Climate Change Guidelines for Forest Managers for Forest Managers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CLIMATE RISK COUNTRY PROFILE: GHANA Ii ACKNOWLEDGEMENTS This Profile Is Part of a Series of Climate Risk Country Profiles Developed by the World Bank Group (WBG)
CLIMATE RISK COUNTRY PROFILE GHANA COPYRIGHT © 2021 by the World Bank Group 1818 H Street NW, Washington, DC 20433 Telephone: 202-473-1000; Internet: www.worldbank.org This work is a product of the staff of the World Bank Group (WBG) and with external contributions. The opinions, findings, interpretations, and conclusions expressed in this work are those of the authors and do not necessarily reflect the views or the official policy or position of the WBG, its Board of Executive Directors, or the governments it represents. The WBG does not guarantee the accuracy of the data included in this work and do not make any warranty, express or implied, nor assume any liability or responsibility for any consequence of their use. This publication follows the WBG’s practice in references to member designations, borders, and maps. The boundaries, colors, denominations, and other information shown on any map in this work, or the use of the term “country” do not imply any judgment on the part of the WBG, its Boards, or the governments it represents, concerning the legal status of any territory or geographic area or the endorsement or acceptance of such boundaries. The mention of any specific companies or products of manufacturers does not imply that they are endorsed or recommended by the WBG in preference to others of a similar nature that are not mentioned. RIGHTS AND PERMISSIONS The material in this work is subject to copyright. Because the WBG encourages dissemination of its knowledge, this work may be reproduced, in whole or in part, for noncommercial purposes as long as full attribution to this work is given. -
Development of Threshold Levels and a Climate-Sensitivity Model of the Hydrological Regime of the High-Altitude Catchment of the Western Himalayas, Pakistan
Civil & Environmental Engineering and Civil & Environmental Engineering and Construction Faculty Publications Construction Engineering 7-14-2019 Development of Threshold Levels and a Climate-Sensitivity Model of the Hydrological Regime of the High-Altitude Catchment of the Western Himalayas, Pakistan Muhammad Saifullah Yunnan University Shiyin Liu Yunnan University, [email protected] Adnan Ahmad Tahir COMSATS University Islamabad Muhammad Zaman University of Agriculture, Faisalabad FSajjadollow thisAhmad and additional works at: https://digitalscholarship.unlv.edu/fac_articles University of Nevada, Las Vegas, [email protected] Part of the Environmental Engineering Commons, and the Hydraulic Engineering Commons See next page for additional authors Repository Citation Saifullah, M., Liu, S., Tahir, A. A., Zaman, M., Ahmad, S., Adnan, M., Chen, D., Ashraf, M., Mehmood, A. (2019). Development of Threshold Levels and a Climate-Sensitivity Model of the Hydrological Regime of the High-Altitude Catchment of the Western Himalayas, Pakistan. Water, 11(7), 1-39. MDPI. http://dx.doi.org/10.3390/w11071454 This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Article has been accepted for inclusion in Civil & Environmental Engineering and Construction Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. -
IPCC AR5 Climate Sensitivity “A Consensus of Contraversies”
IPCC AR5 Climate Sensitivity “A consensus of Contraversies” No best estimate for equilibrium climate sensitivity can now be given because of a lack of agreement on values across assessed lines of evidence and studies. IPCC AR5 Technical Summary - 'Quantification of Climate System Responses' No best estimate for equilibrium climate sensitivity can now be given because of a lack of agreement on values across assessed lines of evidence and studies. Observational and model studies of temperature change, climate feedbacks and changes in the Earth’s energy budget together provide confidence in the magnitude of global warming in response to past and future forcing. {Box 12.2, Box 13.1} • The net feedback from the combined effect of changes in water vapour, and differences between atmospheric and surface warming is extremely likely positive and therefore amplifies changes in climate. The net radiative feedback due to all cloud types combined is likely positive. Uncertainty in the sign and magnitude of the cloud feedback is due primarily to continuing uncertainty in the impact of warming on low clouds. {7.2} • The equilibrium climate sensitivity quantifies the response of the climate system to constant radiative forcing on multi-century time scales. It is defined as the change in global mean surface temperature at equilibrium that is caused by a doubling of the atmospheric CO2 concentration. Equilibrium climate sensitivity is likely in the range 1.5°C to 4.5°C (high confidence), extremely unlikely less than 1°C (high confidence), and very unlikely greater than 6°C (medium confidence)16. The lower temperature limit of the assessed likely range is thus less than the 2°C in the AR4, but the upper limit is the same. -
Climate Sensitivity of Tropical Trees Along an Elevation Gradient in Rwanda
