<<

2572-1

Winter College on : Fundamentals of - Theory, Devices and Applications

10 - 21 February 2014

Waveguide theory (and photonic circuit design)

A. Melloni Dip. Elettronica, Informazione e Bioingegneria Politecnico di Milano Italy

Winter College on Optics: Fundamentals of Photonics Theory, Devices and Applications theory (and photonic circuit design)

A. Melloni Dip. Elettronica, Informazione e Bioingegneria Politecnico di Milano, Italy

7th Optoelectronics & Photonics Winter School: Physics and Applications of Optical Resonators –A. Melloni, Politecnico di Milano Waveguide theory and photonic circuit design

- (no theory…) - The role of index contrast in waveguides (survey of technologies, type of waveguides, index contrast…) - Bends and advanced topics on bends (the matched bend,...) - The dark side of integrated optical waveguides (backscatter, xtalk, losses, spurious modes, the (ng-neff) role….) - An excursus on ring resonators: history, spectral characteristics, applications, ... - Circuits: MZ, rings, higher order filters, delay lines, … - The circuit approach (building Blocks, Circuit simulators and few slides on Aspic, our circuit simulator that will be used at the end of the course for hands-on session). - The structure of generic foundries and available generic foundries

7th Optoelectronics & Photonics Winter School: Physics and Applications of Optical Resonators –A. Melloni, Politecnico di Milano WAVEGUIDES

Cover

CORE

Substrate

ICTP Winter School, Trieste, 2014 A. Melloni WAVEGUIDES

n2 > n1

n1 Impedance

ICTP Winter School, Trieste, 2014 A. Melloni WAVEGUIDES

Ray Optics (forget…)

Electromagnetic Theory (Maxwell Equations) - rigorous - (Jiri Ctyroky, next week)

ICTP Winter School, Trieste, 2014 A. Melloni WAVEGUIDES

Radiative modes Guided modes (plane waves)

Dielectric waveguides are between free space and metallic waveguides

ICTP Winter School, Trieste, 2014 A. Melloni Characteristics of the modes

Guided modes are - orthogonal (in space and in time) -do not exchange power - z independent (do not change the shape) - solution of the wave equation - Propagate as exp(-jz) - Attenuate as exp (-z)

- Each mode has his , , ng… - Depend on the cross section - Have a cutoff wavelength (if asymmetric) -… ICTP Winter School, Trieste, 2014 A. Melloni Existing modes and Excited modes

waveguide

Fiber, laser, …

ICTP Winter School, Trieste, 2014 A. Melloni Existing modes and Excited modes

waveguide

Fiber, laser, …

ICTP Winter School, Trieste, 2014 A. Melloni Leaky modes

Leaky modes or quasi-mode are packets of radiative modes Behave as badly guided modes

Guided mode Leaky mode

ICTP Winter School, Trieste, 2014 A. Melloni WAVEGUIDES

ICTP Winter School, Trieste, 2014 A. Melloni WAVEGUIDES

ICTP Winter School, Trieste, 2014 A. Melloni Other Waveguides

Slot waveguide waveguide

Hollow waveguide

Segmented waveguide Good for sensing !

ICTP Winter School, Trieste, 2014 A. Melloni The characteristics of an Optical Waveguide

Single mode (why? …always?) Low loss (dB/cm?, dB/m?; fibers 0.2 dB/km !) Low (high) polarization dependence Small bending radius Large mode (for efficient fiber coupling) Active controls (thermooptic, electrooptic, carriers….) Nonlinearities ?

ICTP Winter School, Trieste, 2014 A. Melloni The characteristics of an Optical Waveguide

Mode shape

Phase constant Effective index

Group index

ICTP Winter School, Trieste, 2014 A. Melloni Dispersion diagram

ICTP Winter School, Trieste, 2014 A. Melloni contrast

ICTP Winter School, Trieste, 2014 A. Melloni Technologies and Waveguides

Ge:SiO2 SiON Si3N4 InP As2S3 SOI n 0.5…3 % 2…8 % 38 % 3 / 70 % 60…100 % 140%

Mach-Zehnder D. Couplers, Y, MMI, Star couplers

Ring Resonators

Gratings

ICTP Winter School, Trieste, 2014 A. Melloni Index contrast vs size and NA

ICTP Winter School, Trieste, 2014 A. Melloni High or low index contrast?

