The Nuclear Reactors from a « Natural History » Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Selection of Retrieval Techniques for Irradiated Graphite During Reactor Decommissioning - 11587
WM2011 Conference, February 27 - March 3, 2011, Phoenix, AZ Selection of Retrieval Techniques for Irradiated Graphite during Reactor Decommissioning - 11587 D.J. Potter*, R.B. Jarvis*, A.W. Banford*, L. Cordingley*, and M. Grave** * National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington, Cheshire, WA3 6AE, UK ** Doosan Babcock, Baltic Business Centre, Gateshead, NE8 3DA, UK ABSTRACT Globally, around 230,000 tonnes of irradiated graphite requires retrieval, treatment, management and/or disposal. This waste has arisen from a wide range of reactors, predominantly from the use of graphite moderated reactors for base-load generation, but also from experimental research facilities. Much of the graphite is presently still in the reactor core while other graphite is stored in a variety of forms in waste stores. The first step in the management of this significant waste stream is retrieval of the graphite from its present location. Doosan Babcock and the UK National Nuclear Laboratory are participants in the CARBOWASTE European research project which brings together organisations from a range of countries with an irradiated graphite legacy to address the graphite waste management challenge. This paper describes the issues associated with retrieval of graphite from reactors, potential approaches to graphite retrieval and the information needed to select a particular retrieval method for a specified application. Graphite retrieval is viewed within the context of the wider strategy for the management of irradiated graphite waste streams. The paper identifies the challenges of graphite retrieval and provides some examples where modelling can be used to provide information to support retrievals design and operations. INTRODUCTION A four year collaborative European Project ‘Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste (CARBOWASTE)’ was launched in April 2008 under the 7th EURATOM Framework Programme [1]. -
Thermal Hydraulics Analysis of the Distribution Zone in Small Modular Dual Fluid Reactor
metals Article Thermal Hydraulics Analysis of the Distribution Zone in Small Modular Dual Fluid Reactor Chunyu Liu 1,* , Xiaodong Li 1 , Run Luo 1,2 and Rafael Macian-Juan 1 1 Chair of Nuclear Technology, Department of Mechanical Engineering, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany; [email protected] (X.L.); [email protected] or [email protected] (R.L.); [email protected] (R.M.-J.) 2 School of Resource & Environment and Safety Engineering, University of South China, No. 28, Changsheng West Road, Hengyang 421001, China * Correspondence: [email protected] or [email protected] Received: 29 June 2020; Accepted: 4 August 2020; Published: 6 August 2020 Abstract: The Small Modular Dual Fluid Reactor (SMDFR) is a novel molten salt reactor based on the dual fluid reactor concept, which employs molten salt as fuel and liquid lead/lead-bismuth eutectic (LBE) as coolant. A unique design of this reactor is the distribution zone, which locates under the core and joins the core region with the inlet pipes of molten salt and coolant. Since the distribution zone has a major influence on the heat removal capacity in the core region, the thermal hydraulics characteristics of the distribution zone have to be investigated. This paper focuses on the thermal hydraulics analysis of the distribution zone, which is conducted by the numerical simulation using COMSOL Multiphysics with the CFD (Computational Fluid Dynamics) module and the Heat Transfer module. The energy loss and heat exchange in the distribution zone are also quantitatively analyzed. The velocity and temperature distributions of both molten salt and coolant at the outlet of the distribution zone, as inlet of the core region, are produced. -
Interview: the Dual Fluid Reactor the Public Is Ready for Nuclear Power
