy functional coordination nano-space by using proton-coupled redox and electron-proton interaction. In the present project, we will create new 1) hydrogen- storage nano-materials, 2) highly proton-conductive coordinatiom polymers, 3) highly electron-proton conductive matrerials, etc. Visiting Associate Professor KANAMORI-KATAYAMA, Mutsumi (from RIKEN) Development of the Assay System for Protein-RNA Interactions Recently, it has been cleared that a large amount of non-coding RNA (ncRNA) existed in mammalian cells. Though some ncRNAs are analyzed and cleared to have important functions, what most ncRNAs do is largely unknown. These ncRNAs are thought to function with Protein, RNA or DNA rather than by themselves. Therefore, it is thought that the information of interactions will play an important role to annotate the function of ncRNAs. So, we focused on the protein-RNA interaction (PRI), and have been developing the assay system to obtain PRI information efficiently.
    [Show full text]
  • Cp* Non-Innocence Leads to a Remarkably Weak C−H Bond Via
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors Subscriber access provided by Caltech Library Article Cp* Non-innocence Leads to a Remarkably Weak C-H Bond via Metallocene Protonation Matthew J. Chalkley, Paul H. Oyala, and Jonas C. Peters J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.9b00193 • Publication Date (Web): 21 Feb 2019 Downloaded from http://pubs.acs.org on February 21, 2019 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
    [Show full text]
  • Synthesis, Characterization, and Molecular Structure of Bis(Tetraphenylcyclopentdienyl)Rhodium(II)⊗ James E
    Marshall University Marshall Digital Scholar Chemistry Faculty Research Chemistry 1995 Synthesis, Characterization, and Molecular Structure of Bis(tetraphenylcyclopentdienyl)rhodium(II)⊗ James E. Collins Michael Castellani Marshall University, [email protected] Arnold L. Rheingold Edward J. Miller William E. Geiger See next page for additional authors Follow this and additional works at: http://mds.marshall.edu/chemistry_faculty Part of the Chemistry Commons Recommended Citation Collins, J. E.; Castellani, M. P.; Rheingold, A. L.; Miller, E. J.; Geiger, W. E.; Rieger, A. L.; Rieger, P. H., Synthesis, Characterization, and Molecular Structure of Bis (tetraphenylcyclopentdienyl) rhodium (II). Organometallics 1995, 14 (3), 1232-1238. This Article is brought to you for free and open access by the Chemistry at Marshall Digital Scholar. It has been accepted for inclusion in Chemistry Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. Authors James E. Collins, Michael Castellani, Arnold L. Rheingold, Edward J. Miller, William E. Geiger, Anne L. Rieger, and Philip H. Rieger This article is available at Marshall Digital Scholar: http://mds.marshall.edu/chemistry_faculty/20 Synthesis, Characterization, and Molecular Structure of Bis(tetraphenylcyclopentdienyl)rhodium(II)⊗ James E. Collins,†1Michael P. Castellani,*,† Arnold L. Rheingold,*,‡ Edward J. Miller,§,♦ William E. Geiger,*,§ Anne L. Rieger,∇1and Philip H. Rieger*,∇ Departments of Chemistry, Marshall University, Huntington, West Virginia 25755; University of Delaware, Newark, Delaware, 19716; University of Vermont, Burlington, Vermont, 05405; and Brown University, Providence, Rhode Island, 02912. Abstract A 5 day diglyme reflux of Rh(acac)3 and K(C5HPh4), followed by treatment with aqueous HPF6, produces orange-yellow [(C5HPh4)2Rh]PF6 in 40 - 50% yield.