ICTP Winter School, Trieste, 2014 A. Melloni Low index contrast: classical integrated optics

Weakly Guiding “integrated” optics

SiO2 doped Ge, B, P…, polymers n< 1% Waveguide dimensions 5x5 m

Rmin > 1 cm Low loss, < 0.1 dB/cm Excellent fiber waveguide coupling (<0.1dB) Low birefringence (10‐5)

Foundries available on the market Reliable and stable Very low integration scale Can be athermal

ICTP Winter School, Trieste, 2014 A. Melloni High index contrast

Integrated optics

SiON (eventually doped Ge), polymers n< 3‐5 % (1.5….20 %) Waveguide dimensions 2x2 m (4%) 1.2x1.2 m (20%)

Rmin: 1 mm (4%) …. 30 m (20%) Moderate loss, 0.15‐0.5 dB/cm Fiber coupling need mode adapter (0.3 dB) Low birefringence (10‐5)

Foundries … a long story ! Non stoichiometric…., absorbs at 1510 (N‐H bound) Medium integration scale

ICTP Winter School, Trieste, 2014 A. Melloni : very high index contrast

ICTP Winter School, Trieste, 2014 A. Melloni Photonics Integration

Courtesy of TU/e

ICTP Winter School, Trieste, 2014 A. Melloni Photonic Integration ‐ reduction of volume and packaging cost

Compact fibre-based cross- Photonic Integrated cross- connect module 1997 connect chip 1998 4-channel 2x2 OXC 4-channel 2x2 OXC

Courtesy of Tu/e – Eindhoven University

ICTP Winter School, Trieste, 2014 A. Melloni Towards 1 Tbit/s Tx&Rx system on chip…

ICTP Winter School, Trieste, 2014 A. Melloni Why VLSI ?

Yield 1/(Chip Area * # defects per cm2)

“Cost”  Chip Cost / # functions / Yield

70 % of the cost is in the package…

90% of the time goes in testing and validation…

ICTP Winter School, Trieste, 2014 A. Melloni Let’s bend the waveguide !

A straight waveguide….

… and a bent waveguide

ICTP Winter School, Trieste, 2014 A. Melloni Bends

ICTP Winter School, Trieste, 2014 A. Melloni Bending radius and FSR

Losses n4

‐1.5 Rmin 5n m (0.1 dB/rad)

FSR=c/(2 g)= Rn =29n-1.5 [nm]

ICTP Winter School, Trieste, 2014 A. Melloni Bent waveguide

n0(x,y)

R

ICTP Winter School, Trieste, 2014 A. Melloni Bent waveguide

Bending radius

ICTP Winter School, Trieste, 2014 A. Melloni Bend and straight modes

Bend mode=linear combination of straight modes Straight mode=linear combination of bend modes For monomode waveguide only 2 modes are sufficient

b  a11  a22

+ =

Lossless Lossy b

Loss and distortion !

ICTP Winter School, Trieste, 2014 A. Melloni The matched bend R,  1 a1+b2 =1+….

If R=N beat lengths 1=a1+b2

2m 2    4  c2    1 2 12 Rmb  1  2

ICTP Winter School, Trieste, 2014 A. Melloni The matched bend

Matched bend Unmatched bend 50.0% 49.7% 42.7% 56.6%

Lithium Niobate waveguide, R=5 cm =0.5°

ICTP Winter School, Trieste, 2014 A. Melloni (Roughness induced) Backscatter

ICTP Winter School, Trieste, 2014 A. Melloni Waveguide surface…

Cross section shape Stress and strain Sidewall Roughness w Surface states Doping (1015) …….

