Progress on Boneseed (Chrysanthemoides Monilifera Ered for Biological Control of Boneseed Subsp

Total Page:16

File Type:pdf, Size:1020Kb

Progress on Boneseed (Chrysanthemoides Monilifera Ered for Biological Control of Boneseed Subsp Plant Protection Quarterly Vol.23(1) 2008 29 Chrysanthemoides seed fl ies Three Mesoclanis spp. have been consid- Progress on boneseed (Chrysanthemoides monilifera ered for biological control of boneseed subsp. monilifera (L.) Norlindh) biological control: and bitou bush in Australia (Edwards and Brown 1997; Neser and Morris 1985). These the boneseed leaf buckle mite Aceria (Keifer) sp., the fl ies lay their eggs into Chrysanthemoides fl owerheads and the larvae can destroy lacy-winged seed fl y Mesoclanis magnipalpis Bezzi substantial proportions of developing and the boneseed rust Endophyllum osteospermi ovules, thus suppressing seed production. When introduced to Australia in 1996, the (Doidge) A.R.Wood bitou seed fl y (Mesoclanis polana Munro) (BSF) rapidly colonized almost the entire A B T.B. Morley and L. Morin range of bitou bush (Edwards et al. 1999). A Department of Primary Industries, PO Box 48, Frankston, Victoria 3199, However, in South Africa the BSF does not Australia. utilize boneseed and prevails at latitudes B CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia. much closer to the equator than the more southerly bitou bush infestations in Aus- tralia. The BSF was therefore considered unlikely to effectively suppress seed pro- duction of Australian boneseed or the more Introduction stimulates dispersal. Dispersive mites can southerly bitou bush infestations, and this So far six exotic organisms have been re- walk to adjacent uncolonized shoot tips or appears to be true (Robin Adair personal leased in Australia as potential biological can be wind-dispersed to other boneseed communication and Morley unpublished control agents for the environmental weed plants. observations). Conversely, in South Africa boneseed (Chrysanthemoides monilifera sub- the lacy-winged seed fl y (LWSF) (Figure sp. monilifera (L.) Norlindh (Asteraceae)). Introduction to Australia 2) utilizes a range of C. monilifera subspe- None of these has established on boneseed Following host specifi city testing in South cies (Munro 1950, Edwards and Brown although one, the bitou tip moth (Comos- Africa in 2002 that showed the BLBM 1997) including boneseed, bitou bush tolopsis germana Prout (Lepidoptera: Ge- would be safe to introduce to Australia (most prosperously at latitudes similar to ometridae)) has colonized all of the major (Morley 2004), the mite was imported into southerly Australian bitou bush infesta- infestations of the closely-related invasive quarantine at the Department of Primary tions (Edwards and Brown 1997)), subsp. species bitou bush (C. monilifera subsp. ro- Industries – Frankston, Victoria in 2006 tundata (DC.) Norlindh). Currently three and was due for fi eld release in Spring organisms are under investigation for 2007. In collaboration with local land man- possible use as biological control agents agers, community groups and researchers, for boneseed. They are the boneseed leaf releases are planned for core boneseed in- buckle mite (Aceria (Keifer) sp. (Acari: Eri- festations in Victoria, South Australia and ophyidae)) (BLBM), the lacy-winged seed Tasmania and may be extended to New fl y (Mesoclanis magnipalpis Bezzi (Diptera: South Wales in the future. There are no Tephritidae)) (LWSF) and the rust fun- plans to release in Western Australia as gus (Endophyllum osteospermi (Doidge) very few boneseed infestations are present A.R.Wood) that induces witches’ brooms. and State law requires eradication of plants Figure 2. Lacy-winged seed fl y They are all endemic natural enemies of when found. Mesoclanis magnipalpis. boneseed in South Africa and each has the potential to suppress boneseed vigour and/or seed production. Boneseed Leaf Buckle mite Characteristics