DIMENSIONS and UNITS to Get the Value of a Quantity in Gaussian Units, Multiply the Value Ex- Pressed in SI Units by the Conversion Factor

Total Page:16

File Type:pdf, Size:1020Kb

DIMENSIONS and UNITS to Get the Value of a Quantity in Gaussian Units, Multiply the Value Ex- Pressed in SI Units by the Conversion Factor DIMENSIONS AND UNITS To get the value of a quantity in Gaussian units, multiply the value ex- pressed in SI units by the conversion factor. Multiples of 3 in the conversion factors result from approximating the speed of light c = 2.9979 1010 cm/sec × 3 1010 cm/sec. ≈ × Dimensions Physical Sym- SI Conversion Gaussian Quantity bol SI Gaussian Units Factor Units t2q2 Capacitance C l farad 9 1011 cm ml2 × m1/2l3/2 Charge q q coulomb 3 109 statcoulomb t × q m1/2 Charge ρ coulomb 3 103 statcoulomb 3 3/2 density l l t /m3 × /cm3 tq2 l Conductance siemens 9 1011 cm/sec ml2 t × 2 tq 1 9 1 Conductivity σ siemens 9 10 sec− 3 ml t /m × q m1/2l3/2 Current I,i ampere 3 109 statampere t t2 × q m1/2 Current J, j ampere 3 105 statampere 2 1/2 2 density l t l t /m2 × /cm2 m m 3 3 3 Density ρ kg/m 10− g/cm l3 l3 q m1/2 Displacement D coulomb 12π 105 statcoulomb l2 l1/2t /m2 × /cm2 1/2 ml m 1 4 Electric field E volt/m 10− statvolt/cm t2q l1/2t 3 × 2 1/2 1/2 ml m l 1 2 Electro- , volt 10− statvolt 2 motance EmfE t q t 3 × ml2 ml2 Energy U, W joule 107 erg t2 t2 m m Energy w,ǫ joule/m3 10 erg/cm3 2 2 density lt lt 10 Dimensions Physical Sym- SI Conversion Gaussian Quantity bol SI Gaussian Units Factor Units ml ml Force F newton 105 dyne t2 t2 1 1 Frequency f,ν hertz 1 hertz t t 2 ml t 1 11 Impedance Z ohm 10− sec/cm tq2 l 9 × 2 2 ml t 1 11 2 Inductance L henry 10− sec /cm q2 l 9 × Length l l l meter (m) 102 centimeter (cm) 1/2 q m 3 Magnetic H ampere– 4π 10− oersted 1/2 intensity lt l t turn/m × ml2 m1/2l3/2 Magnetic flux Φ weber 108 maxwell tq t m m1/2 Magnetic B tesla 104 gauss tq l1/2t induction l2q m1/2l5/2 Magnetic m,µ ampere–m2 103 oersted– t t moment cm3 1/2 q m 3 Magnetization M ampere– 4π 10− oersted lt l1/2t turn/m × q m1/2l1/2 4π Magneto- , ampere– gilbert 2 motance MmfM t t turn 10 Mass m, M m m kilogram 103 gram (g) (kg) ml ml Momentum p, P kg–m/s 105 g–cm/sec t t m m 2 1 2 Momentum kg/m –s 10− g/cm –sec l2t l2t density ml 1 Permeability µ 1 henry/m 107 — q2 4π × 11 Dimensions Physical Sym- SI Conversion Gaussian Quantity bol SI Gaussian Units Factor Units t2q2 Permittivity ǫ 1 farad/m 36π 109 — ml3 × q m1/2 Polarization P coulomb/m2 3 105 statcoulomb l2 l1/2t × /cm2 2 1/2 1/2 ml m l 1 2 Potential V,φ volt 10− statvolt t2q t 3 × ml2 ml2 Power P watt 107 erg/sec t3 t3 m m Power watt/m3 10 erg/cm3–sec lt3 lt3 density m m Pressure p, P pascal 10 dyne/cm2 lt2 lt2 2 q 1 9 1 Reluctance ampere–turn 4π 10− cm− 2 R ml l /weber × 2 ml t 1 11 Resistance R ohm 10− sec/cm tq2 l 9 × 3 ml 1 9 Resistivity η,ρ t ohm–m 10− sec tq2 9 × ml ml Thermal con- κ, k watt/m– 105 erg/cm–sec– 3 3 ductivity t t deg (K) deg (K) Time t t t second (s) 1 second (sec) ml m1/2l1/2 Vector A weber/m 106 gauss–cm potential tq t l l Velocity v m/s 102 cm/sec t t m m Viscosity η,µ kg/m–s 10 poise lt lt 1 1 1 1 Vorticity ζ s− 1 sec− t t ml2 ml2 Work