Scientists' Warning O
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hotspots of Subterranean Biodiversity in Caves and Wells
...J Oklahoma State Univ. Interlibrary Loan Call#: pdf w Location: pdf a:: Journal Title: Journal of cave and karst studies ; <( the National Speleological Society bulletin. Volume: 62 Issue: 1 ARIEL MonthNear: 2000 MaxCost: $501FM Pages: 11-17 Scanned by: Article Title: DC Culver and B Sket; Hotspots of Subterranean Shipped by: Biodiversity in Caves and Wells Ariel: 128.194.84.50 Article Author: Fax: 979-458-2032 or Borrower: TXA Shipping Address: Patron: Bandel, Micaela TAMU Libraries - College Station .. TAE z 41 HOU I- ILL Number: 85855670 Lending ~ String: *OKS,COD,IXA,TXH,VA@ ""0 The work from which this copy was made did not include a formal copyright notice. Copyright law may protect this work. Uses may be al lowed with permission from the rights holder, or if the copyright on the work has expired, or if the use is "fair use" or if it is within another exemption. The user of this work is responsible for determining its lawful uses. David C. Culver and Boris Sket - Hotspots of Subterranean Biodiversity in Caves and Wells . .Journal of Cave and Karst Studies 62(1):11-17. HOTSPOTS OF SUBTERRANEAN BIODIVERSITY IN CAVES AND WELLS DAVID C. CULVER Department of Biology, American University, 4400 Massachusetts Ave., NW, Washington, DC 20016, USA, [email protected] BORIS SKET Department of Biology, Biotechnical Faculty, University of Ljubljana, PO. Box 2995, 1001 Ljubljana, SLOVENIA, [email protected] We documented 18 caves and two karst wells that have 20 or more stygobites and troglobites. Crustacea dominated the aquatic fauna. Taxonomic composition ofthe terrestrial fauna varied, but Arachnida and Insecta together usually dominated. -
Phylogenetic Relationships Within the Speciose Family Characidae
Oliveira et al. BMC Evolutionary Biology 2011, 11:275 http://www.biomedcentral.com/1471-2148/11/275 RESEARCH ARTICLE Open Access Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling Claudio Oliveira1*, Gleisy S Avelino1, Kelly T Abe1, Tatiane C Mariguela1, Ricardo C Benine1, Guillermo Ortí2, Richard P Vari3 and Ricardo M Corrêa e Castro4 Abstract Background: With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity. Results: In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses. -
Monitoring Methodology and Protocols for 20 Habitats, 20 Species and 20 Birds
1 Finnish Environment Institute SYKE, Finland Monitoring methodology and protocols for 20 habitats, 20 species and 20 birds Twinning Project MK 13 IPA EN 02 17 Strengthening the capacities for effective implementation of the acquis in the field of nature protection Report D 3.1. - 1. 7.11.2019 Funded by the European Union The Ministry of Environment and Physical Planning, Department of Nature, Republic of North Macedonia Metsähallitus (Parks and Wildlife Finland), Finland The State Service for Protected Areas (SSPA), Lithuania 2 This project is funded by the European Union This document has been produced with the financial support of the European Union. Its contents are the sole responsibility of the Twinning Project MK 13 IPA EN 02 17 and and do not necessarily reflect the views of the European Union 3 Table of Contents 1. Introduction .......................................................................................................................................................... 6 Summary 6 Overview 8 Establishment of Natura 2000 network and the process of site selection .............................................................. 9 Preparation of reference lists for the species and habitats ..................................................................................... 9 Needs for data .......................................................................................................................................................... 9 Protocols for the monitoring of birds .................................................................................................................... -
A New Computing Environment for Modeling Species Distribution
