Shifts in Growth Responses to Climate and Exceeded Drought-Vulnerability Thresholds Characterize Dieback in Two Mediterranean Deciduous Oaks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Living in Drylands: Functional Adaptations of Trees and Shrubs to Cope with High Temperatures and Water Scarcity
Review Living in Drylands: Functional Adaptations of Trees and Shrubs to Cope with High Temperatures and Water Scarcity José Javier Peguero-Pina 1,2,* , Alberto Vilagrosa 3 , David Alonso-Forn 1 , Juan Pedro Ferrio 1,4 , Domingo Sancho-Knapik 1,2 and Eustaquio Gil-Pelegrín 1 1 Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain; [email protected] (D.A.-F.); [email protected] (J.P.F.); [email protected] (D.S.-K.); [email protected] (E.G.-P.) 2 Instituto Agroalimentario de Aragón -IA2- (CITA-Universidad de Zaragoza), 50059 Zaragoza, Spain 3 Mediterranean Center for Environmental Studies (Fundación CEAM), Joint Research Unit University of Alicante—CEAM, Univ. Alicante, PO Box 99, 03080 Alicante, Spain; [email protected] 4 Aragon Agency for Research and Development (ARAID), E-50018 Zaragoza, Spain * Correspondence: [email protected]; Tel.: +34-976-716-974 Received: 5 August 2020; Accepted: 22 September 2020; Published: 23 September 2020 Abstract: Plant functioning and survival in drylands are affected by the combination of high solar radiation, high temperatures, low relative humidity, and the scarcity of available water. Many ecophysiological studies have dealt with the adaptation of plants to cope with these stresses in hot deserts, which are the territories that have better evoked the idea of a dryland. Nevertheless, drylands can also be found in some other areas of the Earth that are under the Mediterranean-type climates, which imposes a strong aridity during summer. In this review, plant species from hot deserts and Mediterranean-type climates serve as examples for describing and analyzing the different responses of trees and shrubs to aridity in drylands, with special emphasis on the structural and functional adaptations of plants to avoid the negative effects of high temperatures under drought conditions. -
Quercus Cerris
Quercus cerris Quercus cerris in Europe: distribution, habitat, usage and threats D. de Rigo, C. M. Enescu, T. Houston Durrant, G. Caudullo Turkey oak (Quercus cerris L.) is a deciduous tree native to southern Europe and Asia Minor, and a dominant species in the mixed forests of the Mediterranean basin. Turkey oak is a representative of section Cerris, a particular section within the genus Quercus which includes species for which the maturation of acorns occurs in the second year. Quercus cerris L., commonly known as Turkey oak, is a large fast-growing deciduous tree species growing to 40 m tall with 1 Frequency a trunk up to 1.5-2 m diameter , with a well-developed root < 25% system2. It can live for around 120-150 years3. The bark is 25% - 50% 50% - 75% mauve-grey and deeply furrowed with reddish-brown or orange > 75% bark fissures4, 5. Compared with other common oak species, e.g. Chorology Native sessile oak (Quercus petraea) and pedunculate oak (Quercus Introduced robur), the wood is inferior, and only useful for rough work such as shuttering or fuelwood1. The leaves are dark green above and grey-felted underneath6; they are variable in size and shape but are normally 9-12 cm long and 3-5 cm wide, with 7-9 pairs of triangular lobes6. The leaves turn yellow to gold in late autumn and drop off or persist in the crown until the next spring, especially on young trees3. The twigs are long and pubescent, grey or olive-green, with lenticels. The buds, which are concentrated Large shade tree in agricultural area near Altamura (Bari, South Italy). -
Morphometric Leaf Variation in Oaks (Quercus) of Bolu, Turkey