W joule 107 erg t2 t2 12 INTERNATIONAL SYSTEM (SI) NOMENCLATURE6 Physical Name Symbol Physical Name Symbol Quantity of Unit for Unit Quantity of Unit for Unit *length meter m electric volt V potential *mass kilogram kg electric ohm Ω *time second s resistance *current ampere A electric siemens S conductance *temperature kelvin K electric farad F *amount of mole mol capacitance substance magnetic flux weber Wb *luminous candela cd intensity magnetic henry H inductance plane angle radian rad † magnetic tesla T solid angle steradian sr intensity † frequency hertz Hz luminous flux lumen lm energy joule J illuminance lux lx force newton N activity (of a becquerel Bq radioactive pressure pascal Pa source) power watt W absorbed dose gray Gy (of ionizing electric charge coulomb C radiation) *SI base unit Supplementary unit † METRIC PREFIXES Multiple Prefix Symbol Multiple Prefix Symbol 1 10− deci d 10 deca da 2 2 10− centi c 10 hecto h 3 3 10− milli m 10 kilo k 6 6 10− micro µ 10 mega M 9 9 10− nano n 10 giga G 12 12 10− pico p 10 tera T 15 15 10− femto f 10 peta P 18 18 10− atto a 10 exa E 13 PHYSICAL CONSTANTS (SI)7 Physical Quantity Symbol Value Units 23 1 Boltzmann constant k 1.3807 10− JK− × 19 Elementary charge e 1.6022 10− C × 31 Electron mass m 9.1094 10− kg e × 27 Proton mass m 1.6726 10− kg p × 11 3 2 1 Gravitational constant G 6.6726 10− m s− kg− × 34 Planck constant h 6.6261 10− J s × 34 h¯ = h/2π 1.0546 10− J s × 8 1 Speed of light in vacuum c 2.9979 10 m s− × 12 1 Permittivity of ǫ 8.8542 10− F m− 0 × free space 7 1 Permeability of µ 4π 10− H m− 0 × free space Proton/electron mass m /m 1.8362 103 p e × ratio 11 1 Electron charge/mass e/m 1.7588 10 C kg− e × ratio 4 me 7 1 Rydberg constant R = 1.0974 10 m− 2 3 ∞ 8ǫ0 ch × 2 2 11 Bohr radius a = ǫ h /πme 5.2918 10− m 0 0 × 2 21 2 Atomic cross section πa 8.7974 10− m 0 × 2 2 15 Classical electron radius r = e /4πǫ mc 2.8179 10− m e 0 × 2 29 2 Thomson cross section (8π/3)r 6.6525 10− m e × 12 Compton wavelength of h/mec 2.4263 10− m × 13 electron h/m¯ c 3.8616 10− m e × 2 3 Fine-structure constant α = e /2ǫ0hc 7.2974 10− 1 × α− 137.04 2 16 2 First radiation constant c = 2πhc 3.7418 10− W m 1 × 2 Second radiation c = hc/k 1.4388 10− mK 2 × constant 8 2 4 Stefan-Boltzmann σ 5.6705 10− W m− K− × constant 14 Physical Quantity Symbol Value Units 6 Wavelength associated λ = hc/e 1.2398 10− m 0 × with 1 eV Frequency associated ν = e/h 2.4180 1014 Hz 0 × with 1 eV 5 1 Wave number associated k = e/hc 8.0655 10 m− 0 × with 1 eV 19 Energy associated with hν 1.6022 10− J 0 × 1 eV 25 Energy associated with hc 1.9864 10− J 1 × 1 m− 3 2 2 Energy associated with me /8ǫ0 h 13.606 eV 1 Rydberg 5 Energy associated with k/e 8.6174 10− eV × 1 Kelvin Temperature associated e/k 1.1604 104 K × with 1 eV 23 1 Avogadro number N 6.0221 10 mol− A × 4 1 Faraday constant F = N e 9.6485 10 C mol− A × 1 1 Gas constant R = NAk 8.3145 JK− mol− 25 3 Loschmidt’s number n 2.6868 10 m− 0 × (no. density at STP) 27 Atomic mass unit m 1.6605 10− kg u × Standard temperature T0 273.15 K Atmospheric pressure p = n kT 1.0133 105 Pa 0 0 0 × Pressure of 1 mm Hg 1.3332 102 Pa × (1 torr) 2 3 Molar volume at STP