EXPLORATORY RESEARCH RECOGNIZED WORLDWIDE Botany, ecology, zoology, plant and animal genetics. In these and other sub-areas of Biological Sciences, Brazilian scientists contributed with results recognized worldwide. FAPESP,São Paulo Research Foundation, is one of the main Brazilian agencies for the promotion of research.The foundation supports the training of human resources and the consolidation and expansion of research in the state of São Paulo. Thematic Projects are research projects that aim at world class results, usually gathering multidisciplinary teams around a major theme. Because of their exploratory nature, the projects can have a duration of up to five years. SCIENTIFIC OPPORTUNITIES IN SÃO PAULO,BRAZIL Brazil is one of the four main emerging nations. More than ten thousand doctorate level scientists are formed yearly and the country ranks 13th in the number of scientific papers published. The State of São Paulo, with 40 million people and 34% of Brazil’s GNP responds for 52% of the science created in Brazil.The state hosts important universities like the University of São Paulo (USP) and the State University of Campinas (Unicamp), the growing São Paulo State University (UNESP), Federal University of São Paulo (UNIFESP), Federal University of ABC (ABC is a metropolitan region in São Paulo), Federal University of São Carlos, the Aeronautics Technology Institute (ITA) and the National Space Research Institute (INPE). Universities in the state of São Paulo have strong graduate programs: the University of São Paulo forms two thousand doctorates every year, the State University of Campinas forms eight hundred and the University of the State of São Paulo six hundred. -
Revision of the Histopona Italica Group (Araneae: Agelenidae), with the Description of Two New Species
Zootaxa 3640 (1): 023–041 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3640.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:2865EE2A-01A9-45D9-B299-AAF6E118D5C4 Revision of the Histopona italica group (Araneae: Agelenidae), with the description of two new species ANGELO BOLZERN1,2, PAOLO PANTINI3 & MARCO ISAIA4,5 1Naturhistorisches Museum Basel, Augustinergasse 2, CH-4001 Basel, Switzerland 2American Museum of Natural History, Invertebrate Zoology, Central Park West at 79th Street, New York, NY 10024-5192, United States. E-mail: [email protected] 3Museo Civico di Scienze Naturali “E. Caffi”, Piazza Cittadella, 10. I-24129 Bergamo, Italy. E-mail: [email protected] 4Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13. I-10123 Torino, Italy. E-mail: [email protected] 5Corresponding author Abstract During a large survey of agelenid spiders from different private and museum collections, a closer examination of material from all over Italy (including type material and fresh material) previously identified as Histopona italica Brignoli 1977, disclosed two new species for science, both belonging to the italica group. Based on the results of the present work, we describe Histopona leonardoi sp. n. and H. fioni sp. n. and revise the distribution pattern of H. italica group in Italy and Switzerland. Drawings and photographs of relevant structures and a table summary of the diagnostic characters allowing a fast separation of the species are provided. Key words: taxonomy, endemic fauna, biogeography, Alps, Apennines Introduction According to Platnick (2012) the genus Histopona Thorell 1869 currently includes 18 valid species, two of them, H. -
Revision of the Histopona Italica Group (Araneae: Agelenidae), with the Description of Two New Species
TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3640 (1): 023–041 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3640.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:2865EE2A-01A9-45D9-B299-AAF6E118D5C4 Revision of the Histopona italica group (Araneae: Agelenidae), with the description of two new species ANGELO BOLZERN1,2, PAOLO PANTINI3 & MARCO ISAIA4,5 1Naturhistorisches Museum Basel, Augustinergasse 2, CH-4001 Basel, Switzerland 2American Museum of Natural History, Invertebrate Zoology, Central Park West at 79th Street, New York, NY 10024-5192, United States. E-mail: [email protected] 3Museo Civico di Scienze Naturali “E. Caffi”, Piazza Cittadella, 10. I-24129 Bergamo, Italy. E-mail: [email protected] 4Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13. I-10123 Torino, Italy. E-mail: [email protected] 5Corresponding author Abstract During a large survey of agelenid spiders from different private and museum collections, a closer examination of material from all over Italy (including type material and fresh material) previously identified as Histopona italica Brignoli 1977, disclosed two new species for science, both belonging to the italica group. Based on the results of the present work, we describe Histopona leonardoi sp. n. and H. fioni sp. n. and revise the distribution pattern of H. italica group in Italy and Switzerland. -
Hotspots of Subterranean Biodiversity in Caves and Wells