Ann. Bot. Fennici 40: 233–242 ISSN 0003-3847 Helsinki 29 August 2003 © Finnish Zoological and Botanical Publishing Board 2003 Morphometric leaf variation in oaks (Quercus) of Bolu, Turkey Aydın Borazan & Mehmet T. Babaç Department of Biology, Abant |zzet Baysal University, Gölköy 14280 Bolu, Turkey (e-mail: [email protected], [email protected]) Received 16 Sep. 2002, revised version received 7 Jan. 2003, accepted 10 Jan. 2003 Borazan, A. & Babaç, M. T. 2003: Morphometric leaf variation in oaks (Quercus) of Bolu, Turkey. — Ann. Bot. Fennici 40: 233–242. Genus Quercus (Fagaceae) has a problematic taxonomy because of widespread hybridization between the infrageneric taxa. The pattern of morphological leaf varia- tion was evaluated for evidence of hybridization in Bolu, Turkey, since previous stud- ies suggested that in oaks leaf morphology is a good indicator of putative hybridiza- tion. Principal components analysis was applied to data sets of leaf characters from fi ve populations to describe variation in leaf morphology. Leaf characters analyzed in this study showed high degrees of variation as a result of hybridization between four taxa (Q. pubescens, Q. virgiliana, Q. petraea and Q. robur) of subgenus Quercus while Q. cerris as a member of subgenus Cerris was clearly separated from the others. Key words: hybridization, morphological leaf variation, principal components analy- sis, Quercus Introduction in regions of mild and warm temperate climates. Fossil leaves indicate that todayʼs several major In the northern hemisphere oaks (Quercus) are oak groups are at least 40 million years old. Gen- conspicuous members of the temperate decidu- eral distribution of fossil ancestors supports the ous, broad leaved forests. -
Notes Oak News
THE NEWSLETTER OF THE INTERNATIONAL OAK SOCIETY&, VOLUME 16, NO. 1, WINTER 2012 Greek OakOak Open Days: News September 26 - October Notes 2, 2011 From the 21st century CE to the 2nd century—BCE! The next morning early we met our large tour bus and its charming and skillful driver, Grigoris, who hails from the mountain village of Gardiki not far from here. We did a bit of leisurely botanizing before we reached Perdika, our first destination of the day. There are two reasons to visit Perdika: one is the Karavostasi beach, a curving strand with golden sand, and the archaeological site of Dymokastron, a Hellenis- tic mountain-top town reached by a steep hike. The view of the beach far below was beautiful, as it must have been when the town was still inhabited. The town was destroyed in 167 BCE by a Roman army, along with most of the other towns in the vicinity, all allied with Rome’s enemy, Macedonia. The site is under active excavation, and we were able to admire the remnants of protective walls (how in the world did they get those big stones up there?), building foundations, and cisterns, which were certainly needed in case of a prolonged siege, Some members of the IOS Greek tour relaxing under the plane tree in the which Dymocastron must have experienced more than once. village square. Vitsa, Epirus, Greece. (Photo: Gert Dessoy) The site also has many living trees, including wild pears (Py- rus spinosa Vill., also known as P. amygdaliformis Vill.) and uring this early autumn week of incomparable weather, figs (Ficus carica L.) which appear to be descendants of wild Dtwelve members of the IOS, and three others who were native trees selected by the original inhabitants, as well as guests, enjoyed a truly memorable time in northern Greece. -
New York City Approved Street Trees
New York City Approved Street Trees Suggested Tree Species Shape Visual interest Frequency of Preferred Cultivars Notes Scientific Name Common Name Planting Acer rubrum Red Maple Sparingly 'Red Sunset' ALB Host Aesculus hippocastanum Horsechestnut White May flowers Sparingly 'Baumanni' ALB Host Aesculus octandra Yellow Buckeye Yellow May Flowers Sparingly ALB Host ALB Host 'Duraheat' Betula nigra River Birch Ornamental Bark Sparingly Plant Single Stem 'Heritage' Only Celtis occidentalis Hackberry Ornamental Bark Sparingly 'Magnifica' ALB Host ALB Host Cercidiphyllum japonicum Katsura Tree Sparingly Plant Single Stem Only Corylus colurna Turkish Filbert Sparingly LARGE TREES: Mature LARGE TREES: height than greater feet 50 tall