Microwave-Assisted Synthesis of Modified Cyclopentadienyl Iridium and Rhodium Chloro- Bridged Dimers Loren Christopher Brown

Total Page:16

File Type:pdf, Size:1020Kb

Microwave-Assisted Synthesis of Modified Cyclopentadienyl Iridium and Rhodium Chloro- Bridged Dimers Loren Christopher Brown Microwave-assisted Synthesis of Modified Cyclopentadienyl Iridium and Rhodium Chloro- bridged Dimers Loren Christopher Brown Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Chemistry Joseph S. Merola, Chair John R. Morris Gordon T. Yee Blacksburg, VA Keywords: iridium; rhodium; tetramethylcyclopentadiene; microwave; dimer; diene; crystal structure; diol; lactone I Microwave-assisted Synthesis of Modified Cyclopentadienyl Iridium and Rhodium Chloro- bridged Dimers Loren Christopher Brown Abstract The present work describes the design and synthesis of a series of dimers [(η5- 2 5 5 5 ring)MCl]2(μ -Cl)2, (where (η -ring)MCl = (η -Me4C5R)Rh(III)Cl or (η -Me4C5R)Ir(III)Cl). Iridium and rhodium dimeric complexes were synthesized via a microwave reaction and directly compared through single-crystal X-ray crystallography. Finally, the dimeric complexes were evaluated as potential oxidation catalysts. The modified HCp*R (R = isopropyl, n-butyl, isobutyl, sec-butyl, n-pentyl, n-hexyl, n- heptyl, n-octyl, phenyl, benzyl, phenethyl, cyclohexyl, and cyclopentyl) type ligands were synthesized by reaction of 2,3,4,5-tetramethylcyclopent-2-en-1-one with the respective Grignard reagent (RMgX), followed by elimination of water under acidic conditions to produce the tetramethyl(alkyl or aryl)cyclopentadienes in moderate to excellent yields (39 - 98%). Reaction of R 2 the HCp* ligands with [M(COD)](μ -Cl)2 (M = Rh, Ir; COD = 1,5-cyclooctadiene) gave the R 2 dimeric complexes [Cp* MCl]2(μ -Cl)2 in yields ranging from 16 - 96%. The dimers were characterized by nuclear magnetic resonance (NMR) spectroscopy, single-crystal X-ray diffraction (XRD) (supplemented by powder XRD), high-resolution mass spectrometry (HRMS), and elemental analysis. Complexes studied by XRD were analyzed to understand the bond lengths and bond angles throughout each complex. The dimeric complexes synthesized, will facilitate a complete study on how the R group influences catalytic activity. Acknowledgements I would like to thank Emily Ressegue who helped with the syntheses of these compounds. I would like to thank Chrissy DuChane for her assistance with biological testing, encouragement, and countless hours of proofreading. I would like to thank Dr. Paul Deck for his assistance with proofreading and support. I would like to thank Bryce Kidd and Chris Houser for their assistance in proofreading. I would like to thank Dr. Gordon Yee and Dr. John Morris for serving as my committee members. I would like to thank both Dr. Carla Slebodnick and Dr. Elinor Spencer for their guidance and assistance with crystallography. I would like to thank my advisor, Dr. Joseph Merola, for his guidance, encouragement, and resounding support. III Chapter 1 Introduction ............................................................................................................... 1 1.1 Importance of iridium and rhodium dimers ..................................................................... 1 1.2 Importance of half-sandwich complexes.......................................................................... 8 1.3 Background of microwave-assisted synthesis ................................................................ 12 1.4 Synthesis of iridium and rhodium dimers ...................................................................... 14 1.5 Project design ................................................................................................................. 15 Chapter 2 Experimental ........................................................................................................... 