David C. Culver and Boris Sket - Hotspots of Subterranean Biodiversity in Caves and Wells. Journal of Cave and Karst Studies 62(1):11-17. HOTSPOTS OF SUBTERRANEAN BIODIVERSITY IN CAVES AND WELLS DAVID C. CULVER Department of Biology, American University, 4400 Massachusetts Ave., NW, Washington, DC 20016, USA, [email protected] BORIS SKET Department of Biology, Biotechnical Faculty, University of Ljubljana, P.O. Box 2995, 1001 Ljubljana, SLOVENIA, [email protected] We documented 18 caves and two karst wells that have 20 or more stygobites and troglobites. Crustacea dominated the aquatic fauna. Taxonomic composition of the terrestrial fauna varied, but Arachnida and Insecta together usually dominated. Geographically, the sites were concentrated in the Dinaric Karst (6 caves). Sites tended to have high primary productivity or rich organic input from the surface, be large caves, or have permanent groundwater (phreatic water). Dokumentirala sva 18 jam in dva kraška vodnjaka, iz katerih je znanih 20 ali vec vrst troglobiontov in stigobiontov. V vodni favni preladujejo raki. Taksonomski sestav kopenske favne je raznolik, vendar pajkovci in zuzelke skupaj navadno prevladujejo. Najvec takšnih jam (šest) je v Dinarskem krasu. Nadpovprecno so zastopane jame z lastno primarno produkcijo ali bogatim vnosom hrane s površja, obsezne jame in jame, ki vkljucujejo tudi freatsko plast. Over the past few years, there has been a growing aware- terns at individual sites. Even though most subterranean bio- ness and concern with biodiversity worldwide. Books and diversity results from the accumulation of different species monographs with a focus on biodiversity have appeared (e.g., from nearby sites, there are some outstanding examples of high Wilson 1992; Master et al. -
Siluriformes: Callichthyidae)
Neotropical Ichthyology, 9(4): 689-695, 2011 Copyright © 2011 Sociedade Brasileira de Ictiologia Differentiating cave Aspidoras catfish from a karst area of Central Brazil, upper rio Tocantins basin (Siluriformes: Callichthyidae) Sandro Secutti1, Roberto E. Reis2 and Eleonora Trajano1 Two cave populations of Aspidoras albater catfish with reduced eyes and pigmentation were recently found near the city of Posse, São Domingos karst area, Goiás State, representing the first known case of a troglomorphic callichthyid catfish. Cave specimens are described and compared to epigean specimens of A. albater, but morphometric differences between the epigean and the cave populations are not adequate to delimit as distinct species. Duas populações de Aspidoras albater com olhos e pigmentação reduzidos foram descobertas recentemente em cavernas do município de Posse, área cárstica de São Domingos, Goiás, representando o primeiro caso conhecido de Callichthyidae troglomórfico. Os espécimes cavernícolas são descritos e comparados com espécimes epígeos de A. albater, mas as diferenças morfométricas entre eles não são suficientes para delimitá-los como espécies distintas. Key words: Aspidoras albater, Cave fish, Goiás State, Neotropical, Population differentiation. Introduction eye and pigmentation reduction show a distribution tending to normal within the populations (Trajano & Bichuette, 2010). At least 37 species of subterranean fishes showing some These observations are evidence for a gradual degree of troglomorphism (basically reduction of eyes and differentiation of eyes, pigmentation, and other pigmentation) have been found in continental South America, troglomorphisms in populations confined to subterranean representing almost one quarter of the total number of species habitats and thus supposed to be genetically isolated. recorded worldwide (164 - Proudlove, 2010). -
WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07C 39/00 (2006.01) C07D 303/32 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C07C 49/242 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/US20 16/048092 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 22 August 2016 (22.08.2016) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/208,662 22 August 2015 (22.08.2015) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: NEOZYME INTERNATIONAL, INC. -
Differentiating Cave Aspidoras Catfishfrom a Karst Area of Central