Eucommia ulmoides Hardy Rubber Tree Frequently 'Asplenifolia' Fagus sylvatica European Beech Sparingly 'Dawyckii Purple' 'Autumn Gold' Ginkgo biloba Ginkgo Yellow Fall Color Moderately 'Magyar' Very Tough Tree 'Princeton Sentry' 'Shademaster' 'Halka' Gleditsia triacanthos var inermis Honeylocust Yellow Fall Color Moderately 'Imperial' 'Skyline' 'Espresso' Gymnocladus dioicus Kentucky Coffeetree Large Tropical Leaves Frequently 'Prairie Titan' Page 1 of 7 New York City Approved Street Trees Suggested Tree Species Shape Visual interest Frequency of Preferred Cultivars Notes Scientific Name Common Name Planting 'Rotundiloba' Seedless Cultivars Liquidambar styraciflua Sweetgum Excellent Fall Color Frequently 'Worplesdon' Preffered 'Cherokee' Orange/Green June Liriodendron tulipifera Tulip Tree Moderately Flowers Metasequoia -
Development of Threshold Levels and a Climate-Sensitivity Model of the Hydrological Regime of the High-Altitude Catchment of the Western Himalayas, Pakistan
Civil & Environmental Engineering and Civil & Environmental Engineering and Construction Faculty Publications Construction Engineering 7-14-2019 Development of Threshold Levels and a Climate-Sensitivity Model of the Hydrological Regime of the High-Altitude Catchment of the Western Himalayas, Pakistan Muhammad Saifullah Yunnan University Shiyin Liu Yunnan University, [email protected] Adnan Ahmad Tahir COMSATS University Islamabad Muhammad Zaman University of Agriculture, Faisalabad FSajjadollow thisAhmad and additional works at: https://digitalscholarship.unlv.edu/fac_articles University of Nevada, Las Vegas, [email protected] Part of the Environmental Engineering Commons, and the Hydraulic Engineering Commons See next page for additional authors Repository Citation Saifullah, M., Liu, S., Tahir, A. A., Zaman, M., Ahmad, S., Adnan, M., Chen, D., Ashraf, M., Mehmood, A. (2019). Development of Threshold Levels and a Climate-Sensitivity Model of the Hydrological Regime of the High-Altitude Catchment of the Western Himalayas, Pakistan. Water, 11(7), 1-39. MDPI. http://dx.doi.org/10.3390/w11071454 This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Article has been accepted for inclusion in Civil & Environmental Engineering and Construction Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. -
Towards an Updated Checklist of the Libyan Flora
Towards an updated checklist of the Libyan flora Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open access Gawhari, A. M. H., Jury, S. L. and Culham, A. (2018) Towards an updated checklist of the Libyan flora. Phytotaxa, 338 (1). pp. 1-16. ISSN 1179-3155 doi: https://doi.org/10.11646/phytotaxa.338.1.1 Available at http://centaur.reading.ac.uk/76559/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.11646/phytotaxa.338.1.1 Identification Number/DOI: https://doi.org/10.11646/phytotaxa.338.1.1 <https://doi.org/10.11646/phytotaxa.338.1.1> Publisher: Magnolia Press All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Phytotaxa 338 (1): 001–016 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.1 Towards an updated checklist of the Libyan flora AHMED M. H. GAWHARI1, 2, STEPHEN L. JURY 2 & ALASTAIR CULHAM 2 1 Botany Department, Cyrenaica Herbarium, Faculty of Sciences, University of Benghazi, Benghazi, Libya E-mail: [email protected] 2 University of Reading Herbarium, The Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Read- ing, RG6 6AS, U.K. -
IPCC AR5 Climate Sensitivity “A Consensus of Contraversies”