Article Climate Sensitivity of Tropical Trees Along an Elevation Gradient in Rwanda Myriam Mujawamariya 1, Aloysie Manishimwe 1, Bonaventure Ntirugulirwa 1,2, Etienne Zibera 1, Daniel Ganszky 3, Elisée Ntawuhiganayo Bahati 1 , Brigitte Nyirambangutse 1, Donat Nsabimana 1, Göran Wallin 3 and Johan Uddling 3,* 1 Department of Biology, University of Rwanda, University Avenue, P.O. Box 117, Huye, Rwanda; [email protected] (M.M.); [email protected] (A.M.); [email protected] (B.N.); [email protected] (E.Z.); [email protected] (E.N.B.); [email protected] (B.N.); [email protected] (D.N.) 2 Rwanda Agriculture and Animal Development Board, P.O. Box 5016, Kigali, Rwanda 3 Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden; [email protected] (D.G.); [email protected] (G.W.) * Correspondence: [email protected] Received: 15 September 2018; Accepted: 12 October 2018; Published: 17 October 2018 Abstract: Elevation gradients offer excellent opportunities to explore the climate sensitivity of vegetation. Here, we investigated elevation patterns of structural, chemical, and physiological traits in tropical tree species along a 1700–2700 m elevation gradient in Rwanda, central Africa. Two early-successional (Polyscias fulva, Macaranga kilimandscharica) and two late-successional (Syzygium guineense, Carapa grandiflora) species that are abundant in the area and present along the entire gradient were investigated. We found that elevation patterns in leaf stomatal conductance (gs), transpiration (E), net photosynthesis (An), and water-use efficiency were highly season-dependent. In the wet season, there was no clear variation in gs or An with elevation, while E was lower at cooler high-elevation sites. -
Hedging Climate Risk Mats Andersson, Patrick Bolton, and Frédéric Samama
AHEAD OF PRINT Financial Analysts Journal Volume 72 · Number 3 ©2016 CFA Institute PERSPECTIVES Hedging Climate Risk Mats Andersson, Patrick Bolton, and Frédéric Samama We present a simple dynamic investment strategy that allows long-term passive investors to hedge climate risk without sacrificing financial returns. We illustrate how the tracking error can be virtually eliminated even for a low-carbon index with 50% less carbon footprint than its benchmark. By investing in such a decarbonized index, investors in effect are holding a “free option on carbon.” As long as climate change mitigation actions are pending, the low-carbon index obtains the same return as the benchmark index; but once carbon dioxide emissions are priced, or expected to be priced, the low-carbon index should start to outperform the benchmark. hether or not one agrees with the scientific the climate change debate is not yet fully settled and consensus on climate change, both climate that climate change mitigation may not require urgent Wrisk and climate change mitigation policy attention. The third consideration is that although the risk are worth hedging. The evidence on rising global scientific evidence on the link between carbon dioxide average temperatures has been the subject of recent (CO2) emissions and the greenhouse effect is over- debates, especially in light of the apparent slowdown whelming, there is considerable uncertainty regarding in global warming over 1998–2014.1 The perceived the rate of increase in average temperatures over the slowdown has confirmed the beliefs of climate change next 20 or 30 years and the effects on climate change. doubters and fueled a debate on climate science There is also considerable uncertainty regarding the widely covered by the media. -
Climate Change Scenario Report
2020 CLIMATE CHANGE SCENARIO REPORT WWW.SUSTAINABILITY.FORD.COM FORD’S CLIMATE CHANGE PRODUCTS, OPERATIONS: CLIMATE SCENARIO SERVICES AND FORD FACILITIES PUBLIC 2 Climate Change Scenario Report 2020 STRATEGY PLANNING TRUST EXPERIENCES AND SUPPLIERS POLICY CONCLUSION ABOUT THIS REPORT In conjunction with our annual sustainability report, this Climate Change CONTENTS Scenario Report is intended to provide stakeholders with our perspective 3 Ford’s Climate Strategy on the risks and opportunities around climate change and our transition to a low-carbon economy. It addresses details of Ford’s vision of the low-carbon 5 Climate Change Scenario Planning future, as well as strategies that will be important in managing climate risk. 11 Business Strategy for a Changing World This is Ford’s second climate change scenario report. In this report we use 12 Trust the scenarios previously developed, while further discussing how we use scenario analysis and its relation to our carbon reduction goals. Based on 13 Products, Services and Experiences stakeholder feedback, we have included physical risk analysis, additional 16 Operations: Ford Facilities detail on our electrification plan, and policy engagement. and Suppliers 19 Public Policy This report is intended to supplement our first report, as well as our Sustainability Report, and does not attempt to cover the same ground. 20 Conclusion A summary of the scenarios is in this report for the reader’s convenience. An explanation of how they were developed, and additional strategies Ford is using to address climate change can be found in our first report. SUSTAINABLE DEVELOPMENT GOALS Through our climate change scenario planning we are contributing to SDG 6 Clean water and sanitation, SDG 7 Affordable and clean energy, SDG 9 Industry, innovation and infrastructure and SDG 13 Climate action. -