-3 neff / w=2⋅10 w= 1nm  =1nm  = 1nm  =1 dB/cm

ICTP Winter School, Trieste, 2014 A. Melloni Scattering processes in waveguides

Sidewall roughness w  Scattering processes

αrad Coupling with radiation modes Coupling into T counter‐propagating modes x (BACKSCATTERING) R x n w Scattering w2, Δn2

Silicon wires: w ≈ 5 nm  αtot = 10 dB/cm

ICTP Winter School, Trieste, 2014 A. Melloni Backscattering in silicon wires

Tx Roughness rms w< 2 nm Rx

w Lwg = 1 mm 0 single mode multi mode Backscattering gives a -10 TE [dB/mm] small contribution to

x -24 dB/mm -20 propagation loss

Rx ≈ 10%  -30

-40 However… Lwg = 1 mm

Backscatterd R power -50 300 400 500 600 waveguide width w [nm] ICTP Winter School, Trieste, 2014 A. Melloni Backscattering in silicon wires

T x Roughness rms w< 2 nm Rx

w Lwg 0 single mode multi mode Tx reduces with Lwg -10 TE [dB/mm] Rx increase with Lwg x -20

Tx = Rx -30 Reflection equals -40  = 15 dB/cm  = 2.5 dB/cm transmission after a wg 9 mm 58 mm length Lwg of only…

Backscatterd R power -50 300 400 500 600 waveguide width [nm] ICTP Winter School, Trieste, 2014 A. Melloni High vs low index contrast

Silicon (Δn = 140%) SiON (Δn = 4.5%) Si / SiON SiO2 h = 220 nm h = 2.2 μm h w = 2.2 μm w0 = 490 nm 0 w Si single mode multimode > 2 order of magnitude -20 Silicon (TE) higher than in [dB/mm]

x low n waveguides -30 25 dB -40

-50 SiON (TE) -60 Backscatterd R power 0.6 0.8 1 1.2 w / w0 ICTP Winter School, Trieste, 2014 A. Melloni High vs low index contrast

Silicon (Δn = 140%) SiON (Δn = 4.5%) h = 220 nm h = 2.2 μm Si / SiON w = 2.2 μm w0 = 490 nm 0 SiO2 h single mode multimode w Si -20 Silicon (TE) [dB/mm] x -30 Maximum waveguide -32 dB length for a given -40 backscattering level ?

-50 SiON (TE) -60 Backscatterd R power 0.6 0.8 1 1.2 w / w0

SOI WG SiON WG SiO2:Ge WG (Δn ≈ 140 %) (Δn ≈ 4.5 %) (Δn < 1 %) (Rayleigh)

ICTP Winter School,L =Trieste, 200 μ 2014mL =A. 7 Melloni cm L = 1 m L = ∞ What backscattering depends on?

Let’s find a golden rule Given a certain roughness w, backscattered power depends only on the square sensitivity S2

neff  neff  -20 Silicon (TE) S    ng  neff [dB/mm] w 

x   -30 S 2 model The S2 relation holds 25 dB -40 independently of size, shape, material and index contrast -50 SiON (TE) (Δn) -60 Backscatterd R power 0.6 0.8 1 1.2 w / w0 F. Morichetti et al., PRL 104, 033902 (2010) ICTP Winter School, Trieste, 2014 A. Melloni Also attenuation goes as ng--nneff

ICTP Winter School, Trieste, 2014 A. Melloni Attenuation and backscatter vs technology

ICTP Winter School, Trieste, 2014 A. Melloni Radiation mode Xtalk

g Pout Pxt WG1 Pin WG2

g < 2.5 m Indium phosfide technology -10 Power transfer due to evanescent mode coupling Pout -20  exp(2g) g 2 -30 35 dB e2 g -40 2.5 m g < 30 m

Power [dB] Xtalk due to radiation mode -50 coupling FMM Pxt 2  g WG2 -60 BPM (no roughness) -70 2 3 5 10 15 20 25 30 Gap [m]

ICTP Winter School, Trieste, 2014 A. Melloni An intuitive view of xtalk

WG1

Tx 1/g2 Rx

ICTP Winter School, Trieste, 2014 A. Melloni Minimize S to minimize backscatter

• Reduce the index contrast: SSOI=1.6e-3; SSiON=1e-5

• Use TM mode: in SOI STE=1.7e-3; STM=7e-4 ( > 15 dB)

• Use a suitable upper cladding: backscatter of SOI wg with Air -21dB/mm; -18dB/mm; 2 SU8 SiO -23dBmm • Engineer the waveguide cross section shape: silicon wire -21dB/mm; rib -39 dB/mm