The BLBM (Figure 1) is vermiform (worm- like), about 0.15 mm long and its preferred host is boneseed (Morley 2004). The BLBM induces formation of leaf galls known as erinea. Erinea are composed of abnormally dense patches of hair-like structures that resemble felt. Initially erinea are white but turn brown within a few weeks. Erinea may develop anywhere on a leaf, have ir- regular shapes and size and may range from one to several hundred square mil- limetres. Erineum formation is induced by BLBM feeding at shoot meristems and commences before a leaf becomes visible. Erineum growth interrupts the normal ex- pansion of affected leaves, resulting in leaf disfi gurements ranging from small dim- ples to gross distortion of mature leaves. Figure 1. Boneseed leaf buckle mite Aceria sp. (Courtesy Charnie Craemer, The BLBM feeds and breeds in erinea un- Plant Protection Research Institute, Pretoria, and Alan Hall, University of til overcrowding or erineum deterioration Pretoria, South Africa). 30 Plant Protection Quarterly Vol.23(1) 2008 pisifera (L.) Norlindh and Chrysanthemoides sites has yielded nearly 4000 BSF (Morley should it be released in Australia, it is not incana (Burm.f.) Norlindh. Thus the LWSF unpublished data)). The reason for this expected to have a signifi cant impact on seemed a good candidate biological con- outcome is not known but the following most Australian bitou bush populations. trol agent. speculations seem plausible: Climate modelling has shown that the rust 1) LWSF is present but in such low num- would likely have its greatest impact in Failure of LWSF to establish bers that it has not yet been detected. If Tasmania and southern Victoria (Wood et Boneseed this is the case then further sampling al. 2004). Attempts to establish the LWSF in Aus- should eventually detect it. tralia have been in progress for nearly a 2) There are distinct biotypes of LWSF in Infection decade. It was fi rst released on boneseed South Africa that have particular Chry- E. osteospermi systemically infects its hosts in 1998 and also in 1999, 2000 and 2005. santhemoides preferences and LWSF ex via immature foliage and stems. After These efforts involved LWSF reared from C.m. pisifera is a biotype not suited to 1–2 years, infected plants develop witch- imported C. monilifera subsp. pisifera fruit the bitou bush populations found in es’ broom branches with multiple swol- using a special AQIS-approved direct re- Australia. Intraspecific variation of len stems, short internodes and smaller lease protocol to ensure the released in- Mesoclanis has not been studied but and slightly chlorotic leaves (Wood 2002, dividuals were free of pests and diseases. based on the experience described Wood and Crous 2005a) (Figure 3). The Releases were made in the You Yangs, on above and an observation by Munro rust produces fruiting bodies on leaves of the Mornington Peninsula and at Frank- (1950), biotypism seems a real pos- witches’ brooms when conditions are con- ston, Victoria. The LWSF did not establish sibility. Munro (1950) observed that ducive, generally in winter to late spring but on three occasions offspring were re- fl ies of a collection of M. magnipalpis (Wood 2002). covered in the same season as the release ex C. incana were ‘larger than usual’. (Aline Bruzzese and Robin Adair personal Importation of LWSF ex C.m. rotundata Impacts communications, Morley unpublished at a latitude comparable to Australia’s The rust has been shown to have a sig- data). This confi rmed the apparent suit- southerly infestations (e.g. St Francis nifi cant impact on boneseed populations ability of boneseed as a host for LWSF ex Bay, South Africa, where large popula- in South Africa, reducing growth and C.m. pisifera. The reason for establishment tions of LWSF can be found (Edwards reproduction and in some instances kill- failure is not known but it appears that and Brown 1997)) would address the ing plants (Wood 2002, Wood