Human Mobility and the Paris Agreement: Contribution of Climate Policy to the Global Compact for Safe, Orderly and Regular Migr
Human mobility and the Paris Agreement: Contribution of climate policy to the global compact for safe, orderly and regular migration Input to the UN Secretary-General’s report on the global compact for safe, orderly and regular migration, in response to Note Verbale of 21 July 2017, requesting inputs to the Secretary-General’s report on the global compact for safe, orderly and regular migration Koko Warner, Manager of the Impacts, Vulnerabilities and Risks subprogramme, UN Climate Secretariat (UNFCCC) Bonn, 19 September 2017 Contents 1. Introduction: Climate policy aims to safeguard resilience ................................................................... 1 2. Human mobility under the UNFCCC process including the Paris Agreement....................................... 2 3. Conclusions: Paris Agreement provides scope of climate impacts affecting future human mobility .. 3 1. Introduction: Climate policy aims to safeguard resilience Helping countries bolster resilience in the face of climatic risks – the ability to rise again when climatic disruptions pose stumbling blocks to sustainable development and food production – is a foundational part of climate policy. The topic of migration, displacement, and planned relocation, introduced in international climate policy in 2010, is framed as a climate risk management issue in the context of a “resilience continuum”. The work on climate impacts, vulnerabilities, and risks puts human mobility in the context of preempting, planning for, managing and having contingency arrangements to aid society -
CLIMATE RISK COUNTRY PROFILE: KENYA Ii ACKNOWLEDGEMENTS This Profile Is Part of a Series of Climate Risk Country Profiles Developed by the World Bank Group (WBG)
CLIMATE RISK COUNTRY PROFILE KENYA COPYRIGHT © 2020 by the World Bank Group 1818 H Street NW, Washington, DC 20433 Telephone: 202-473-1000; Internet: www.worldbank.org This work is a product of the staff of the World Bank Group (WBG) and with external contributions. The opinions, findings, interpretations, and conclusions expressed in this work are those of the authors and do not necessarily reflect the views or the official policy or position of the WBG, its Board of Executive Directors, or the governments it represents. The WBG does not guarantee the accuracy of the data included in this work and do not make any warranty, express or implied, nor assume any liability or responsibility for any consequence of their use. This publication follows the WBG’s practice in references to member designations, borders, and maps. The boundaries, colors, denominations, and other information shown on any map in this work, or the use of the term “country” do not imply any judgment on the part of the WBG, its Boards, or the governments it represents, concerning the legal status of any territory or geographic area or the endorsement or acceptance of such boundaries. The mention of any specific companies or products of manufacturers does not imply that they are endorsed or recommended by the WBG in preference to others of a similar nature that are not mentioned. RIGHTS AND PERMISSIONS The material in this work is subject to copyright. Because the WBG encourages dissemination of its knowledge, this work may be reproduced, in whole or in part, for noncommercial purposes as long as full attribution to this work is given. -
Volcanism and the Little Ice Age
Volcanism and the Little Ice Age THOM A S J. CRO wl E Y 1*, G. ZIELINSK I 2, B. VINTHER 3, R. UD ISTI 4, K. KREUT Z 5, J. CO L E -DA I 6 A N D E. CA STE lla NO 4 1School of Geosciences, University of Edinburgh, UK; [email protected] 2Center for Marine and Wetland Studies, Coastal Carolina University, Conway, USA 3Niels Bohr Institute, University of Copenhagen, Denmark 4Department of Chemistry, University of Florence, Italy 5Department of Earth Sciences, University of Maine, Orono, USA 6Department of Chemistry and Biochemistry, South Dakota State University, Brookings, USA *Collaborating authors listed in reverse alphabetical order. The Little Ice Age (LIA; ca. 1250-1850) has long been considered the coldest interval of the Holocene. Because of its proximity to the present, there are many types of valuable resources for reconstructing tem- peratures from this time interval. Although reconstructions differ in the amplitude Special Section: Comparison Data-Model of cooling during the LIA, they almost all agree that maximum cooling occurred in the mid-15th, 17th and early 19th centuries. The LIA period also provides climate scientists with an opportunity to test their models against a time interval that experienced both significant volcanism and (perhaps) solar insolation variations. Such studies provide information on the ability of models to simulate climates and also provide a valuable backdrop to the subsequent 20th century warming that was driven primarily from anthropogenic greenhouse gas increases. Although solar variability has often been considered the primary agent for LIA cooling, the most comprehensive test of this explanation (Hegerl et al., 2003) points instead to volcanism being substantially more important, explaining as much as 40% of the decadal-scale variance during the LIA. -