V = RT /p 2.2414 10− m 0 0 0 × 2 Molar weight of air M 2.8971 10− kg air × calorie (cal) 4.1868 J 2 Gravitational g 9.8067 m s− acceleration 15 PHYSICAL CONSTANTS (cgs)7 Physical Quantity Symbol Value Units 16 Boltzmann constant k 1.3807 10− erg/deg (K) × 10 Elementary charge e 4.8032 10− statcoulomb × (statcoul) 28 Electron mass m 9.1094 10− g e × 24 Proton mass m 1.6726 10− g p × 8 2 2 Gravitational constant G 6.6726 10− dyne-cm /g × 27 Planck constant h 6.6261 10− erg-sec × 27 h¯ = h/2π 1.0546 10− erg-sec × Speed of light in vacuum c 2.9979 1010 cm/sec × Proton/electron mass m /m 1.8362 103 p e × ratio Electron charge/mass e/m 5.2728 1017 statcoul/g e × ratio 2 4 2π me 5 1 Rydberg constant R = 1.0974 10 cm− ∞ ch3 × 2 2 9 Bohr radius a =h ¯ /me 5.2918 10− cm 0 × 2 17 2 Atomic cross section πa 8.7974 10− cm 0 × 2 2 13 Classical electron radius r = e /mc 2.8179 10− cm e × 2 25 2 Thomson cross section (8π/3)r 6.6525 10− cm e × 10 Compton wavelength of h/mec 2.4263 10− cm × 11 electron h/m¯ c 3.8616 10− cm e × 2 3 Fine-structure constant α = e /hc¯ 7.2974 10− 1 × α− 137.04 2 5 2 First radiation constant c = 2πhc 3.7418 10− erg-cm /sec 1 × Second radiation c2 = hc/k 1.4388 cm-deg (K) constant 5 2 Stefan-Boltzmann σ 5.6705 10− erg/cm - × constant sec-deg4 4 Wavelength associated λ 1.2398 10− cm 0 × with 1 eV 16 Physical Quantity Symbol Value Units Frequency associated ν 2.4180 1014 Hz 0 × with 1 eV 3 1 Wave number associated k 8.0655 10 cm− 0 × with 1 eV 12 Energy associated with 1.6022 10− erg × 1 eV 16 Energy associated with 1.9864 10− erg 1 × 1 cm− Energy associated with 13.606 eV 1 Rydberg 5 Energy associated with 8.6174 10− eV × 1 deg Kelvin Temperature associated 1.1604 104 deg (K) × with 1 eV 23 1 Avogadro number N 6.0221 10 mol− A × Faraday constant F = N e 2.8925 1014 statcoul/mol A × Gas constant R = N k 8.3145 107 erg/deg-mol A × 19 3 Loschmidt’s number n 2.6868 10 cm− 0 × (no.
Recommended publications
  • Physics, Chapter 30: Magnetic Fields of Currents
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 30: Magnetic Fields of Currents Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 30: Magnetic Fields of Currents" (1958). Robert Katz Publications. 151. https://digitalcommons.unl.edu/physicskatz/151 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 30 Magnetic Fields of Currents 30-1 Magnetic Field around an Electric Current The first evidence for the existence of a magnetic field around an electric current was observed in 1820 by Hans Christian Oersted (1777-1851). He found that a wire carrying current caused a freely pivoted compass needle B D N rDirection I of current D II. • ~ I I In wire ' \ N I I c , I s c (a) (b) Fig. 30-1 Oersted's experiment. Compass needle is deflected toward the west when the wire CD carrying current is placed above it and the direction of the current is toward the north, from C to D. in its vicinity to be deflected. If the current in a long straight wire is directed from C to D, as shown in Figure 30-1, a compass needle below it, whose initial orientation is shown in dotted lines, will have its north pole deflected to the left and its south pole deflected to the right.