    [Show full text]
  • First-Principles Simulations of the Interaction of Metal-Organic Molecules with a Surface and As Building Blocks for Nanodevices
    Universite´ de Strasbourg IPCMS: CNRS - UMR 7504 These` de Doctorat FIRST-PRINCIPLES SIMULATIONS OF THE INTERACTION OF METAL-ORGANIC MOLECULES WITH A SURFACE AND AS BUILDING BLOCKS FOR NANODEVICES par Burak Ozdamar¨ pr´esent´eeen vue d'obtenir le grade de Docteur de l'Universit´ede Strasbourg Sp´ecialit´e:Physique de la mati`erecondens´eeet des mat´eriaux Soutenue publiquement le 28/10/2016 `al'IPCMS devant le jury compos´ede: Prof. Dr. Roberto Marquardt UdS-LCQ Pr´esident Prof. Dr. J¨urg Hutter UZH-CMSZH Rapporteur Prof. Dr. Andres Saul AMU-CINaM Rapporteur Prof. Dr. Fabrizio Cleri UL1-IEMN Rapporteur Dr. S´ebastien Le Roux UdS-IPCMS Examinateur Prof. Dr. Mauro Boero UdS-IPCMS Directeur de th`ese Tired of lying in the sunshine staying home to watch the rain You are young and life is long and there is time to kill today And then one day you find ten years have got behind you No one told you when to run, you missed the starting gun. Roger Waters iii Abstract UNIVERSITE´ DE STRASBOURG Institut de Physique et Chimie des Mat´eriauxde Strasbourg Doctor of Philosophy FIRST-PRINCIPLES SIMULATIONS OF THE INTERACTION OF METAL-ORGANIC MOLECULES WITH A SURFACE AND AS BUILDING BLOCKS FOR NANODEVICES by Burak Ozdamar¨ The purpose of this study is to investigate the interaction of organometallic com- plexes with transition metals. This topic in question has a broad array of applica- tions in a number of domain; realization of nanojunctions for molecular nanoelec- tronics, biological imaging and nanocatalysis. Within this general framework, this PhD project aims to model the fundamental interactions of molecular building blocks at the atomic level in order to understand their role in the assembly and functionalization of nanostructures.
    [Show full text]
  • Comparative Study of Molecular Orbitals of Cobaltocene and Nickelocene Based on Molecular Mechanics
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 2011, 3 (2):297-310 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Comparative Study of Molecular Orbitals of Cobaltocene and Nickelocene Based on Molecular Mechanics Gayasuddin Khan Department of Physics, K. S. Saket Post Graduate College, Ayodhya, Faizabad, U.P. INDIA _____________________________________________________________________________ ABSTRACT Magnitude of contribution of AOs and contribution of electron in each occupied molecular orbital of cobaltocene and nickelocene based on eigenvalues, eigenvectors and population analysis have been studied. The 3D structure of both cobaltocene and nickelocene were drawn on workspace software associated with CAChe and their geometries were optimized with DFT method. The evaluation of eigenvalues, eigenvector and other parameters were done by using molecular mechanics with EHT option. The study has concluded that the first eight MOs in cobaltocene and nickelocene have contribution from 2p z orbitals of carbon of C5H5¯ and 3d orbitals of metal. The total involvement in respect of bonding between C 5H5¯ and the metal orbitals as derived from coefficient value is 22.346 in cobaltocene and 23.5716 in nickelocene. The population analysis shows that only 2p z orbitals of carbon of C 5H5¯ and 3d orbitals of metal provide electrons to MOs of cobaltocene and nickelocene. Keywords: Cobaltocene, Nickelocene, atomic orbital, molecular orbital, eigenvector, eigenvalue and population analysis. _____________________________________________________________________________ INTRODUCTION In the last decade, there has been a phenomenal advancement in theoretical inorganic chemistry [1, 2], much faster computers are available and commercial programs incorporating the latest methods have become widely available and are capable of providing more information about molecular orbitals (MOs), with a sample input of chemical formula.
    [Show full text]
  • Ruthenium-Catalyzed Dimerization of 1,1-Diphenylpropargyl Alcohol to a Hydroxybenzocyclobutene and Related Reactions
    inorganics Article Ruthenium-Catalyzed Dimerization of 1,1-Diphenylpropargyl Alcohol to a Hydroxybenzocyclobutene and Related Reactions Hoang Ngan Nguyen 1, Naoto Tashima 1, Takao Ikariya 1 and Shigeki Kuwata 1,2,* ID 1 Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan; [email protected] (H.N.N.); [email protected] (N.T.); [email protected] (T.I.) 2 Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan * Correspondence: [email protected]; Tel.: +81-3-5734-2150 Received: 28 October 2017; Accepted: 14 November 2017; Published: 16 November 2017 Abstract: Propargyl alcohol is a useful synthon in synthetic organic chemistry. We found that the 5 ruthenium(II) complex [Cp*RuCl(diene)] (Cp* = η -C5Me5; diene = isoprene or 1,5-cyclooctadiene (cod)) catalyzes dimerization of 1,1-diphenylprop-2-yn-1-ol (1,1-diphenylpropargyl alcohol, 1a) at room temperature to afford an alkylidenebenzocyclobutenyl alcohol 2a quantitatively. Meanwhile, a stoichiometric reaction of the related hydrido complex [Cp*RuH(cod)] with 1a at 50 ◦C led to isolation of a ruthenocene derivative 4 bearing a cyclopentadienyl ring generated by dehydrogenative trimerization of 1a. Detailed structures of 2a and 4 were determined by X-ray crystallography. The reaction mechanisms for the formation of 2a and 4 were proposed. Keywords: ruthenium; alkyne; propargyl alcohol; C–H cleavage; benzocyclobutene 1. Introduction Propargyl alcohol and their derivatives have been attractive starting materials in synthetic organic chemistry [1–7].