Neotropical Ichthyology Copyright © 2011 Sociedade Brasileira de Ictiologia Differentiating cave Aspidoras catfish from a karst area of Central Brazil, upper rio Tocantins basin (Siluriformes: Callichthyidae) Sandro Secutti1, Roberto E. Reis2 and Eleonora Trajano1 Two cave populations of Aspidoras albater catfish with reduced eyes and pigmentation were recently found near the city of Posse, São Domingos karst area, Goiás State, representing the first known case of a troglomorphic callichthyid catfish. Cave specimens are described and compared to epigean specimens of A. albater, but morphometric differences between the epigean and the cave populations are not adequate to delimit as distinct species. Duas populações de Aspidoras albater com olhos e pigmentação reduzidos foram descobertas recentemente em cavernas do município de Posse, área cárstica de São Domingos, Goiás, representando o primeiro caso conhecido de Callichthyidae troglomórfico. Os espécimes cavernícolas são descritos e comparados com espécimes epígeos de A. albater, mas as diferenças morfométricas entre eles não são suficientes para delimitá-los como espécies distintas. Key words: Aspidoras albater, Cave fish, Goiás State, Neotropical, Population differentiation. Introduction eye and pigmentation reduction show a distribution tending to normal within the populations (Trajano & Bichuette, 2010). At least 37 species of subterranean fishes showing some These observations are evidence for a gradual degree of troglomorphism (basically reduction of eyes and differentiation of -
Deeleman-Reinhold 1983 Histopona En.Pdf
~-,-------- ~------------- ~~~ I~(~' cJ~ tt---- f;;x.-&~ 325 THE GENUS fllSTOfliONA THORELL {J~raneae, t\gelen~dae) WITH DESCRIPTION OF T\NO NEVV CAVE-DWELLING SPECIES by Chrbt3 L. Dee!eman-Reinhold Sparrenlaan 8 Ossendrecht (Pays-Bas) The number of known species assigned to both Histopona Thorell and Roeweriana Kratochvil has in recent years been growing steadily. lvleanwhile, distinction between these genera is becoming vague, if existing at all. Thf genus Histopona was crea·:ed in 1869 for Tegenaria torpida (C.L. Koch), an epigean, agelenid spc('i(~s which, according to Thor·~ll (1 869) ·differs from other Tegenaria species by the slightly recurved posterior eye row and the distal ~ egment of the superior spinners longer than the basal segment. Later, T. /uxuriulls Kulczynski, T. conv,?nicns' KuJczynski, T. facta Kulczynski and T. sirlllata Kulczynski were added to Histopolla (Roewer, 19:)4; Lehtinen, 1967). Lehtinen also provided a diagno.;is of this genus. During the last decade, new species were assigned to Histopona by Brignoli (1976, 1977, J980) and Del tshev (1978). As the characters furnished by Thore!! do not always apply, many aut1Jor~ did not recogni ze the genus, among others Simon, Drensky, Bonnet, Wiehle and Loksa. Brignoli (1971 a) advocated the generic separation of H. torpida and related species from Tegenaria on the basis of the structure of the vulva: H. torpida is provided with an enlarged, membranous segment of the seminal duct, the «bursa copu!atrix», a conformation never found in any Tegenaria species and not unlike that found in the american genus Ageienopsis Giebel (Gering, 1953), but differing from t~Jat genus by the absence of " cOllpl:.ng cavity. -
Notes on Stygichthys Typhlops (Characiformes; Characidae): Characterization of Their Teeth and Discussion About Their Diet
Sampaio et al. Notes on Stygichthys typhlops (Characiformes; Characidae): characterization of their teeth and discussion about their diet Francisco Alexandre C. Sampaio1, Paulo Santos Pompeu2 & Rodrigo Lopes Ferreira3 Federal University of Lavras, Department of Biology, Postgraduate Program in Applied Ecology – Caixa Postal 3037 - 37200-000, Lavras - MG, Brasil [email protected] (corresponding author) [email protected] [email protected] Key Words: cave-fish, phreatic aquifers, Jaíba, São Francisco basin, Brazil, dentition. The Brazilian Blind Characid, Stygichthys typhlops Brittan & Böhlke, 1965 is an eyeless, depigmented stygobiont endemic to southeastern Brazil. Its distribution is restricted to phreatic waters in the Rio São Francisco basin1 in a small area of northern Minas Gerais (Jaíba municipality). Stygichthys typhlops is one of two stygobiotic characids described. It lacks circumorbital bones, which suggests a more advanced stage of specialization to the subterranean environment than the other characin, the Mexican Blind Cave Fish, Astyanax mexicanus, which retains a fragment of these bones. Loss or reduction of circumorbital bones is strongly associated with the loss of eyes among cavefish2. S. typhlops is under extreme risk of extinction due to its highly restricted distribution and the marked lowering of the water table3 of its habitat due to water diversion for irrigation. Little is known about life history of S. typhlops, particularly its diet. In this study we collected data in the laboratory and in the field about the diet and feeding behavior of S. typhlops, and present a description of their dentition based on scanning electron microphotographs (SEM). Ten S. typhlops specimens (mean = 34.4 mm, S.E.