    [Show full text]
  • Physics and Technology System of Units for Electrodynamics
    PHYSICS AND TECHNOLOGY SYSTEM OF UNITS FOR ELECTRODYNAMICS∗ M. G. Ivanov† Moscow Institute of Physics and Technology Dolgoprudny, Russia Abstract The contemporary practice is to favor the use of the SI units for electric circuits and the Gaussian CGS system for electromagnetic field. A modification of the Gaussian system of units (the Physics and Technology System) is suggested. In the Physics and Technology System the units of measurement for electrical circuits coincide with SI units, and the equations for the electromagnetic field are almost the same form as in the Gaussian system. The XXIV CGMP (2011) Resolution ¾On the possible future revision of the International System of Units, the SI¿ provides a chance to initiate gradual introduction of the Physics and Technology System as a new modification of the SI. Keywords: SI, International System of Units, electrodynamics, Physics and Technology System of units, special relativity. 1. Introduction. One and a half century dispute The problem of choice of units for electrodynamics dates back to the time of M. Faraday (1822–1831) and J. Maxwell (1861–1873). Electrodynamics acquired its final form only after geometrization of special relativity by H. Minkowski (1907–1909). The improvement of contemporary (4-dimentional relativistic covariant) formulation of electrodynamics and its implementation in practice of higher education stretched not less than a half of century. Overview of some systems of units, which are used in electrodynamics could be found, for example, in books [2, 3] and paper [4]. Legislation and standards of many countries recommend to use in science and education The International System of Units (SI).
    [Show full text]
  • The Daniell Cell, Ohm's Law and the Emergence of the International System of Units
    The Daniell Cell, Ohm’s Law and the Emergence of the International System of Units Joel S. Jayson∗ Brooklyn, NY (Dated: December 24, 2015) Telegraphy originated in the 1830s and 40s and flourished in the following decades, but with a patchwork of electrical standards. Electromotive force was for the most part measured in units of the predominant Daniell cell. Each company had their own resistance standard. In 1862 the British Association for the Advancement of Science formed a committee to address this situation. By 1873 they had given definition to the electromagnetic system of units (emu) and defined the practical units of the ohm as 109 emu units of resistance and the volt as 108 emu units of electromotive force. These recommendations were ratified and expanded upon in a series of international congresses held between 1881 and 1904. A proposal by Giovanni Giorgi in 1901 took advantage of a coincidence between the conversion of the units of energy in the emu system (the erg) and in the practical system (the joule) in that the same conversion factor existed between the cgs based emu system and a theretofore undefined MKS system. By introducing another unit, X (where X could be any of the practical electrical units), Giorgi demonstrated that a self consistent MKSX system was tenable without the need for multiplying factors. Ultimately the ampere was selected as the fourth unit. It took nearly 60 years, but in 1960 Giorgi’s proposal was incorporated as the core of the newly inaugurated International System of Units (SI). This article surveys the physics, physicists and events that contributed to those developments.
    [Show full text]
  • Unit Systems, E&M Units, and Natural Units
    Phys 239 Quantitative Physics Lecture 4: Units Unit Systems, E&M Units, and Natural Units Unit Soup We live in a soup of units—especially in the U.S. where we are saddled with imperial units that even the former empire has now dropped. I was once—like many scientists and most international students in the U.S. are today—vocally irritated and perplexed by this fact. Why would the U.S.—who likes to claim #1 status in all things even when not true—be behind the global curve here, when others have transitioned? I only started to understand when I learned machining practices in grad school. The U.S. has an immense infrastructure for manufacturing, comprised largely of durable machines that last a lifetime. The machines and tools represent a substantial capital investment not easily brushed aside. It is therefore comparatively harder for a (former?) manufacturing powerhouse to make the change. So we become adept in two systems. As new machines often build in dual capability, we may yet see a transformation decades away. But even leaving aside imperial units, scientists bicker over which is the “best” metric-flavored unit system. This tends to break up a bit by generation and by field. Younger scientists tend to have been trained in SI units, also known as MKSA for Meters, Kilograms, Seconds, and Amperes. Force, energy, and power become Newtons, Joules, and Watts. Longer-toothed scientists often prefer c.g.s. (centimeter, gram, seconds) in conjunction with Gaussian units for electromagnetic problems. Force, energy, and power become dynes, ergs, and ergs/second.