    [Show full text]
  • N-Heterocyclic Silylenes As Tools in Coordination Chemistry and Catalysis
    N-Heterocyclic Silylenes as Tools in Coordination Chemistry and Catalysis vorgelegt von M. Sc. Chemie Yu-Peng Zhou aus Yunnan (V. R. China) Von der Fakultät II – Mathematik und Naturwissenschaften der Technischen Universität Berlin Institut für Chemie zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Reinhard Schomäcker (Technische Universität Berlin) 1. Gutachter: Prof. Dr. Matthias Driess (Technische Universität Berlin) 2. Gutachter: Prof. Dr. Christian Müller (Freie Universität Berlin) Tag der wissenschaftlichen Aussprache: 13.06.2018 Berlin 2018 DISSERTATION by M. Sc. Chemistry Yu-Peng Zhou from Yunnan (P. R. China) Die vorliegende Arbeit entstand in der Zeit von Sep. 2014 bis Feb. 2018 unter der Betreuung von Prof. Dr. Matthias Driess am Institut für Chemie der Technischen Universität Berlin. Von Herzen kommend gilt mein Dank meinem verehrten Lehrer Herrn Professor Dr. Matthias Driess für die Aufnahme in seinen Arbeitskreis, für seine engagierte Unterstützung, und für die Forschungsfreiheit. Acknowledgment I would like to express my sincere gratitude to Prof. Dr. Matthias Driess for his continuous guidance, encouragement and granting academic freedom throughout my doctoral work. I sincerely thank Dr. Shenglai Yao, Dr. Gengwen Tan, Dr. Daniel Gallego, and Dr. Zhenbo Mo for their helpful scientific guidance, suggestions, and discussion. In addition, I am grateful to Dr. Yun Xiong, Dr. Chakadola Panda, Dr. Prashanth W. Menezes, Dr. Nils Lindenmaier, Dr. Xiaohui Deng, Ms. Yuwen Wang, Ms. Min Ha Kim, Mr. Maecel-Philip Luecke, Mr. Huan Wang, and all BIG-NSE graduate school friends for their help during my stay in Germany and friendship.
    [Show full text]
  • Synthesis and Photochemical Rearrangements of 1-Tert-Butyl-1,2-Cyclooctadiene John David Price Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1987 Synthesis and photochemical rearrangements of 1-tert-butyl-1,2-cyclooctadiene John David Price Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Price, John David, "Synthesis and photochemical rearrangements of 1-tert-butyl-1,2-cyclooctadiene " (1987). Retrospective Theses and Dissertations. 9292. https://lib.dr.iastate.edu/rtd/9292 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a 17" x 23" black and white photographic print for an additional charge.
    [Show full text]
  • Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title THE SYNTHESES AND ELECTRONIC STRUCTURES OF DECAMETHYLMETALLOCENES Permalink https://escholarship.org/uc/item/4ds15643 Author Robbins, J.L. Publication Date 1981-03-01 eScholarship.org Powered by the California Digital Library University of California LBL-12258 (' r To be published in the Journal of the American Chemical Society THE SYNTHESES AND ELECTRONIC STRUCTURES OF DECAMETHYLMETALLOCENES J.L. Robbins, N. Edelstein, B. Spencer, and J.C. Smart March 1981 TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tedt Info. Diu is ion, Ext. 6782 Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 I ":c/ '] I DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
    [Show full text]