Climate Risk Disclosure Survey
January 8, 2010 Sent Via E-Mail to Pam Simpson Mr. Eric Nordman National Association of Insurance Commissioners (NAIC) 2301 McGee Street, Suite 800 Kansas City, MO 64108 RE: Documents related to the Insurer Climate Risk Disclosure Survey Dear Eric: This letter is in response to the request by the Climate Change and Global Warming (EX) Task Force for comments on the following three items pertaining to the Insurer Climate Risk Disclosure Survey: • A prototype cover letter for use by state insurance departments that explains the purpose of the survey; • A prototype of the survey formatted in Zoomerang software; • A list of insurance companies by state, based on the direct written premium of the largest entity within the insurer group. NAMIC has no comment on the third item, but we do wish to comment on the first two. In addition, we’d like to share some observations about the current controversy surrounding climate science and its relevance to the insurer climate risk disclosure process. The Cover Letter Missing from the cover letter is any indication that all survey responses will be made public, with company respondents identified by name. While the survey instructions in the Zoomerang survey prototype clearly state that “survey responses are public information” and that “the NAIC shall coordinate a user-friendly central access point for the survey document and insurer responses,” we think this information is important enough that it should be prominently disclosed in the cover letter as well. Moreover, given that according to the cover letter, the purpose of the survey is to “assist regulators in assessing insurers’ risk assessment and management efforts relate to climate risk,” we believe it would be helpful if the letter were to explain how public disclosure of insurer responses will advance that purpose. -
Reducing Climate Risk: Climate Change Mitigation and Bioenergy
RESEARCH SYNTHESIS BRIEF Reducing climate risk: Climate change mitigation and bioenergy Avoiding dangerous climate change requires ambitious ac- tions to sharply reduce greenhouse gas emissions. SEI works to inform, support and advise decision-makers and civil society on ways to achieve these reductions and build a low-carbon future – including the role of bioenergy. We have also built tools and analytical frameworks to explore the options, from the global to the local level. Key insights SEI’s research on climate mitigation is broad and diverse, with significant contributions to both the scientific community and policy discourses around the world, as well as capacity devel- opment. The insights discussed here provide a sampling of the range of our work. • Sub-national climate policy should focus on sectors where local actors can exert the most influence and the potential for abatement is greatest; in cities, that is likely to be trans- port and buildings. Sub-national governments can provide an important labora- tory for climate policy innovation, and with rapid urbanization around the world, city-scale mitigation efforts are ever more crucial. Building on SEI’s history of analysing GHG abate- ment opportunities for U.S. states (e.g. Massachusetts), SEI has worked with local governments to better gauge their emissions and find effective mitigation options. © Flickr / Washington State Department of Transportation © Flickr / Washington Seattle and Washington State have worked to reduce transport-related For example, SEI’s work with King County stands as one of the emissions by improving public transit options and encouraging cycling. most comprehensive analyses of local-scale emissions to date (Erickson et al. -
The Risk of Sea Level Rise
THE RISK OF SEA LEVEL RISE:∗ A Delphic Monte Carlo Analysis in which Twenty Researchers Specify Subjective Probability Distributions for Model Coefficients within their Respective Areas of Expertise James G. Titus∗∗ U.S. Environmental Protection Agency Vijay Narayanan Technical Resources International Abstract. The United Nations Framework Convention on Climate Change requires nations to implement measures for adapting to rising sea level and other effects of changing climate. To decide upon an appropriate response, coastal planners and engineers must weigh the cost of these measures against the likely cost of failing to prepare, which depends on the probability of the sea rising a particular amount. This study estimates such a probability distribution, using models employed by previous assessments, as well as the subjective assessments of twenty climate and glaciology reviewers about the values of particular model coefficients. The reviewer assumptions imply a 50 percent chance that the average global temperature will rise 2°C degrees, as well as a 5 percent chance that temperatures will rise 4.7°C by 2100. The resulting impact of climate change on sea level has a 50 percent chance of exceeding 34 cm and a 1% chance of exceeding one meter by the year 2100, as well as a 3 percent chance of a 2 meter rise and a 1 percent chance of a 4 meter rise by the year 2200. The models and assumptions employed by this study suggest that greenhouse gases have contributed 0.5 mm/yr to sea level over the last century. Tidal gauges suggest that sea level is rising about 1.8 mm/yr worldwide, and 2.5-3.0 mm/yr along most of the U.S.