Interview: The Dual Fluid Reactor The Public is Ready for Nuclear Power Dr. Ahmed Hussein is Professor Emeritus of physics at University of Northern British Columbia currently stationed at TRIUMF, Canada’s National Laboratory for particle and nuclear physics in Vancouver, British Columbia. He is also an Associate Member of the Institute for Solid State Nuclear Physics (IFK) in Berlin, Germany. He was interviewed on September 16, 2014 by Robert Hux for 21st Century Science & Technology. Robert Hux – Dr. Hussein, we met you recently at the millions of tons of green house gases and the 320,000 Pacific Basin Nuclear Conference here in Vancouver, tonnes of ash containing toxic heavy metals and tens of where you presented a very interesting new design for thousands of tonnes of sulfur and nitrogen oxides that a nuclear fission reactor.1 How does your design differ are produced by fossil fuel power stations. Furthermore, from the nuclear fission reactors which have been de- nuclear power reactors do not emit any radioactive ma- veloped since the 1950s? terials into the atmosphere during operation, while coal- Dr. Ahmed Hussein – Our reactor, called the Dual fired stations emit radioactive materials that are mixed Fluid Reactor (DFR)2, was designed to solve many of the naturally with coal. problems which exist now with the current reactors that Our reactor concept has a simpler design that avoids people are afraid of. Current reactors have some designs most of the problems that we have right now. And it will that actually originated in the military use of nuclear actually make nuclear power a lot cheaper, safer, most- power in the old days of the Manhattan Project, and they ly carbon-free, and better to use than any other energy were adapted to civilian use. -
Annual Report 2013 / 2014
Technische Universität München Department of Mechanical Engineering Mechanical Engineering Annual Report Imprint Technische Universität München Department of Mechanical Engineering Boltzmannstraße 15 85748 Garching near Munich Germany www.mw.tum.de Editor: Prof. Dr. Tim C. Lüth, Dean Sub-editor: Dr. Till v. Feilitzsch Layout: Fa-Ro Marketing, Munich Photo credits: Uli Benz, Thomas Bergmann, Astrid Eckert, Kurt Fuchs, Andreas Gebert, Haslbeck, Andreas Heddergott, Mittermüller Bildbetrieb, Wotan Wilden and further illustrations by the institutes March 2015 Technische Universität München Department of Mechanical Engineering Mechanical Engineering Annual Report 2013-2014 Content Preamble 6 TUM Department of Mechanical Engineering 7 Department Board of Management 8 Teaching 10 Research 11 Ranking Results 12 Facts and Figures 13 Projects and Clusters 14 Divisions of the Department of Mechanical Engineering 16 Faculty Graduate Center Mechanical Engineering 26 Center of Key Competences 27 Elected Representatives 28 Faculty Members 29 Prof. Dr.-Ing. Nikolaus Adams Institute of Aerodynamics and Fluid Mechanics 36 Prof. Dr.-Ing. Horst Baier Institute of Lightweight Structures 45 Prof. Dr. Klaus Bengler Institute of Ergonomics 49 Prof. Dr. Sonja Berensmeier Bioseparation Engineering Group 55 Prof. Dr. Carlo L. Bottasso Wind Energy Institute 58 Prof. Dr.-Ing. Klaus Drechsler Institute for Carbon Composites 63 Prof. Dr.-Ing. Michael W. Gee Mechanics & High Performance Computing Group 68 Prof. Dr.-Ing. habil. Dipl.-Geophys. Christian Große Institute of Non-destructive Testing 72 Prof. Dr.-Ing. Willibald A. Günthner Institute for Materials Handling, Material Flow, Logistics 75 Prof. Dr.-Ing. Oskar J. Haidn Institute of Flight Propulsion 84 Prof. Dr.-Ing. Oskar J. Haidn Space Propulsion Group 90 Prof. -
NRC Collection of Abbreviations
I Nuclear Regulatory Commission c ElLc LI El LIL El, EEELIILE El ClV. El El, El1 ....... I -4 PI AVAILABILITY NOTICE Availability of Reference Materials Cited in NRC Publications Most documents cited in NRC publications will be available from one of the following sources: 1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001 2. The Superintendent of Documents, U.S. Government Printing Office, P. 0. Box 37082, Washington, DC 20402-9328 3. The National Technical Information Service, Springfield, VA 22161-0002 Although the listing that follows represents the majority of documents cited in NRC publica- tions, it is not intended to be exhaustive. Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee docu- ments and correspondence. The following documents in the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports, NRC-sponsored conference pro- ceedings, international agreement reports, grantee reports, and NRC booklets and bro- chures. Also available are regulatory guides, NRC regulations in the Code of Federal Regula- tions, and Nuclear Regulatory Commission Issuances. Documents available from the National Technical Information Service Include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission. Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions. -