17 2.1 Materials and Instruments .............................................................................................. 17 2.1.1 Materials and Methods ............................................................................................ 17 2.1.2 High Resolution Mass Spectrometry ...................................................................... 17 2.1.3 Single X-ray Crystal Collection and Data Analysis: .............................................. 18 2.2 Synthesis......................................................................................................................... 18 R 2 2.2.1 General procedure for synthesis of [Cp* RhCl]2(μ -Cl)2 ....................................... 18 ethyl 2 2.2.1.1 Synthesis of [Cp* RhCl]2(μ -Cl)2 (1a) ........................................................ 18 n-propyl 2 2.2.1.2 Synthesis of [Cp* RhCl]2(μ -Cl)2 1b ...................................................... 19 isopropyl 2 2.2.1.3 Synthesis of [Cp* RhCl]2(μ -Cl)2 1c ...................................................... 19 n-butyl 2 2.2.1.4 Synthesis of [Cp* RhCl]2(μ -Cl)2 1d ........................................................ 19 isobutyl 2 2.2.1.5 Synthesis of [Cp* RhCl]2(μ -Cl)2 1e ....................................................... 20 sec-butyl 2 2.2.1.6 Synthesis of [Cp* RhCl]2(μ -Cl)2 1f ....................................................... 20 n-pentyl 2 2.2.1.7 Synthesis of [Cp* RhCl]2(μ -Cl)2 1g ....................................................... 21 n-hexyl 2 2.2.1.8 Synthesis of [Cp* RhCl]2(μ -Cl)2 1h ....................................................... 21 n-heptyl 2 2.2.1.9 Synthesis of [Cp* RhCl]2(μ -Cl)2 1i ........................................................ 21 n-octyl 2 2.2.1.10 Synthesis of [Cp* RhCl]2(μ -Cl)2 1j ......................................................... 22 phenyl 2 2.2.1.11 Synthesis of [Cp* RhCl]2(μ -Cl)2 1k ........................................................ 22 benzyl 2 2.2.1.12 Synthesis of [Cp* RhCl]2(μ -Cl)2 1l .......................................................... 22 phenethyl 2 2.2.1.13 Synthesis of [Cp* RhCl]2(μ -Cl)2 1m .................................................... 23 cyclohexyl 2 2.2.1.14 Synthesis of [Cp* RhCl]2(μ -Cl)2 1n .................................................... 23 cyclopentyl 2 2.2.1.15 Synthesis of [Cp* RhCl]2(μ -Cl)2 1o ................................................... 24 R 2 2.2.2 General procedure for synthesis of [Cp* IrCl]2(μ -Cl)2 ......................................... 24 ethyl 2 2.2.2.1 Synthesis of [Cp* IrCl]2(μ -Cl)2 2a............................................................. 24 n-propyl 2 2.2.2.2 Synthesis of [Cp* IrCl]2(μ -Cl)2 2b ......................................................... 25 isopropyl 2 2.2.2.3 Synthesis of [Cp* IrCl]2(μ -Cl)2 2c ........................................................ 25 IV n-butyl 2 2.2.2.4 Synthesis of [Cp* IrCl]2(μ -Cl)2 2d .......................................................... 25 isobutyl 2 2.2.2.5 Synthesis of [Cp* IrCl]2(μ -Cl)2 2e ......................................................... 26 sec-butyl 2 2.2.2.6 Synthesis of [Cp* IrCl]2(μ -Cl)2 2f ......................................................... 26 n-pentyl 2 2.2.2.7 Synthesis of [Cp* IrCl]2(μ -Cl)2 2g ......................................................... 26 n-hexyl 2 2.2.2.8 Synthesis of [Cp* IrCl]2(μ -Cl)2 2h .......................................................... 27 n-heptyl 2 2.2.2.9 Synthesis of [Cp* IrCl]2(μ -Cl)2 2i .......................................................... 27 n-octyl 2 2.2.2.10 Synthesis of [Cp* IrCl]2(μ -Cl)2 2j ........................................................... 27 phenyl 2 2.2.2.11 Synthesis of [Cp* IrCl]2(μ -Cl)2 2k ........................................................... 28 benzyl 2 2.2.2.12 Synthesis of [Cp* IrCl]2(μ -Cl)2 2l ............................................................ 