and Crous LWSF ex C.m. pisifera is not able to survive biotype theory. This could perhaps im- 2005a). Deformed infected branches of between the end of boneseed’s fruiting prove the chance of establishment on diseased plants produced far fewer buds, season in early summer and the beginning bitou bush and is the next most obvious fl owers and fruits than branches of healthy of the next fl owering season in late win- strategy to try. plants and usually die within 1–4 years. ter. In South Africa, LWSF ex C.m. pisifera 3) Competition with the BSF has prevent- The rust also has an indirect effect on the might not be constrained in this way either ed or impeded LWSF estab- because the interval between C.m. pisifera lishment. If this is the rea- fruiting and fl owering is suffi ciently short son for failure of the LWSF or there are alternative Chrysanthemoides to establish on bitou bush, (a) hosts whose fl owerheads are suitable and then it might be overcome available at critical times. Importation and by releasing larger num- release of the LWSF ex C.m. monilifera has bers and/or using other been previously considered but not at- techniques to promote es- tempted largely because boneseed’s rela- tablishment (e.g. exclusion tively short fl owering season combined of BSF from bitou bush at with the logistic and mandatory delays release points). of passage through Australian quarantine make this option diffi cult. Populations of Boneseed rust LWSF on C.m. monilifera are also often dif- The South African rust fungus fi cult to fi nd in South Africa (Robin Adair E. osteospermi is a microcyclic personal communication). Notwithstand- species only recorded on a ing these diffi culties, in light of the failure small group of related plants of LWSF ex C.m. subsp. pisifera to establish of the genera Chrysanthemoides on boneseed in Australia it might now be and Osteospermum (Calend- (b) worthwhile investigating the introduction uleae: Asteraceae) in South of LWSF ex. C.m. monilifera in case it exists Africa (Doidge 1926, Morris as a biotype specifi cally adapted to toler- 1982, Wood 1998, Wood and ate boneseed’s fl owerhead phenology. Crous 2005b). It is thought to have considerable potential Bitou bush for the biological control of In 2005, the LWSF ex C.m.
Recommended publications
  • Chrysanthemoides Monilifera Ssp
    MANAGEMENT OF BONESEED (CHRYSANTHEMOIDES MONILIFERA SSP. MONILIFERA) (L.) T. NORL. USING FIRE, HERBICIDES AND OTHER TECHNIQUES IN AUSTRALIAN WOODLANDS Rachel L. Melland Thesis submitted for the degree of Doctor of Philosophy School of Agriculture, Food and Wine University of Adelaide August 2007 Table of Contents TABLE OF CONTENTS ....................................................................................................... II ABSTRACT ............................................................................................................................ VI DECLARATION ................................................................................................................ VIII ACKNOWLEDGEMENTS .................................................................................................. IX CHAPTER 1: INTRODUCTION ............................................................................................ 1 1.1 AIMS OF THIS THESIS .......................................................................................................... 3 CHAPTER 2: LITERATURE REVIEW ............................................................................... 5 2.1 PROCESSES OF NATIVE ECOSYSTEM DEGRADATION ............................................................ 5 2.2 GLOBAL PLANT INVASIONS – ECOSYSTEM DEGRADING PROCESSES .................................... 6 2.3 THE ENVIRONMENTAL WEED PROBLEM IN AUSTRALIA ..................................................... 10 2.4 CAUSES AND PROCESSES OF INVASIVENESS .....................................................................