ICTP Winter School, Trieste, 2014 A. Melloni Other ingredients

ICTP Winter School, Trieste, 2014 A. Melloni Directional coupler

0 W 3 L c

g S 1 2 L

ICTP Winter School, Trieste, 2014 A. Melloni Directional coupler

Typical Insertion Loss < 0.1 dB (0.03-0.06 dB)

Small gaps excite higher order modes

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 -3 .0 -3 .0

-2 .5 gap=50nm gap=100nm -2 .5 -2 .0 -2 .0 -1 .5 Lπ=5.7µm -1 .5 Lπ=10.2µm -1 .0 -1 .0 -0 .5 -0 .5 0. 0 0. 0 0.5 0.5 1.0 1.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 -3 . -3 .0 gap=150nm -3.0 gap=200nm -2 .5 -2 .5 -2.0 -2 .0 -1 .5 -1 .5 Lπ=16.3µm Lπ=25.5µm -1 .0 -1 .0 -0 .5 -0 .5 0.0 0.0 0.5 0.5 1.0 1. 0 5 . 5 ICTP Winter School, Trieste, 2014 A. Melloni Other splitter/combiners W 2 Y-Branch

S W 0 0 2N-1 1 L g N-1 N

L

MMI – Multimode Intertference Coupler

Star Coupler ICTP Winter School, Trieste, 2014 A. Melloni Power is nothing without control…

Au+NiCr+Ti

ICTP Winter School, Trieste, 2014 A. Melloni Thermal Control in SiON

SiON wg 7 m 10 m 9-15 m Heater 120 SiO 2 SiO2 100 up cladding low cladding 7-9 m 80 T [°C] 10 m  60

40 36°C Temperature Temperature

20 P = 300 mW (2mm) 0 Typical length 1-3 mm 0 5 10 15 20 Depth [ m]  shift =300mW (100°C) -5 -1 neff / T=1.110 °C Response time: ~100s B < 210-5 /100°C

ICTP Winter School, Trieste, 2014 A. Melloni Thermal Control in SOI

-30

Thermo-optic efficiency -35

-40 Power consumption: 52 μW/GHz -45 0V 12.5 mW/GHz in SiON 1.0V 2.0V

Intensity [dB] - Intensity -50 3.0V 4.0V f=2B=200 GHz = 10 mW/ring 3.1 nm / 6V 5.0V -55 6.0V

-60 1549 1550 1551 1552 1553 Wavelength -  [nm] Time response Thermal crosstalk

1 cold hot 7 m 0.8  = 4 μs ring ring tres = 12 μs 0.6 R R2 0.4 1 0.2

Optical intensity 28° 0.7° 0 -5 0 5 10 15 20 C =0.06C nm Time [us] =2.5 nm

ICTP Winter School, Trieste, 2014 A. Melloni Mach‐Zehnder interferometer (Filter)

It is a Finite Impulse Response filter, FIR DROP port: 1 zero THROUGH port: 1 zero (2 zeroes in the origin)

ICTP Winter School, Trieste, 2014 A. Melloni Mach‐Zehnder interferometer (Filter)

ICTP Winter School, Trieste, 2014 A. Melloni Mach‐Zehnder interferometer (Filter)

ICTP Winter School, Trieste, 2014 A. Melloni Ring resonators = Fabry-Perot

K Lr/2

Lr R, K R, K K

It is an Infinite Impulse Response filter, IIR DROP port: 1 pole THROUGH port: 1 pole, 1 zero

ICTP Winter School, Trieste, 2014 A. Melloni Ring resonators = Fabry-Perot

K Lr/2

Lr R, K R, K K

ICTP Winter School, Trieste, 2014 A. Melloni Ring Resonator Filter

r  r z 1  jt2 1 2 H through (z)  1 Drop 1r1r2 z r2  ,Lr 1 t1t2  z  jt H drop (z)   1 In 1 Through 1 r1r2 z

r  jL 1 z  e r

Resonance condition: L  2m , m  0,1,2,... r

Free Spectral Range: c FSR  ng Lr

ICTP Winter School, Trieste, 2014 A. Melloni Ring Resonator Filter

Transmission Group Delay

t2=0.2 t2=0.2

Frequency/FSR Frequency/FSR

ICTP Winter School, Trieste, 2014 A. Melloni Phase shifter (all pass filter)