28 phenethyl 2 2.2.2.13 Synthesis of [Cp* IrCl]2(μ -Cl)2 2m ...................................................... 29 cyclohexyl 2 2.2.2.14 Synthesis of [Cp* IrCl]2(μ -Cl)2 2n ...................................................... 29 cyclopentyl 2 2.2.2.15 Synthesis of [Cp* IrCl]2(μ -Cl)2 2o ...................................................... 29 R 2.2.3 Synthesis for HCp* ligands ................................................................................... 30 R 2.2.3.1 General procedure of HCp* ligands .............................................................. 30 2.2.3.2 Synthesis of 5-isopropyl-2,3,4,5-tetramethylcyclopenta-1,3-diene ................. 30 2.2.3.3 Synthesis of 5-butyl-1,2,3,4-tetramethylcyclopenta-1,3-diene ....................... 30 2.2.3.4 Synthesis of 5-isobutyl-1,2,3,4-tetramethylcyclopenta-1,3-diene ................... 30 2.2.3.5 Synthesis of 5-(sec-butyl)-1,2,3,4-tetramethylcyclopenta-1,3-diene .............. 30 2.2.3.6 Synthesis of 1,2,3,4-tetramethyl-5-pentylcyclopenta-1,3-diene ...................... 30 2.2.3.7 Synthesis of 5-hexyl-1,2,3,4-tetramethylcyclopenta-1,3-diene ....................... 31 2.2.3.8 Synthesis of 5-heptyl-1,2,3,4-tetramethylcyclopenta-1,3-diene ...................... 31 2.2.3.9 Synthesis of 1,2,3,4-tetramethyl-5-octylcyclopenta-1,3-diene ........................ 31 2.2.3.10 Synthesis of (2,3,4,5-tetramethylcyclopenta-2,4-dien-1-yl)benzene ............... 31 2.2.3.11 Synthesis of ((2,3,4,5-tetramethylcyclopenta-2,4-dien-1-yl)methyl)benzene . 31 2.2.3.12 Synthesis of (2-(2,3,4,5-tetramethylcyclopenta-2,4-dien-1-yl)ethyl)benzene . 31 2.2.3.13 Synthesis of 2,3,4,5-tetramethyl[1,1’-bi(cyclopentane)]-2,4-diene ................ 31 2.2.3.14 Synthesis of (2,3,4,5-tetramethylcyclopenta-2,4-dien-1-yl)cyclohexane ........ 31 2.2.4 Experimental Crystallography ................................................................................ 32 Chapter 3 Results
Recommended publications
  • A Novel Series of Titanocene Dichloride Derivatives: Synthesis, Characterization and Assessment of Their
    A novel series of titanocene dichloride derivatives: synthesis, characterization and assessment of their cytotoxic properties by Gregory David Potter A thesis submitted to the Department of Chemistry in conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada May, 2008 Copyright © Gregory David Potter, 2008 Abstract Although cis-PtCl2(NH3)2 (cisplatin) has been widely used as a chemotherapeutic agent, its use can be accompanied by toxic side effects and the development of drug resistance. Consequently, much research has been focused on the discovery of novel transition metal compounds which elicit elevated cytotoxicities coupled with reduced toxic side effects and non-cross resistance. Recently, research in this lab has focused on preparing derivatives of titanocene dichloride (TDC), a highly active chemotherapeutic agent, with pendant alkylammonium groups on one or both rings. Earlier results have demonstrated that derivatives containing either cyclic or chiral alkylammonium groups had increased cytotoxic activities. This research therefore investigated a new series of TDC complexes focusing specifically on derivatives bearing cyclic and chiral alkylammonium groups. A library of ten cyclic derivatives and six chiral derivatives were synthesized and fully characterized. These derivatives have undergone in vitro testing as anti-tumour agents using human lung, ovarian, and cervical carcinoma cell lines (A549, H209, H69, H69/CP, A2780, A2780/CP and HeLa). These standard cell lines represent solid tumour types for which new drugs are urgently needed. The potencies of all of the Ti (IV) derivatives varied greatly (range from 10.8 μM - >1000 μM), although some trends were observed. In general, the dicationic analogues exhibited greater potency than the corresponding monocationic derivatives.