    [Show full text]
  • Plantae, Magnoliophyta, Asterales, Asteraceae, Senecioneae, Pentacalia Desiderabilis and Senecio Macrotis: Distribution Extensions and First Records for Bahia, Brazil
    Check List 4(1): 62–64, 2008. ISSN: 1809-127X NOTES ON GEOGRAPHIC DISTRIBUTION Plantae, Magnoliophyta, Asterales, Asteraceae, Senecioneae, Pentacalia desiderabilis and Senecio macrotis: Distribution extensions and first records for Bahia, Brazil. Aristônio M. Teles João R. Stehmann Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica. Caixa Postal 486, CEP 31270-091, Belo Horizonte, MG, Brazil. E-mail: [email protected] Senecioneae is the biggest Tribe of the Asteraceae state of Minas Gerais (Cabrera 1957; Hind (Nordestam 1996), comprising 150 genera (more 1993a). Senecio macrotis is a robust herb or than 9 % of all genera) and 3,500 species (about shrub, with lyrate-pinnatisect leaves, discoid 15 % of all species of the Family) (Nordenstam heads, and paniculate capitulescences (Cabrera 2007). The circumscription of many Senecioneae 1957). It is found typically in the Campos genera has changed, especially Senecio L., with Rupestres of the Espinhaço range, growing in about 1,250 species (Bremer 1994; Frodin 2004; altitudes ranging from 900 to 1,000 m (Vitta 2002). Nordenstam 2007). To Brazilian Senecioneae, Hind (1993a) estimated the occurrence of 97 The genus Pentacalia Cass., formerly included in species belonging to eight genera, and the more the synonymy of Senecio (lato sensu) (Barkley useful works to identify them are Cabrera (1950, 1985) and resurrected by Robinson and 1957), Cabrera and Klein (1975), Robinson Cuatrecasas (1978), comprises about 205 species (1980), Hind (1993a; 1993b; 1994; 1999), and distributed along Tropical America (Jeffrey 1992). Teles et al. (2006). Hind (1993a) cited the occurrence of two Brazilian species, P. desiderabilis (Vell.) Cuatrec. Senecio (stricto sensu) is characterized by annual and P.
    [Show full text]
  • Therapeutic Potential of Calendula Officinalis
    Pharmacy & Pharmacology International Journal Review Article Open Access Therapeutic Potential of Calendula officinalis Abstract Volume 6 Issue 2 - 2018 Calendula officinalis(Calendula), belonging to the family of Asteraceae, commonly known Vrish Dhwaj Ashwlayan, Amrish Kumar, as English Marigold or Pot Marigold is an aromatic herb which is used in Traditional system of medicine for treating wounds, ulcers, herpes, scars, skin damage, frost-bite and Mansi Verma, Vipin Kumar Garg, SK Gupta blood purification. It is mainly used because of its various biological activities to treat Department of Pharmaceutical Technology, Meerut Institute of diseases as analgesic, anti–diabetic, anti-ulcer and anti-inflammatory. It is also used for Engineering and Technology, India gastro-intestinal diseases, gynecological problems, eye diseases, skin injuries and some cases of burn. Calendula oil is still medicinally used as, an anti-tumor agent, and a Correspondence: Vrish Dhwaj Ashwlayan, Department of remedy for healing wounds. Plant pharmacological studies have suggested that Calendula Pharmaceutical Technology, Meerut Institute of Engineering and extracts have antiviral and anti-genotoxic properties in-vitro. In herbalism, Calendula Technology, India, Email [email protected] in suspension or in tincture is used topically for treating acne, reducing inflammation, Received: January 20, 2018 | Published: April 20, 2018 controlling bleeding, and soothing irritated tissue. Calendula is used for protection against the plague. In early American Shaker medicine, calendula was a treatment for gangrene. In addition to its first aid uses, calendula also acts as a digestive remedy. An infusion or tincture of the flowers, taken internally, is beneficial in the treatment of yeast infections, and diarrhea.
    [Show full text]
  • Boneseed, Chrysanthemoides Monilifera Subsp
    This document was originally published on the website of the CRC for Australian Weed Management, which was wound up in 2008. To preserve the technical information it contains, the department is republishing this document. Due to limitations in the CRC’s production process, however, its content may not be accessible for all users. Please contact the department’s Weed Management Unit if you require more assistance. ������������� ����������������� � ������������������������������������������������������ ISSN 1442-7192 Boneseed, Chrysanthemoides monilifera subsp. monilifera Taxonomy and status Botanical name: Chrysanthemoides monilifera subspecies monilifera (L.) T. Norl. (synonym: Osteospermum moniliferum subsp. moniliferum) - Family Boneseed flowers. Asteraceae (daisy family). Photo: K. Blood. Standard common name: boneseed. Relationship to other species in Australia: The introduced weed bitou bush, Chrysanthemoides monilifera subsp. Figure 1. Boneseed flowers, immature fruit rotundata is the only close relative. There and leaf shoot. are no closely-related indigenous species. Photo: K. Blood. Legislation: Boneseed is declared noxious in all States and Lord Howe Island. It is listed as Boneseed differs from bitou bush by its upright a Weed of National Significance in Australia. growth habit (versus the sprawling habit of Boneseed infestation. Keep up to date with the latest legislation bitou bush), less rounded and more obviously Photo: K. Blood. through local and State/Territory government toothed leaves (Figure 2), flowers with less weed agencies or on the web at 'petals' (5-8 for boneseed versus 11-13 for www.weeds.org.au bitou bush) and round, smooth seeds (versus usually smaller and darker egg-shaped ribbed seeds for bitou bush) (Figure 3). Description Habitllifeform: woody erect shrub. Description: Boneseed is an upright shrub to small tree generally 1-2 m wide x 0.5-3 m high, but occasionally to 6 m tall.