IPCC AR5 Climate Sensitivity “A consensus of Contraversies” No best estimate for equilibrium climate sensitivity can now be given because of a lack of agreement on values across assessed lines of evidence and studies. IPCC AR5 Technical Summary - 'Quantification of Climate System Responses' No best estimate for equilibrium climate sensitivity can now be given because of a lack of agreement on values across assessed lines of evidence and studies. Observational and model studies of temperature change, climate feedbacks and changes in the Earth’s energy budget together provide confidence in the magnitude of global warming in response to past and future forcing. {Box 12.2, Box 13.1} • The net feedback from the combined effect of changes in water vapour, and differences between atmospheric and surface warming is extremely likely positive and therefore amplifies changes in climate. The net radiative feedback due to all cloud types combined is likely positive. Uncertainty in the sign and magnitude of the cloud feedback is due primarily to continuing uncertainty in the impact of warming on low clouds. {7.2} • The equilibrium climate sensitivity quantifies the response of the climate system to constant radiative forcing on multi-century time scales. It is defined as the change in global mean surface temperature at equilibrium that is caused by a doubling of the atmospheric CO2 concentration. Equilibrium climate sensitivity is likely in the range 1.5°C to 4.5°C (high confidence), extremely unlikely less than 1°C (high confidence), and very unlikely greater than 6°C (medium confidence)16. The lower temperature limit of the assessed likely range is thus less than the 2°C in the AR4, but the upper limit is the same. -
Quercus ×Coutinhoi Samp. Discovered in Australia Charlie Buttigieg
XXX International Oaks The Journal of the International Oak Society …the hybrid oak that time forgot, oak-rod baskets, pros and cons of grafting… Issue No. 25/ 2014 / ISSN 1941-2061 1 International Oaks The Journal of the International Oak Society … the hybrid oak that time forgot, oak-rod baskets, pros and cons of grafting… Issue No. 25/ 2014 / ISSN 1941-2061 International Oak Society Officers and Board of Directors 2012-2015 Officers President Béatrice Chassé (France) Vice-President Charles Snyers d’Attenhoven (Belgium) Secretary Gert Fortgens (The Netherlands) Treasurer James E. Hitz (USA) Board of Directors Editorial Committee Membership Director Chairman Emily Griswold (USA) Béatrice Chassé Tour Director Members Shaun Haddock (France) Roderick Cameron International Oaks Allen Coombes Editor Béatrice Chassé Shaun Haddock Co-Editor Allen Coombes (Mexico) Eike Jablonski (Luxemburg) Oak News & Notes Ryan Russell Editor Ryan Russell (USA) Charles Snyers d’Attenhoven International Editor Roderick Cameron (Uruguay) Website Administrator Charles Snyers d’Attenhoven For contributions to International Oaks contact Béatrice Chassé [email protected] or [email protected] 0033553621353 Les Pouyouleix 24800 St.-Jory-de-Chalais France Author’s guidelines for submissions can be found at http://www.internationaloaksociety.org/content/author-guidelines-journal-ios © 2014 International Oak Society Text, figures, and photographs © of individual authors and photographers. Graphic design: Marie-Paule Thuaud / www.lecentrecreatifducoin.com Photos. Cover: Charles Snyers d’Attenhoven (Quercus macrocalyx Hickel & A. Camus); p. 6: Charles Snyers d’Attenhoven (Q. oxyodon Miq.); p. 7: Béatrice Chassé (Q. acerifolia (E.J. Palmer) Stoynoff & W. J. Hess); p. 9: Eike Jablonski (Q. ithaburensis subsp. -
Oaks of the Wild West Inventory Page 1 Nursery Stock Feb, 2016
Oaks of the Wild West Inventory Nursery Stock Legend: AZ = Arizona Nursery TX = Texas Nursery Feb, 2016 *Some species are also available in tube sizes Pine Trees Scientific Name 1G 3/5G 10G 15 G Aleppo Pine Pinus halapensis AZ Afghan Pine Pinus elderica AZ Apache Pine Pinus engelmannii AZ Chinese Pine Pinus tabulaeformis AZ Chihuahua Pine Pinus leiophylla Cluster Pine Pinus pinaster AZ Elderica Pine Pinus elderica AZ AZ Italian Stone Pine Pinus pinea AZ Japanese Black Pine Pinus thunbergii Long Leaf Pine Pinus palustris Mexican Pinyon Pine Pinus cembroides AZ Colorado Pinyon Pine Pinus Edulis AZ Ponderosa Pine Pinus ponderosa AZ Scotch Pine Pinus sylvestre AZ Single Leaf Pine Pinus monophylla AZ Texas Pine Pinus remota AZ, TX Common Trees Scientific Name 1G 3/5G 10G 15 G Arizona Sycamore Platanus wrightii ** Ash, Arizona Fraxinus velutina AZ AZ Black Walnut, Arizona Juglans major AZ AZ Black Walnut, Texas Juglans microcarpa TX