    [Show full text]
  • Catalysis Science & Technology
    Catalysis Science & Technology Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/catalysis Page 1 of 6 CatalysisPlease doScience not adjust & Technology margins Journal Name ARTICLE Hydrophenylation of internal alkynes with boronic acids catalysed by a Ni-Zn hydroxy double salt-intercalated Received 00th January 20xx, Accepted 00th January 20xx Manuscript DOI: 10.1039/x0xx00000x anionic rhodium(III) complex www.rsc.org/ Takayoshi Hara, 1 Nozomi Fujita, 1 Nobuyuki Ichikuni, 1 Karen Wilson, 2 Adam F. Lee, 2 and Shogo Shimazu* 1 3- [Rh(OH) 6] intercalated Ni–Zn mixed basic salts (Rh/NiZn) are efficient catalysts for the hydrophenylation of internal alkynes with arylboronic acids under mild conditions.
    [Show full text]
  • Synthesis and Reactions of Ferrocene
    R Carbon Synthesis and Reactions of Ferrocene R Carbon Carbon Contents Objectives 1 Introduction 1 Preparation of ferrocene 2 Acetylation of ferrocene 7 Preparation of [Fe(η-C5H5)(η-C6H6)]PF6 10 Reaction of [Fe(η-C5H5)(η-C6H6)] PF6 with nucleophiles 12 Manuscript prepared by Dr. Almas I. Zayya, Dr. A. Jonathan Singh and Prof. John L. Spencer. School of Chemical and Physical Sciences, Victoria University of Wellington, New Zealand. R Carbon Objectives Introduction The principal aims of these experiments are to The archetypal organometallic compound provide experience in the synthesis, isolation, ferrocene, [Fe(η-C5H5)2], is of historical importance purification and characterisation of organometallic since its discovery and structural characterisation compounds. Purification techniques include in the early 1950s sparked extensive research into distillation, sublimation, chromatography and the chemistry of metal sandwich compounds.1 crystallisation. The main characterisation Two of the chemists who first proposed the correct technique used in these experiments is 1H NMR structure of ferrocene (Figure 1), Geoffrey Wilkinson spectroscopy using the benchtop Spinsolve and Ernst Otto Fischer, were awarded the Nobel spectrometer. Furthermore, students will Prize in Chemistry in 1973 for their pioneering work also develop their synthetic skills using inert on the chemistry of sandwich complexes. atmosphere techniques. Ferrocene is an example of a π-complex in which interactions between the d-orbitals of the Fe2+ metal centre with the π-orbitals of the two planar - cyclopentadienyl ligands (C5H5 ) form the metal-ligand bonds. Thus, all the carbon atoms in the cyclopentadienyl rings are bonded equally to the central Fe2+ ion. Ferrocene exhibits aromatic properties and is thermally very stable.
    [Show full text]
  • United States Patent Office Patented May 7, 1963
    3,088,959 United States Patent Office Patented May 7, 1963 1. 2 or grouping of carbon atoms which is present in cyclo 3,088,959 pentadiene. This grouping is illustrated as PROCESS OF MAKENG CYCLOPENTADEENY NECKEL, NTROSYL COMPOUNDS Robert D. Feltham, Joseph F. Anzenberger, azad Jonatian T. Carrie, Pittsburgh, Pa., assignors to The Interaa tional Nickel Company, Inc., New York, N.Y., a corpo ration of Delaware No Drawing. FiRed Sept. 1, 1960, Ser. No. 53,374 The substituent groups on the cyclopentadiene moiety 6 Clains. (C. 260-439) 0. indicated as R, R2, R3, R and R5 are any one or more The present invention relates to the production of of hydrogen atoms, halogen atoms and/or organic groups nickel compounds and, more particularly, to the produc such as aliphatic groups, aromatic groups, alicyclic groups, tion of nickel nitrosyl compounds containing a group etc. The substituent groups can also bond at two posi having the cyclopentadienyl moiety. tions. Where this occurs, groups can substitute for adja Compounds such as cyclopentadienylnickel nitrosyl, 5 cent R groups, e.g., Ra and R3 and/or R4 and R5 to form methylcyclopentadienylnickel nitrosyl and other complex indene and other condensed ring structures. nitrosyl compounds containing a cyclopentadienyl-type As mentioned hereinbefore, when carrying out the proc group have been made. Such compounds have use as ess of the present invention, the reactants are reacted in gasoline additives. When such use is contemplated, it is the presence of a base. The base can advantageously be economically imperative that the compounds be produced 20 a nitrogen base or a phosphorus base or an alkoxide of a in good yield from the most readily available and inex metal having a strong hydroxide.