    [Show full text]
  • Albuca Spiralis
    Flowering Plants of Africa A magazine containing colour plates with descriptions of flowering plants of Africa and neighbouring islands Edited by G. Germishuizen with assistance of E. du Plessis and G.S. Condy Volume 62 Pretoria 2011 Editorial Board A. Nicholas University of KwaZulu-Natal, Durban, RSA D.A. Snijman South African National Biodiversity Institute, Cape Town, RSA Referees and other co-workers on this volume H.J. Beentje, Royal Botanic Gardens, Kew, UK D. Bridson, Royal Botanic Gardens, Kew, UK P. Burgoyne, South African National Biodiversity Institute, Pretoria, RSA J.E. Burrows, Buffelskloof Nature Reserve & Herbarium, Lydenburg, RSA C.L. Craib, Bryanston, RSA G.D. Duncan, South African National Biodiversity Institute, Cape Town, RSA E. Figueiredo, Department of Plant Science, University of Pretoria, Pretoria, RSA H.F. Glen, South African National Biodiversity Institute, Durban, RSA P. Goldblatt, Missouri Botanical Garden, St Louis, Missouri, USA G. Goodman-Cron, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, RSA D.J. Goyder, Royal Botanic Gardens, Kew, UK A. Grobler, South African National Biodiversity Institute, Pretoria, RSA R.R. Klopper, South African National Biodiversity Institute, Pretoria, RSA J. Lavranos, Loulé, Portugal S. Liede-Schumann, Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany J.C. Manning, South African National Biodiversity Institute, Cape Town, RSA A. Nicholas, University of KwaZulu-Natal, Durban, RSA R.B. Nordenstam, Swedish Museum of Natural History, Stockholm, Sweden B.D. Schrire, Royal Botanic Gardens, Kew, UK P. Silveira, University of Aveiro, Aveiro, Portugal H. Steyn, South African National Biodiversity Institute, Pretoria, RSA P. Tilney, University of Johannesburg, Johannesburg, RSA E.J.
    [Show full text]
  • Molecular Phylogeny of Chrysanthemum , Ajania and Its Allies (Anthemideae, Asteraceae) As Inferred from Nuclear Ribosomal ITS and Chloroplast Trn LF IGS Sequences
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/248021556 Molecular phylogeny of Chrysanthemum , Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trn LF IGS sequences ARTICLE in PLANT SYSTEMATICS AND EVOLUTION · FEBRUARY 2010 Impact Factor: 1.42 · DOI: 10.1007/s00606-009-0242-0 CITATIONS READS 25 117 5 AUTHORS, INCLUDING: Hongbo Zhao Sumei Chen Zhejiang A&F University Nanjing Agricultural University 15 PUBLICATIONS 56 CITATIONS 97 PUBLICATIONS 829 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Hongbo Zhao letting you access and read them immediately. Retrieved on: 02 December 2015 Plant Syst Evol (2010) 284:153–169 DOI 10.1007/s00606-009-0242-0 ORIGINAL ARTICLE Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences Hong-Bo Zhao • Fa-Di Chen • Su-Mei Chen • Guo-Sheng Wu • Wei-Ming Guo Received: 14 April 2009 / Accepted: 25 October 2009 / Published online: 4 December 2009 Ó Springer-Verlag 2009 Abstract To better understand the evolutionary history, positions of some ambiguous taxa were renewedly con- intergeneric relationships and circumscription of Chry- sidered. Subtribe Artemisiinae was chiefly divided into two santhemum and Ajania and the taxonomic position of groups, (1) one corresponding to Chrysanthemum, Arc- some small Asian genera (Anthemideae, Asteraceae), the tanthemum, Ajania, Opisthopappus and Elachanthemum sequences of the nuclear ribosomal internal transcribed (the Chrysanthemum group), (2) another to Artemisia, spacer (nrDNA ITS) and the chloroplast trnL-F intergenic Crossostephium, Neopallasia and Sphaeromeria (the spacer (cpDNA IGS) were newly obtained for 48 taxa and Artemisia group).