Nuclear Materials and Waste Management – RSRL Harwell Credible & Preferred Options (Gates a & B)
Exotic Fuels, Nuclear Materials and Waste Management – RSRL Harwell Credible & Preferred Options (Gates A & B) August 2011 Exotic Fuels, Nuclear Materials and Waste Management – RSRL Harwell – Credible and Preferred Options (Gates A & B) Issue 1 Doc Ref: SMS/TS/C3-EF/RSRL/001/A-B Exotic Fuels, Nuclear Materials and Waste Management – RSRL Harwell Credible & Preferred Options (Gates A & B) August 2011 Contents Contents.......................................................................................................................2 Executive Summary .....................................................................................................3 1 Background ..........................................................................................................4 1.1 Project Objective ..........................................................................................4 1.2 Harwell Fuel, Nuclear Materials and Wastes ...............................................4 1.4 What is Low-Enriched Uranium (LEU)? .......................................................5 1.5 What are concrete-lined drums? ..................................................................5 1.6 What are contact-handled Intermediate Level Waste (CHILW) drums?.......5 1.7 Hazard Potential and Reduction?.................................................................6 2 Strategic Case......................................................................................................6 2.1 Existing Situation..........................................................................................6 -
Uranium for Nuclear Power: an Introduction 1
Stichting Laka: Documentatie- en onderzoekscentrum kernenergie De Laka-bibliotheek The Laka-library Dit is een pdf van één van de publicaties in This is a PDF from one of the publications de bibliotheek van Stichting Laka, het in from the library of the Laka Foundation; the Amsterdam gevestigde documentatie- en Amsterdam-based documentation and onderzoekscentrum kernenergie. research centre on nuclear energy. Laka heeft een bibliotheek met ongeveer The Laka library consists of about 8,000 8000 boeken (waarvan een gedeelte dus ook books (of which a part is available as PDF), als pdf), duizenden kranten- en tijdschriften- thousands of newspaper clippings, hundreds artikelen, honderden tijdschriftentitels, of magazines, posters, video's and other posters, video’s en ander beeldmateriaal. material. Laka digitaliseert (oude) tijdschriften en Laka digitizes books and magazines from the boeken uit de internationale antikernenergie- international movement against nuclear beweging. power. De catalogus van de Laka-bibliotheek staat The catalogue of the Laka-library can be op onze site. De collectie bevat een grote found at our website. The collection also verzameling gedigitaliseerde tijdschriften uit contains a large number of digitized de Nederlandse antikernenergie-beweging en magazines from the Dutch anti-nuclear power een verzameling video's. movement and a video-section. Laka speelt met oa. haar informatie- Laka plays with, amongst others things, its voorziening een belangrijke rol in de information services, an important role in the Nederlandse anti-kernenergiebeweging. Dutch anti-nuclear movement. Appreciate our work? Feel free to make a small donation. Thank you. www.laka.org | [email protected] | Ketelhuisplein 43, 1054 RD Amsterdam | 020-6168294 Woodhead Publishing is an imprint of Elsevier The Officers’ Mess Business Centre, Royston Road, Duxford, CB22 4QH, UK 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, USA The Boulevard, Langford Lane, Kidlington, OX5 1GB, UK Copyright © 2016 Elsevier Ltd. -