    [Show full text]
  • Here Is the Appendix on Units from Classical Electrodynamics
    558 Appendix A Units This book has been written entirely in the Gaussian system of units, which is most convenient for theoretical purposes. However, for practical uses, and for engineering applications, it is essential to make contact with the SI (Syst`eme International) units, in which the meter, kilogram, second, and ampere are the fundamental units. Fortunately, it is very easy to transform equations written in the Gaussian system to the SI system. Here we will give that transformation, as well as explain the Gaussian units. Thus, evaluations may be performed in either system, or by using dimensionless quantities, such as the fine structure constant. The macroscopic Maxwell equations, (4.60), in Gaussian units, are ∇ D = 4πρ, ∇ B =0, 1 ∂ 4π 1 ∂ ∇×·H = D + J, ∇×· E = B, (A.1) c ∂t c − c ∂t where D = E +4πP, H = B 4πM. (A.2) − In addition, the Lorentz force law is v F = e E + ×B . (A.3) c In contrast, the equations in the SI units are ∇ D = ρ, ∇ B =0, ∂ ∂ ∇×·H = D + J, ∇×· E = B, (A.4) ∂t − ∂t where D = ǫ0E + P, 1 H = B M. (A.5) µ0 − 559 560 APPENDIX A. UNITS Here the constants ǫ0 and µ0 have defined values, −2 ǫ0µ0 = c , −7 µ0 = 4π 10 , (A.6) × where the speed of light is now defined to be exactly c = 299792458 m/s. (A.7) In addition, the SI Lorentz force law is F = e(E + v×B). (A.8) To convert from the equations in Gaussian form to those in SI form, we multiply each quantity in the former system by a suitable constant: D kDD, E kEE, → → H kH H, B kBB, → → P kP P, M kM M, → → ρ kρρ, J kJ J.
    [Show full text]
  • SI and CGS Units in Electromagnetism
    SI and CGS Units in Electromagnetism Jim Napolitano December 28, 2017 Two divergent systems of units established themselves over the course of the 20th century. One system, known as SI (from the French Le Systeme` International d’Unites),´ is rooted in the laboratory. It gained favor in the engineering community and forms the basis for most undergraduate curricula. The other system, called Gaussian, is aesthetically cleaner and is much favored in the theoretical physics community. We use the Gaussian system in this book, as do most graduate level physics texts on Quantum Mechanics and other subjects. The SI system is also known as MKSA (for meter, kilogram, second, Ampere), and the Gaussian system is some- times called1 CGS (for centimeter, gram, second). For problems in mechanics, the difference is trivial, amounting only to some powers of ten. The difficulty comes when incorporating electromagnetism. As discussed below, SI incorpo- rates a fourth base unit, the Ampere, which implies that charge and other electromagnetic quantities are dimensionally distinct between the SI and Gaussian systems. This one point is the source of all the confusion. In other words, although we can write that a meter is equal to 100 centimeters, the SI unit of charge, called the Coulomb, is not equal to any number of electrostatic units (esu), the Gaussian unit of charge. The two kinds of charges literally have different physical meanings. They should probably have different names, but historically they are both called “charge.” Similar comments apply to electric current, electric and magnetic fields, the electric potential, and so on. This why you see factors like e0 and m0 appear in SI formulas, whereas factors of c are common in Gaussian formulas.