    [Show full text]
  • Phylogeny of Hinterhubera, Novenia and Related
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2006 Phylogeny of Hinterhubera, Novenia and related genera based on the nuclear ribosomal (nr) DNA sequence data (Asteraceae: Astereae) Vesna Karaman Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Karaman, Vesna, "Phylogeny of Hinterhubera, Novenia and related genera based on the nuclear ribosomal (nr) DNA sequence data (Asteraceae: Astereae)" (2006). LSU Doctoral Dissertations. 2200. https://digitalcommons.lsu.edu/gradschool_dissertations/2200 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. PHYLOGENY OF HINTERHUBERA, NOVENIA AND RELATED GENERA BASED ON THE NUCLEAR RIBOSOMAL (nr) DNA SEQUENCE DATA (ASTERACEAE: ASTEREAE) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Vesna Karaman B.S., University of Kiril and Metodij, 1992 M.S., University of Belgrade, 1997 May 2006 "Treat the earth well: it was not given to you by your parents, it was loaned to you by your children. We do not inherit the Earth from our Ancestors, we borrow it from our Children." Ancient Indian Proverb ii ACKNOWLEDGMENTS I am indebted to many people who have contributed to the work of this dissertation.
    [Show full text]
  • Insights Into the Evolution of the Tribe Arctoteae (Compositae: Subfamily Cichorioideae S.S.) Using Trnl-F, Ndhf, and ITS
    TAXON 53 (3) • August 2004: 637-655 Funk & al. • Evolution of the tribe Arctoteae • ASTERACEAE Insights into the evolution of the tribe Arctoteae (Compositae: subfamily Cichorioideae s.s.) using trnL-F, ndhF, and ITS Vicki A. Funk*, Raymund Chan2 & Sterling C. Keeley2 1 U.S. National Herbarium, Smithsonian Institution MRC 166, P.O. Box 37012, Washington D.C. 20013 U.S.A. [email protected] (author for correspondence) 2 Department of Botany, University of Hawaii at Manoa, Hawaii 96822, U.S.A. [email protected]; ster- ling@hawaii. edu Compositae (Asteraceae) are the largest flowering plant family (23,000 to 30,000 species) and its members are found throughout the world in both temperate and tropical habitats. The subfamilies and tribes of Compositae remained relatively constant for many years; recent molecular studies, however, have identified new subfa- milial groups and identified previously unknown relationships. Currently there are 35 tribes and 10 subfami- lies (Baldwin & al., 2002; Panero & Funk, 2002). Some of the tribes and subfamilies have not been tested for monophyly and without a clear understanding of the major genera that form each tribe and subfamily, an accu- rate phylogeny for the family cannot be reconstructed. The tribe Arctoteae (African daisies) is a diverse and interesting group with a primarily southern African distribution (ca. 17 genera, 220 species). They are espe- cially important in that most of the species are found in the Cape Floral Kingdom, the smallest floral kingdom and the subject of intense conservation interest. Arctoteae are part of the monophyletic subfamily Cichorioideae s.s. Other tribes in the subfamily include Eremothamneae, Gundelieae, Lactuceae, Liabeae, Moquineae, and Vernonieae, and these were all evaluated as potential outgroups.