R:\TEMP\Bobbi\RDD-8 3-16-04 Reprint.Wpd
OFFICIAL USE ONLY RESTRICTED DATA DECLASSIFICATION DECISIONS 1946 TO THE PRESENT (RDD-8) January 1, 2002 U.S. Department of Energy Office of Health, Safety and Security Office of Classification Contains information which may be exempt from public release under the Freedom of Information Act (5 U.S.C. 552), exemption number(s) 2. Approval by the Department of Energy prior to public release is required. Reviewed by: Richard J. Lyons Date: 3/20/2002 NOTICE This document provides historical perspective on the sequence of declassification actions performed by the Department of Energy and its predecessor agencies. It is meant to convey the amount and types of information declassified over the years. Although the language of the original declassification authorities is cited verbatim as much as possible to preserve the historical intent of the declassification, THIS DOCUMENT IS NOT TO BE USED AS THE BASIS FOR DECLASSIFYING DOCUMENTS AND MATERIALS without specific authorization from the Director, Information Classification and Control Policy. Classification guides designed for that specific purpose must be used. OFFICIAL USE ONLY OFFICIAL USE ONLY This page intentionally left blank OFFICIAL USE ONLY OFFICIAL USE ONLY FOREWORD This document supersedes Restricted Data Declassification Decisions - 1946 To The Present (RDD-7), January 1, 2001. This is the eighth edition of a document first published in June 1994. This latest edition includes editorial corrections to RDD-7, all declassification actions that have been made since the January 1, 2001, publication date of RDD-7 and any additional declassification actions which were subsequently discovered or confirmed. Note that the terms “declassification” or “declassification action,” as used in this document, refer to changes in classification policy which result in a specific fact or concept that was classified in the past being now unclassified. -
Robotics For
TECHNICAL PROGRESS REPORT ROBOTIC TECHNOLOGIES FOR THE SRS 235-F FACILITY Date Submitted: August 12, 2016 Principal: Leonel E. Lagos, PhD, PMP® FIU Applied Research Center Collaborators: Peggy Shoffner, MS, CHMM, PMP® Himanshu Upadhyay, PhD Alexander Piedra, DOE Fellow SRNL Collaborators: Michael Serrato Prepared for: U.S. Department of Energy Office of Environmental Management Cooperative Agreement No. DE-EM0000598 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, nor any of its contractors, subcontractors, nor their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any other agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. FIU-ARC-2016-800006472-04c-235 Robotic Technologies for SRS 235F TABLE OF CONTENTS Executive Summary ..................................................................................................................................... -
A Short History of Reactors : the First Generation
AA shortshort HistoryHistory ofof ReactorsReactors :: TheThe firstfirst GenerationGeneration Bertrand BARRÉ Scientific Advisor AREVA Pr. Emeritus INSTN Oklo, Gabon : Generation 0 Nuclear Power – B. Barré - Garching – February 2010. - p.2 Nuclear reactors « Generations » Future Advanced Operating Nuclear Systems Reactors Reactors Pionner Facilities 1950 1970 1990 2010 2030 2050 2070 2090 Generation I Generation II Generation III Generation IV Nuclear Power – B. Barré - Garching – October 2010. - p.3 Fission 1938 - 1942 1938 : Fermi plays with neutrons & U. Hahn-Meitner say «fission !» 1939 : Joliot et al. «chain reaction» 1942 : Staggs Field Nuclear Power – B. Barré - Garching – February 2010. - p.4 December 2, 1942 Prospects & Prerequisites to Renaissance – B. Barré Gassummit 2009 The 50s : Nuclear Electricity 1956 : Inauguration of Calder Hall by Elisabeth II 1951 : EBR 1 lits 4 Bulbs) 1954 : Obninsk, 5 MWe Nuclear Power – B. Barré - Garching – February 2010. - p.6 Obninsk 5 MWe NPP Calder Hall : from Opening to Decommissioning Prospects & Prerequisites to Renaissance – B. Barré Gassummit 2009 Paleontology Nuclear Power – B. Barré - Garching – February 2010. - p.8 Many Possible Combinations Fissile Material U235, Pu, U233 Fertile Material U238, Th232 Moderator D2O, Graphite, H2O, or none Fuel Composition Metal, oxide, carbide, nitride, salt, solid, liquid, suspension Fuel Geometry Cylinder, rod, pin, sphere, particle Coolant Air, H2O, D2O, CO2, He, Na, Pb Cycle Direct, indirect Nuclear Power – B. Barré - Garching – February 2010. - p.9 -