    [Show full text]
  • Synthesis and Reactivity of Cyclopentadienyl Based Organometallic Compounds and Their Electrochemical and Biological Properties
    Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties Sasmita Mishra Department of Chemistry National Institute of Technology Rourkela Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties Dissertation submitted to the National Institute of Technology Rourkela In partial fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry by Sasmita Mishra (Roll Number: 511CY604) Under the supervision of Prof. Saurav Chatterjee February, 2017 Department of Chemistry National Institute of Technology Rourkela Department of Chemistry National Institute of Technology Rourkela Certificate of Examination Roll Number: 511CY604 Name: Sasmita Mishra Title of Dissertation: ''Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties We the below signed, after checking the dissertation mentioned above and the official record book(s) of the student, hereby state our approval of the dissertation submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry at National Institute of Technology Rourkela. We are satisfied with the volume, quality, correctness, and originality of the work. --------------------------- Prof. Saurav Chatterjee Principal Supervisor --------------------------- --------------------------- Prof. A. Sahoo. Prof. G. Hota Member (DSC) Member (DSC) ---------------------------
    [Show full text]
  • United States Patent Office Patented Apr
    2,882,288 United States Patent Office Patented Apr. 14, 1959 1 2 ber and character of substituents on the cyclopentadienyl carbon ring may otherwise be varied at will. Suitable 2,882,288 organic compounds include hydrocarbon compounds hav ORGANOVANADIUM HALIDES AND PROCESS ing the requisite alicyclic cyclopentadienyl carbon ring. OF PREPARATION Examples of such hydrocarbon compounds are cyclo John C. Brantley and Edward L. Morehouse, Snyder, pentadiene, its aliphatic derivatives as for example methyl, N.Y., assignors to Union Carbide Corporation, a cor ethyl, allyl and vinyl cyclopentadiene, its aromatic deriv poration of New York atives as for example phenyl cyclopentadiene, indene and its comparable derivatives. No Drawing. Application September 23, 1953 10 The formation of a dihalide according to this invention Serial No. 381,968 may be illustrated by the reaction between cyclopenta 11 Claims. (C. 260-429) dienyl magnesium chloride and VCla. The Grignard re agent may be prepared by reacting magnesium turnings with a lower alkyl chloride in a solvent, ethyl ether, bein This invention relates to organo-metallic compounds zene or the like for example, and reacting the resulting containing vanadium as the metal component. The in solution with cyclopentadiene. The cyclopentadienyl vention includes correlated improvements and discoveries magnesium chloride thus formed is then reacted with whereby such vanadium compounds having distinctive VCl4 in a suitable liquid medium and the organo properties are obtained. vanadium dichloride (C5H5)VCl may be recovered An object of the invention is to provide organo-metallic 20 from the reaction mixture. The same compound results compounds containing vanadium as the metallic compo from reaction of cyclopentadienyl magnesium chloride nent linked to the organic component by carbon to metal with VOCl3.