    [Show full text]
  • Ebook Download Measuring the World a Novel 1St Edition Ebook
    MEASURING THE WORLD A NOVEL 1ST EDITION PDF, EPUB, EBOOK Carol Brown Janeway | 9780307277398 | | | | | Measuring the World A Novel 1st edition PDF Book The second section somehow does the same for calculus and differential equations and logarithms. Error rating book. Satisfaction Guaranteed! We use cookies on this website. In the second one, we have motion, curves, calculus, logarithms. What exactly are we doing when we measure something? Gaussian units , for example, have only length, mass, and time as base quantities, and the ampere is defined in terms of other units. The fact that there are exactly half the angular arc-degrees of a circle in such a triangle is a property of mathematical triangles simply because they are defined to have that property. About Paul Lockhart. Emotions in beverages This we call quantification. Conversion of units Metric prefixes — definition redefinition Systems of measurement. Share this book Facebook. We're walking around apparently , and things certainly look and feel as though they are part of a three-dimensional universe, but when you come right down to it, three-dimensional space is really an abstract mathematical object--inspired by our perception of reality, to be sure, but imaginary nonetheless. View Comments. Pages are intact and not marred by notes or highlighting. These are called irrational numbers and they cannot be completely stated even with an infinite number of digits or decimal places. Seller Inventory People under the age of 16 to attempt or hold records which are considered unsuitable for minors. Dec 25, Sandy Maguire rated it it was ok Shelves: education.
    [Show full text]
  • Chapter 1. Electric Charge Interaction
    Essential Graduate Physics EM: Classical Electrodynamics Chapter 1. Electric Charge Interaction This brief chapter describes the basics of electrostatics – the study of interactions between stationary (or relatively slowly moving) electric charges. Much of this material should be known to the reader from their undergraduate studies;1 because of that, the explanations are very brief. 1.1. The Coulomb law A quantitative discussion of classical electrodynamics, starting from the electrostatics, requires a common agreement on the meaning of the following notions:2 - electric charges qk, as revealed, most explicitly, by observation of electrostatic interaction between the charged particles; - point charges – the charged particles so small that their position in space, for the given problem, may be completely described (in a given reference frame) by their radius-vectors rk; and - electric charge conservation – the fact that the algebraic sum of all charges qk inside any closed volume is conserved unless the charged particles cross the volume’s border. I will assume that these notions are well known to the reader. Using them, the Coulomb law3 for the interaction of two stationary point charges may be formulated as follows: r r q q F q q k k' k k' n , kk' k k' 3 R 2 kk' Coulomb rk rk ' kk' law (1.1) R kk ' with R kk' rk rk' , n kk' , Rkk ' R kk ' . Rkk ' where Fkk’ denotes the electrostatic (Coulomb) force exerted on the charge number k by the charge number k’, separated from it by distance Rkk’ – see Fig. 1. qk ' Fk'k R kk' rk rk ' rk ' n kk' qk Fkk ' rk 0 Fig.
    [Show full text]
  • Part I Introduction
    1 Part I Introduction In the first part of this book, we give a general introduction and review all the aspects of classical electrodynamics and quantum mechanics that are needed in later chapters. This brief summary will help us also to agree on the notation used throughout. The reader may very well be familiar with most of the material pre- sented here, in which case it could be skipped and referred back to if needed. Nonrelativistic Quantum X-Ray Physics, First Edition. Stefan P. Hau-Riege. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA. 3 1 Introduction 1.1 Motivation X-ray physics has been essential throughout the last century and continues to be so to this date. It has catalyzed and survived multiple revolutions in physics, and has undergone several renaissances, usually coupled with the advent of new generations of X-ray sources. A couple of events are particularly noteworthy: In 1900, Planck provided an explanation for the spectrum that is emitted by a thermal radiation source by assuming that the radiation is quantized into energy packets of magnitude ℏ per mode [1, 2]. In 1905, Einstein explained the photoelectric effect by assuming that electromagnetic radiation is corpuscular [3]. It has been shown since that a semiclassical theory, which treats the electromagnetic radi- ation classically and only the matter system quantum mechanically, is actually sufficient to explain this effect. Nevertheless, both Planck’s and Einstein’s obser- vations suggested that classical electromagnetic field theory needs to be extended to include corpuscular and nondeterministic elements.