Black Walnut juglans nigra AZ, TX Big Tooth Maple Acer grandidentatum AZ Carolina Buckthorn Rhamnus caroliniana TX Chitalpa Chitalpa tashkentensis AZ Crabapple, Blanco Malus ioensis var. texana Cypress, Bald Taxodium distichum AZ Desert Willow Chillopsis linearis AZ AZ Elm, Cedar Ulmus crassifolia TX TX Ginko Ginkgo biloba TX Hackberry, Canyon Celtis reticulata AZ AZ AZ Hackberry, Common Celtis occidentalis TX Maple (Sugar) Acer saccharum AZ AZ Mexican Maple Acer skutchii AZ Mexican Sycamore Platanus mexicana ** Mimosa, fragrant Mimosa borealis Page 1 Oaks of the Wild West Inventory Pistache (Red Push) Pistacia -
Section [I]Cerris[I] in Western Eurasia: Inferences from Plastid
A peer-reviewed version of this preprint was published in PeerJ on 17 October 2018. View the peer-reviewed version (peerj.com/articles/5793), which is the preferred citable publication unless you specifically need to cite this preprint. Simeone MC, Cardoni S, Piredda R, Imperatori F, Avishai M, Grimm GW, Denk T. 2018. Comparative systematics and phylogeography of Quercus Section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation. PeerJ 6:e5793 https://doi.org/10.7717/peerj.5793 Comparative systematics and phylogeography of Quercus Section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation Marco Cosimo Simeone Corresp., 1 , Simone Cardoni 1 , Roberta Piredda 2 , Francesca Imperatori 1 , Michael Avishai 3 , Guido W Grimm 4 , Thomas Denk 5 1 Department of Agricultural and Forestry Science (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy 2 Stazione Zoologica Anton Dohrn, Napoli, Italy 3 Jerusalem Botanical Gardens, Hebrew University of Jerusalem, Jerusalem, Israel 4 Orleans, France 5 Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden Corresponding Author: Marco Cosimo Simeone Email address: [email protected] Oaks (Quercus) comprise more than 400 species worldwide and centres of diversity for most sections lie in the Americas and East/Southeast Asia. The only exception is the Eurasian Sect. Cerris that comprises 15 species, a dozen of which are confined to western Eurasia. This section has not been comprehensively studied using molecular tools. Here, we assess species diversity and reconstruct a first comprehensive taxonomic scheme of western Eurasian members of Sect. Cerris using plastid (trnH-psbA) and nuclear (5S-IGS) DNA variation with a dense intra-specific and geographic sampling. -
Climate Change Guidelines for Forest Managers for Forest Managers
0.62cm spine for 124 pg on 90g ecological paper ISSN 0258-6150 FAO 172 FORESTRY 172 PAPER FAO FORESTRY PAPER 172 Climate change guidelines Climate change guidelines for forest managers for forest managers The effects of climate change and climate variability on forest ecosystems are evident around the world and Climate change guidelines for forest managers further impacts are unavoidable, at least in the short to medium term. Addressing the challenges posed by climate change will require adjustments to forest policies, management plans and practices. These guidelines have been prepared to assist forest managers to better assess and respond to climate change challenges and opportunities at the forest management unit level. The actions they propose are relevant to all kinds of forest managers – such as individual forest owners, private forest enterprises, public-sector agencies, indigenous groups and community forest organizations. They are applicable in all forest types and regions and for all management objectives. Forest managers will find guidance on the issues they should consider in assessing climate change vulnerability, risk and mitigation options, and a set of actions they can undertake to help adapt to and mitigate climate change. Forest managers will also find advice on the additional monitoring and evaluation they may need to undertake in their forests in the face of climate change. This document complements a set of guidelines prepared by FAO in 2010 to support policy-makers in integrating climate change concerns into new or