    [Show full text]
  • 1,3-Cyclopentadiene 2523
    1,3-CYCLOPENTADIENE 2523 C5H6 MW: 66.10 CAS: 542-92-7 RTECS: GY1000000 METHOD: 2523, Issue 2 EVALUATION: FULL Issue 1: 15 May 1985 Issue 2: 15 August 1994 OSHA : 75 ppm PROPERTIES: liquid; d 0.8021 g/mL @ 20 °C; NIOSH: 75 ppm BP 42 °C; MP •85 °C; dimerizes to solid ACGIH: TWA 75 ppm (MP 32.5 °C); VP not available (1 ppm = 2.70 mg/m 3 @ NTP) SYNONYMS: none SAMPLING MEASUREMENT SAMPLER: SOLID SORBENT TUBE TECHNIQUE: GAS CHROMATOGRAPHY, FID (maleic anhydride on Chromosorb 104, 100 mg/50 mg) ANALYTE: 1,3-cyclopentadiene-maleic anhydride adduct (see REAGENTS, 1.) FLOW RATE: 0.01 to 0.05 L/min DISSOLUTION: 10 mL ethyl acetate; stand 15 min VOL-MIN: 1 L @ 75 ppm -MAX: 5 L INJECTION VOLUME: 5 µL SHIPMENT: routine TEMPERATURE-INJECTION: 200 °C -DETECTOR: 250 °C SAMPLE -COLUMN: 155 °C STABILITY: at least 1 week @ 25 °C [1] CARRIER GAS: N2, 30 mL/min BLANKS: 2 to 10 field blanks per set COLUMN: 3 m x 3-mm OD stainless steel packed with 5% OV-17 on 100/120 mesh Chromosorb WHP ACCURACY CALIBRATION: analyte in ethyl acetate RANGE STUDIED: 73 to 370 mg/m 3 [1] (3-L samples) RANGE: 0.2 to 1.2 mg 1,3-cyclopentadiene per sample BIAS: 3.6% ˆ OVERALL PRECISION (S rT): 0.066 [2] ESTIMATED LOD: 0.01 mg per sample [1] ACCURACY: ± 16.5% PRECISION (S r): 0.031 @ 0.3 to 1.2 mg per sample [1] APPLICABILITY: The working range is 25 to 150 ppm (67 to 400 mg/m 3) for a 3-L air sample, based on sampler capacity at high relative humidity.
    [Show full text]
  • Rhodium(Iii), and Iridium(Iii)
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1980 Cyclometallated Compounds of Palladium(ii), Rhodium(iii), and Iridium(iii). Michael Anthony Gutierrez Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Gutierrez, Michael Anthony, "Cyclometallated Compounds of Palladium(ii), Rhodium(iii), and Iridium(iii)." (1980). LSU Historical Dissertations and Theses. 3562. https://digitalcommons.lsu.edu/gradschool_disstheses/3562 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or “ target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy.
    [Show full text]
  • A (Most Stable) > B > C > D
    CHEMISTRY 314-81 MIDTERM # 2 – ANSWER KEY July 10, 2002 Statistics: · Average: 47 pts (67%); · Highest: 69 pts (99%); Lowest: 26 pts (37%) · Number of students performing at or above average: 12 (46%) 1. (7 pts) Mark as true (T) or false (F) the following statements. Do not explain! · (T) The Diels-Alder reaction is a [4+2] cycloaddition process; · (T) Molecular orbitals with equal number of nodes are degenerate; · (T) Molecular orbitals with equal energies are degenerate; · (F) The Diels-Alder reaction occurs faster with electron-deficient dienes; · (F) Cyclooctatetraene is an antiaromatic molecule; · (F) Ethylene is aromatic since it has 2 p-electrons; · (T) A molecule is UV-active if it has a conjugated system; 2. Circle all that apply: A. (2 pts) We say that benzene is stabilized because: a. It has higher than expected heat of hydrogenation; b. It has lower reactivity; c. It has low boiling point; d. It has large resonance energy; B. (2 pts) According to Hückel’s Rule a system is antiaromatic if: a. It is not conjugated; b. It is not planar; c. It has 4n p-electrons; d. It is not cyclic; C. (2 pts) Conjugated Dienes: a. Are more stable than the corresponding dienes with isolated double bonds; b. Are less stable than the corresponding dienes with cumulated double bonds; c. Are UV-active; d. Give predominantly 1,2-addition products at low temperatures ; D. (2 pts) The Diels-Alder reaction: a. Is stereospecific ; b. Is regiospecific ; c. Requires an s-cis conformation of the dienophile; d. Requires an s-trans conformation of the diene; 3.