October 3 2011 the Rise and Fall of the Fast
Fall 08 October 3 2011 The rise and fall of the fast breeder reactor technology in the UK: between engineering “dreams” and economic “realities”? Markku Lehtonen Jenny Lieu 2 TABLE OF CONTENTS I. Introduction 6 II. The inception of the nuclear power programme (from 1940) 9 2.1 Military ambitions 10 2.1.1 The early pioneers (early 1940s) 10 2.1.2 The Atomic Project (mid-1940s) 11 2.1.3 Windscale reactors (from late 1940s to 1950s) 16 2.2 The civil nuclear power programme 17 2.2.1 Motivations for the nuclear programme and the creation of the AEA (1950s) 17 2.2.2 British reactor technologies (1950s to 1980s) 18 2.2.3 Plan to privatise the electricity industry... 21 2.2.4 ...and the withdrawal of nuclear from privatisation 23 2.3 Summary of the evolution of the UK nuclear sector 27 III. The fast breeder reactor dream: expectations for the future 29 3.1 FBR as the long term goal 30 3.1.1 Dounreay Experimental Fast Reactor, DFR (1950s to mid-1960s) 31 3.1.2 Prototype Fast Reactor, PFR (mid-1960s to 1970s) 33 IV. The long decline 38 4.1 AEA split-up and the erosion of institutional support for fast breeders? (1970s) 38 4.2 Towards a commercial fast breeder reactor (CFR) and international collaboration (1970s) 39 4.3 RCEP’s 6th report – the “Flowers Report” (1970s) 41 4.4 Reprocessing, proliferation concerns and the Windscale Inquiry (late 1970s) 43 4.4.1 The institution of public inquiry and the run-up to Windscale Inquiry 44 4.4.2 Reprocessing, FBRs and proliferation fears 46 4.4.3 The outcome of the Inquiry: landmark of participatory decision-making or a symbol of opposition against the ‘nuclear complex’? 47 4.5 CFR – an experimental or commercial reactor? (late 1970s) 49 4.6 "Thatcher the scientist" takes office: an interlude of optimism in the fast reactor community (late 1970s) 50 4.7 International collaboration - preparations for the 'fallback option' begin (late 1970s to 1980s) 51 V. -
The Impact of Small Modular Reactors on Nuclear Non-Proliferation and IAEA Safeguards
The Impact of Small Modular Reactors on Nuclear Non-Proliferation and IAEA Safeguards Nicole Virgili* *Research completed from March to May 2020 during an internship at the Vienna Center for Disarmament and Non-Proliferation with funding from the EU Non-Proliferation and Disarmament Consortium 1 Biography: Nicole Virgili completed an internship at the Vienna Center for Disarmament and Non-Proliferation (VCDNP) where she focused on the analysis of the impact of small modular reactors on non-proliferation and the safeguards of the International Atomic Energy Agency (IAEA). Prior to this experience she completed an internship at the IAEA’s Incident and Emergency Center (IEC) in the Department of Nuclear Safety and Security. In this role, Ms. Virgili supported IEC staff in the implementation of projects related to the Emergency Preparedness and Response Information Management System, implementation of capacity building activities and assistance in developing and implementing a catalogue of exercise information. She holds a MS in Nuclear Engineering and a BS in Energy Engineering from the La Sapienza University of Rome, Italy. She wrote her thesis on radiation protection, specifically on radioactive gasses emissions from the TR19PET cyclotron installed at the Department of Health Physics at A. Gemelli Hospital in Rome. The main focus was on Flourine-18 monitoring as a marker for the potentially hazardous radioactive gas Argon-41. The research provided her experience and insights into current debates in the scientific community on how to best protect patients and hospital staff during routine operations. Following graduation, she attended the Nuclear Innovation Bootcamp at the University of Berkeley (California) as an innovator and member of the Test and Irradiation of Materials Team, which won the Bootcamp Pitch Competition for the best research project.