UCLA Electronic Theses and Dissertations
Total Page:16
File Type:pdf, Size:1020Kb
UCLA UCLA Electronic Theses and Dissertations Title Synthesis of Ferrocene-Based Ligands and Their Applications in Redox-Switchable Catalysis for Selective Hydroamination Reactions Permalink https://escholarship.org/uc/item/5px469p2 Author Lydon, Brian Raymond Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Synthesis of Ferrocene-Based Ligands and Their Applications in Redox-Switchable Catalysis for Selective Hydroamination Reactions A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Chemistry by Brian Raymond Lydon 2013 ABSTRACT OF THE THESIS Synthesis of Ferrocene-Based Ligands and Their Applications in Redox-Switchable Catalysis for Selective Hydroamination Reactions by Brian Raymond Lydon Master of Science in Chemistry University of California, Los Angeles, 2013 Professor Paula L. Diaconescu, Chair This thesis contains results from three different projects. The first project focused on the synthesis of monoanionic ferrocene-based N,P ligands. 1-(tert-butyldimethylsilyl)amino-1’- diphenylphosphinoferrocene (fc(TBSNH)(PPh2)) was successfully synthesized and characterized by 1H, 31P, 13C NMR spectroscopy, and elemental analysis. Unfortunately, coordination to group 3 metal complexes was unsuccessful. The second project focused on the synthesis of redox-active ferrocene-based ligands and their applications in selective intramolecular hydroamination. Redox-active ligands can be used as a reversible trigger to control catalytic reactivity. Preliminary results observed by 1H NMR spectroscopy suggest that [1,1’-ferrocenedi(thio(3,5-di-tert-butyl-2-phenoxide)]Zr dibenzyl 2 ((thiolfan )ZrBn2) shows selectivity between primary and secondary alkeneamines depending on the oxidation state of the iron center. ii The final project was a computational study using density functional theory (DFT) to understand recent experimental findings involving ferrocene-functionalized biodegradable polymers. Gibbs free energy for six cyclic carbonate monomers and three δ-valerolactone monomers was calculated. Computational results correlated strongly with experimental data in that δ-valerolactones, which could not be polymerized, had a higher Gibbs free energy than cyclic carbonates, which could be polymerized. iii The thesis of Brian Raymond Lydon is approved. Anastassia Alexandrova Ohyun Kwon Paula L. Diaconescu, Committee Chair University of California, Los Angeles 2013 iv Table of contents Title Page ....................................................................................................................... i Abstract ........................................................................................................................ ii Committee Page .......................................................................................................... iv Table of Contents ......................................................................................................... v List of Figures and Tables ........................................................................................ vii List of Abbreviations .................................................................................................. ix Acknowledgments ........................................................................................................ x Chapter 1: Ferrocene Ligand Synthesis .................................................................... 1 1.1 Introduction .......................................................................................................... 1 1.1.1 Background on Ferrocene ............................................................................. 1 1.1.2 Ferrocene Ligands and Their Properties ....................................................... 2 1.1.3 1-amino-1'-diphenylphosphinoferrocene ...................................................... 3 1.2 Results and Discussion ........................................................................................ 4 i 1.2.1 Synthesis of fcBr(PPh2) and fcBr(P Pr2) ....................................................... 5 1.2.2 Synthesis of fc(NH2)(PPH2) .......................................................................... 7 1.2.3 Synthesis of fc(TBSNH)(PPH2) .................................................................... 8 1.2.4 Attempts to Form Metal Complexes ............................................................. 9 1.3 Conclusions ........................................................................................................ 10 1.4 Experimental Section ......................................................................................... 10 1.4.1 General Considerations ............................................................................... 10 1.4.2 Preparation of fcBr(PPh2) ........................................................................... 11 i 1.4.3 Preparation of fcBr(P Pr2) ........................................................................... 12 1.4.4 Preparation of fc(NH2)(PPh2) ..................................................................... 13 1.4.5 Preparation of fc(TBSNH)(PPh2) ............................................................... 14 1.5 Supplementary Material ..................................................................................... 15 1.6 References .......................................................................................................... 19 Chapter 2: Part 1 Redox-Active Ferrocene Ligands .............................................. 21 2.1 Introduction ........................................................................................................ 21 2.1.1 Hydroamination Background ...................................................................... 21 2.1.2 Redox-Active Ligand Background ............................................................. 22 2.2 Results and Discussion ...................................................................................... 24 2.2.1 Phase One of Redox-switchable Selective Hydroamination ...................... 25 v 2.2.2 Phase Two of Redox-switchable Selective Hydroamination ...................... 26 2 2.2.3 Synthesis of (thiolfan )Zr(NEt2)2 ................................................................ 27 2.3 Conclusions ........................................................................................................ 28 2.4 Experimental Section ......................................................................................... 28 2.4.1 General Considerations ............................................................................... 28 2.4.2 General Procedure for Hydroamination Reactions with Neutral Catalysts ............................................................................................................... 29 2.4.3 General Procedure for Hydroamination Reactions with Oxidized Catalysts ............................................................................................................... 29 2 2.4.4 Preparation of (thiolfan )Zr(NEt2)2 ............................................................. 29 2 2.4.5 Oxidation of (thiolfan )Zr(NEt2)2 ............................................................... 30 2.5 Supplementary Material ..................................................................................... 31 2.6 References .......................................................................................................... 33 Chapter 3: Computational Study of Ferrocene-functionalized Polymers ........... 35 3.1 Introduction ........................................................................................................ 35 3.1.1 Background on Ferrocene in Polymers and Materials ................................ 35 3.1.2 Overview of Current Projects in Biodegradable Polymers ......................... 35 3.2 Results and Discussion ...................................................................................... 37 3.3 Conclusions ........................................................................................................ 43 3.4 Supplementary Material ..................................................................................... 43 3.5 References .......................................................................................................... 65 vi List of Figures and Tables Chapter 1: Ferrocene Ligand Synthesis Figure 1. Structure of ferrocene determined by Woodward and Wilkinson .................. 1 Figure 2. General framework of the Diaconescu group’s ferrocene-based ligands ....... 2 Figure 3. Iron-metal bond evidence in a ferrocenediamide metal complex through molecular orbital overlap ............................................................................................... 3 Figure 4. fc(TBSNH)(PPh2) synthetic scheme 5 steps .................................................. 4 Figure 5. Chemical equation for fcBr(PR2) ................................................................... 5 Figure 6. Chemical equation for fc(NH2)(PR2).............................................................. 7 Figure 7. Chemical equation for fc(TBSNH)(PPh2) ...................................................... 8 1 Figure 8. H NMR spectrum of fcBr(PPH2) (CDCl3) .................................................. 15 31 Figure 9. P NMR spectrum of fcBr(PPh2) (CDCl3) .................................................. 15 1 i Figure 10. H