    [Show full text]
  • Brief History of Gaussian Units
    The evolution of the Gaussian Units by Dan Petru Danescu, e-mail [email protected] 1795 – Republic of France adopts the first basic Metric System proposed by the French Academy of Sciences. 1832 – K. F. Gauss [1] propose the possibility of making magnetic measurements in terms of mechanical units of the earth’s’ magnetic force (millimeter, gram and second) as “absolute measure”. _______________ [1] K.F. Gauss,”Intensitas vis magneticae terrestris ad mensuram absolutam revocata”, in K.F. Gauss, Werke, Gottingen, V, 1832, pp. 293-304. 1851 – W. Weber [2] studies magnetism with Gauss and publish his “Electrodynamic Proportional Measures” containing absolute measurements for electric currents, which is a complete set of “absolute units”. _______________ [2] W. Weber’s Werke, Berlin 1893, Banden 5 . 1861 – The British Association for Advancement of Science (that included W. Thomson, J.C. Maxwell and J.P.Joule) introduce the concept of system of units. The meter, the gram and the mean solar second are considered as “base units”. 1856-1865 – J.C. Maxwell creates a unified theory based on the field concept introduced by Faraday in a series of papers. He predicts the existence of electromagnetic waves and identifies the ratio of the measure units with the c speed of light. 1873 – The second committee of the British Association for the Advancement of Science recommends a centimeter-gram-second system of units (CGS), because in this system the density of water is unity. This system of units is devised in the electrostatic and the electromagnetic subsystem, 2 depending on whether the law of force for electric charge (Fe = q1q2 /r ) or for electric currents (Fm = 2ℓI1I2 /r) is taken as fundamental.
    [Show full text]
  • 1 Fundamentals 1.1 Overview
    Physics 704 Spring 2018 1 Fundamentals 1.1 Overview The objective of this course is: to determine and fields in various physical systems and the forces and/or torques resulting from them. The domain of applicability is the classical regime in which the field picture is appropriate. In QM the photon is the particle that mediates the E-M force. The field picture is appropriate when interactions involve lots of photons. This regime has widespread applicability. Mostly we’ll be working with continuous charge distributions in which the discrete nature of electrons is also ignored. Idealizations we’ll make include: 51 1. The photon has zero mass: the experimental limit is 10− g. (See link on web site for details.) The mass of the photon is linked to the form of the point charge potential Φ and the corresponding inverse square force law. (Most experiments test∝ for the inverse square law rather than trying to measure mass directly.) If the photon had mass, then the potential would be of the form 1 Φ exp ∝ − ¯ Think about what the force law looks like³ in this´ case, and how it differs from apureinverse-squarelaw. 2. Perfect conductors exist. 3. An extended surface can be maintained at a constant potential, and two different surfaces can be maintained at the same potential ("common ground"). This idealization is closely related to #2. 4. Surface charge and current layers have zero thickness. The actual thick- ness is of order a few atomic diameters, so this idealization is equivalent to size of system few atomic diameters À 1.2 Units: The first half of Jackson’s book uses SI units, the second half uses Gaussian.
    [Show full text]
  • SI and CGS Units in Electromagnetism
    SI and CGS Units in Electromagnetism Jim Napolitano January 11, 2021 Two divergent systems of units established themselves over the course of the 20th century. One system, known as SI (from the French Le Systeme` International d’Unites),´ is rooted in the laboratory. It gained favor in the engineering community and forms the basis for most undergraduate curricula. The other system, called Gaussian, is aesthetically cleaner and is much favored in the theoretical physics community. We use the Gaussian system in this book, as do most graduate level physics texts on Quantum Mechanics and other subjects. The SI system is also known as MKSA (for meter, kilogram, second, Ampere), and the Gaussian system is some- times called1 CGS (for centimeter, gram, second). For problems in mechanics, the difference is trivial, amounting only to some powers of ten. The difficulty comes when incorporating electromagnetism. As discussed below, SI incorpo- rates a fourth base unit, the Ampere, which implies that charge and other electromagnetic quantities are dimensionally distinct between the SI and Gaussian systems. This one point is the source of all the confusion. In other words, although we can write that a meter is equal to 100 centimeters, the SI unit of charge, called the Coulomb, is not equal to any number of electrostatic units (esu), the Gaussian unit of charge. The two kinds of charges literally have different physical meanings. They should probably have different names, but historically they are both called “charge.” Similar comments apply to electric current, electric and magnetic fields, the electric potential, and so on. This why you see factors like e0 and m0 appear in SI formulas, whereas factors of c are common in Gaussian formulas.
    [Show full text]