    [Show full text]
  • Asteraceae)§ Karin M.Valant-Vetscheraa and Eckhard Wollenweberb,*
    Chemodiversity of Exudate Flavonoids in Seven Tribes of Cichorioideae and Asteroideae (Asteraceae)§ Karin M.Valant-Vetscheraa and Eckhard Wollenweberb,* a Department of Plant Systematics and Evolution Ð Comparative and Ecological Phytochemistry, University of Vienna, Rennweg 14, A-1030 Wien, Austria b Institut für Botanik der TU Darmstadt, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 62c, 155Ð163 (2007); received October 26/November 24, 2006 Members of several genera of Asteraceae, belonging to the tribes Mutisieae, Cardueae, Lactuceae (all subfamily Cichorioideae), and of Astereae, Senecioneae, Helenieae and Helian- theae (all subfamily Asteroideae) have been analyzed for chemodiversity of their exudate flavonoid profiles. The majority of structures found were flavones and flavonols, sometimes with 6- and/or 8-substitution, and with a varying degree of oxidation and methylation. Flava- nones were observed in exudates of some genera, and, in some cases, also flavonol- and flavone glycosides were detected. This was mostly the case when exudates were poor both in yield and chemical complexity. Structurally diverse profiles are found particularly within Astereae and Heliantheae. The tribes in the subfamily Cichorioideae exhibited less complex flavonoid profiles. Current results are compared to literature data, and botanical information is included on the studied taxa. Key words: Asteraceae, Exudates, Flavonoids Introduction comparison of accumulation trends in terms of The family of Asteraceae is distributed world- substitution patterns is more indicative for che- wide and comprises 17 tribes, of which Mutisieae, modiversity than single compounds. Cardueae, Lactuceae, Vernonieae, Liabeae, and Earlier, we have shown that some accumulation Arctoteae are grouped within subfamily Cichori- tendencies apparently exist in single tribes (Wol- oideae, whereas Inuleae, Plucheae, Gnaphalieae, lenweber and Valant-Vetschera, 1996).
    [Show full text]
  • The Naturalized Vascular Plants of Western Australia 1
    12 Plant Protection Quarterly Vol.19(1) 2004 Distribution in IBRA Regions Western Australia is divided into 26 The naturalized vascular plants of Western Australia natural regions (Figure 1) that are used for 1: Checklist, environmental weeds and distribution in bioregional planning. Weeds are unevenly distributed in these regions, generally IBRA regions those with the greatest amount of land disturbance and population have the high- Greg Keighery and Vanda Longman, Department of Conservation and Land est number of weeds (Table 4). For exam- Management, WA Wildlife Research Centre, PO Box 51, Wanneroo, Western ple in the tropical Kimberley, VB, which Australia 6946, Australia. contains the Ord irrigation area, the major cropping area, has the greatest number of weeds. However, the ‘weediest regions’ are the Swan Coastal Plain (801) and the Abstract naturalized, but are no longer considered adjacent Jarrah Forest (705) which contain There are 1233 naturalized vascular plant naturalized and those taxa recorded as the capital Perth, several other large towns taxa recorded for Western Australia, com- garden escapes. and most of the intensive horticulture of posed of 12 Ferns, 15 Gymnosperms, 345 A second paper will rank the impor- the State. Monocotyledons and 861 Dicotyledons. tance of environmental weeds in each Most of the desert has low numbers of Of these, 677 taxa (55%) are environmen- IBRA region. weeds, ranging from five recorded for the tal weeds, recorded from natural bush- Gibson Desert to 135 for the Carnarvon land areas. Another 94 taxa are listed as Results (containing the horticultural centre of semi-naturalized garden escapes. Most Total naturalized flora Carnarvon).