    [Show full text]
  • Download (2MB)
    https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] ORGANOMSTALLIG DERIVATIVES OF TITANIUM A thesis presented for the Degree of Master of Science in the University of Glasgow by Chandubhai Chunibhai Patel Chemistry Department, The Royal College of Science and Technology, Glasgow* September, 1965* ProQuest Number: 10984228 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10984228 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC.
    [Show full text]
  • Synthesis of Novel Cyclopentadienyl Cobalt(I)-Complexes and Their Application in [2+2+2] Cycloaddition Reactions
    Synthesis of Novel Cyclopentadienyl Cobalt(I)-Complexes and their Application in [2+2+2] Cycloaddition Reactions Dissertation to obtain the academic degree „Doktor der Naturwissenschaften“ (Dr. rer. nat.) submitted at the Mathematisch-Naturwissenschaftlichen Fakultät an der Universität Rostock submitted by MSc. Indre Thiel born on November 27th 1987 in Düsseldorf Rostock, September 13th 2013 I The work of this thesis was conducted between January 2011 and October 2013 under the supervision of Dr. Marko Hapke and Professor Dr. Uwe Rosenthal at the Leibniz-Institut für Katalyse an der Universität Rostock. Referees: 1st Referee: Professor Dr. Uwe Rosenthal, Leibniz-Institut für Katalyse e.V. and der Universität Rostock 2nd Referee: Professor Dr. Matthias Tamm, Technische Universität Braunschweig Thesis Submission: September 13th 2013 PhD Defense: December 3rd 2013 II III Acknowledgement Writing a dissertation takes all kinds of support. Therefore I would like to express my sincere gratitude to all those who made it possible and generously gave their time and expertise. First and foremost I am deeply indebted to my supervisor Dr. Marko Hapke for making me part of his group and providing me with this interesting research project but also giving me the space to pursue my own ideas. His endless believe in me made it possible to push through all the rough stretches that are part of research. My sincere appreciation for many helpful and complaisant discussions and continuous guidance goes to Professor Dr. Uwe Rosenthal. A huge “Thank you” goes to my group members and former group members Fabian Fischer, Phillip Jungk, Dr. Karolin Kral and Dr. Nico Weding.
    [Show full text]
  • Ruthenium-Catalyzed Dimerization of 1,1-Diphenylpropargyl Alcohol to a Hydroxybenzocyclobutene and Related Reactions
    inorganics Article Ruthenium-Catalyzed Dimerization of 1,1-Diphenylpropargyl Alcohol to a Hydroxybenzocyclobutene and Related Reactions Hoang Ngan Nguyen 1, Naoto Tashima 1, Takao Ikariya 1 and Shigeki Kuwata 1,2,* ID 1 Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan; [email protected] (H.N.N.); [email protected] (N.T.); [email protected] (T.I.) 2 Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan * Correspondence: [email protected]; Tel.: +81-3-5734-2150 Received: 28 October 2017; Accepted: 14 November 2017; Published: 16 November 2017 Abstract: Propargyl alcohol is a useful synthon in synthetic organic chemistry. We found that the 5 ruthenium(II) complex [Cp*RuCl(diene)] (Cp* = η -C5Me5; diene = isoprene or 1,5-cyclooctadiene (cod)) catalyzes dimerization of 1,1-diphenylprop-2-yn-1-ol (1,1-diphenylpropargyl alcohol, 1a) at room temperature to afford an alkylidenebenzocyclobutenyl alcohol 2a quantitatively. Meanwhile, a stoichiometric reaction of the related hydrido complex [Cp*RuH(cod)] with 1a at 50 ◦C led to isolation of a ruthenocene derivative 4 bearing a cyclopentadienyl ring generated by dehydrogenative trimerization of 1a. Detailed structures of 2a and 4 were determined by X-ray crystallography. The reaction mechanisms for the formation of 2a and 4 were proposed. Keywords: ruthenium; alkyne; propargyl alcohol; C–H cleavage; benzocyclobutene 1. Introduction Propargyl alcohol and their derivatives have been attractive starting materials in synthetic organic chemistry [1–7].
    [Show full text]