    [Show full text]
  • Tribu Cardueae Hurrell, Julio Alberto Plantas Cultivadas De La Argen
    FamiliaFamilia Asteraceae Asteraceae - Tribu- Tribu Calenduleae Cardueae Hurrell, Julio Alberto Plantas cultivadas de la Argentina : asteráceas-compuestas / Julio Alberto Hurrell ; Néstor D. Bayón ; Gustavo Delucchi. - 1a ed. - Ciudad Autónoma de Buenos Aires : Hemisferio Sur, 2017. 576 p. ; 24 x 17 cm. ISBN 978-950-504-634-8 1. Cultivo. 2. Plantas. I. Bayón, Néstor D. II. Delucchi, Gustavo III. Título CDD 580 © Editorial Hemisferio Sur S.A. 1a. edición, 2017 Pasteur 743, C1028AAO - Ciudad Autónoma de Buenos Aires, Argentina. Telefax: (54-11) 4952-8454 e-mail: [email protected] http//www.hemisferiosur.com.ar Reservados todos los derechos de la presente edición para todos los países. Este libro no se podrá reproducir total o parcialmente por ningún método gráfico, electrónico, mecánico o cualquier otro, incluyendo los sistemas de fotocopia y fotoduplicación, registro magnetofónico o de alimentación de datos, sin expreso consentimiento de la Editorial. Hecho el depósito que prevé la ley 11.723 IMPRESO EN LA ARGENTINA PRINTED IN ARGENTINA ISBN 978-950-504-634-8 Fotografías de tapa (Pericallis hybrida) y contratapa (Cosmos bipinnatus) por Daniel H. Bazzano. Esta edición se terminó de imprimir en Gráfica Laf S.R.L., Monteagudo 741, Villa Lynch, San Martín, Provincia de Buenos Aires. Se utilizó para su interior papel ilustración de 115 gramos; para sus tapas, papel ilustración de 300 gramos. Ciudad Autónoma de Buenos Aires, Argentina Septiembre de 2017. 152 Plantas cultivadas de la Argentina Plantas cultivadas de la Argentina Asteráceas (= Compuestas) Julio A. Hurrell Néstor D. Bayón Gustavo Delucchi Editores Editorial Hemisferio Sur Ciudad Autónoma de Buenos Aires 2017 153 FamiliaFamilia Asteraceae Asteraceae - Tribu- Tribu Calenduleae Cardueae Autores María B.
    [Show full text]
  • Calendula Officinalis
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 Pharmacological Activities of Calendula Officinalis Kaviena Baskaran 2nd Year BDS, Saveetha Dental College & Hospital Abstract: Calendula officinalis, belonging to the family of Asteraceae, commonly known as English marigold or Pot Marigold is an aromatic herb which is used in Traditional system of medicine in Europe, China and India amongst several places in the world. It is also known as “African marigold” and has been a subject of several chemical and pharmacological studies. It is used in especially for wound healing, anti-HIV, anti-inflammatory, hepatoprotective, spasmolytic and spasmogenic, antispasmodic, analgesic, and anti-diabetic . In this review, I have explored the organoleptic, pharmacological activities of Calendula officinalis in order to existing information on this plant as well as highlight its multi activity properties as a medicinal agent. Keywords: Calendula officinalis, Organoleptic Properties, Asteraceae, Phytochemical constituents, Pharmacological activities. 1. Introduction Organoleptic Properties. Calendula officinalis Linn. is used medicinally in Europe, Calendula officinalis has faint, pleasantly aromatic odour [9] China, US and India. It belongs to the family, Asteraceae, and bitter taste. and is commonly known as Zergul (Hindi), African marigold, Calendula, Common Marigold, Garden Marigold, 2. Pharmacological Activities Marigold, Pot Marigold (English), Butterblume (German), Chin Chan Ts’ao (Chinese), Galbinele (Romanian) and Antimicrobial Activity Ringblomma (Swedish)[1,2]. Calendula officinalis. Linn has The essential oil of the flowers inhibits the growth in vitro of been widely used in homeopathic medicine for the treatment Bacillus subtilis, Escherichia coli, Staphylococcus aureus, of many diseases.
    [Show full text]