 ,Lr r e jLr T()   jLr In  jt Out 1re

r Resonance condition:  0 L  2m , m  0,1,2,... r

-1 Free Spectral Range: -2 c FSR  -3 ng Lr Trasmission [dB] Trasmission 2 -4 t = 0.5,  = 0 ... 0.75 dB

-5 1550 1550.1 1550.2 1550.3 1550.4 1550.5 critical coupling  = r [nm]  =1 lossless) ICTP Winter School, Trieste, 2014 A. Melloni Phase shifter (all pass filter)

Transmission Phase

Frequency/FSR Frequency/FSR

ICTP Winter School, Trieste, 2014 A. Melloni Effect of a refractive index perturbation

n due to Tolerances, Temperature, Birefringence, aging…

B

ICTP Winter School, Trieste, 2014 A. Melloni a lot of formulae….

ICTP Winter School, Trieste, 2014 A. Melloni Spectrum of backscattering

SiO α = 2 dB/cm T 2 In x 220 nm Si R SOI wg x 480 nm

Si WG length: 1 mm 0 (a) Tx -10

[dB] Backscatter is a random x white noise

, R -20 x

T in wavelength‐domain Rx -30

1546 1547 1548 1549 1550 1551 1552 Wavelength [nm] ICTP Winter School, Trieste, 2014 A. Melloni Backscattering in ring resonators

In α = 2 dB/cm Tx  Reflection can even exceed Rx K transmission  Spectral response distortions (notch splitting)

Lr K = 0.15

0 (a) Tx Rx > Tx -10 0 [dB] x Rx -10

, R -20 x T -20 -30 -30 1546 1547 1548 1549 1550 1551 1550 1550.5 1551 1551.5 Wavelength [nm] ICTP Winter School, Trieste, 2014 A. Melloni Backscattering in ring resonators

Where is the light ? In α = 2 dB/cm Tx Ring with Finesse ≈40 Rx K Waveguide attenuation 2.0 dB/cm (roundtrip losses=0.025dB)

Finesse * roundtrip loss = 1 dB Lr K = 0.15

0 (a) Tx Rx > Tx -10 0 [dB] x Rx -10

, R -20 x T -20 -30 -30 1546 1547 1548 1549 1550 1551 1550 1550.5 1551 1551.5 Wavelength [nm] ICTP Winter School, Trieste, 2014 A. Melloni Backscattering in ring resonators

250 experiment 2 2 200 ng model ng

150

100 light trapping originates 50 coherent backscattering

Backscattering enhancement Backscattering 0 0 20 40 60 80 100 Group index ng (Q factor, finesse…) F. Morichetti et al., APL 96, 081112 (2010)

ICTP Winter School, Trieste, 2014 A. Melloni An excursus on ring-resonators

history, properties and applications

ICTP Winter School, Trieste, 2014 A. Melloni Ring resonator: the origin

E. A. J. Marcatili, “Bends in optical guides,” Bell Syst. Tech. J. 48,

Sept. 1969

P. Troughton, ”Measurement techniques in microstrips”, Elect. Letters, January 1969

ICTP Winter School, Trieste, 2014 A. Melloni Ring resonators: the origin

M. Miyagi, “Design theory of high-Q optical ring resonator with asymmetric three-layered ”, Optical and Quantum Electronics, October 1978

(McGill University, Canada)

R. G. Walker and C.D.W. Wilkinson “Integrated optical ring resonators made by silver ion-exchange in ”, Applied Optics, April 1983

GLASGOW UNIVERSITY

ICTP Winter School, Trieste, 2014 A. Melloni Ring resonators: the origin

M. Miyagi, “Design theory of high-Q optical ring resonator with asymmetric three-layered dielectrics”, Optical and Quantum Electronics, October 1978

(McGill University, Canada)

R. G. Walker and C.D.W. Wilkinson “Integrated optical ring resonators made by silver ion-exchange in glass”, Applied Optics, April 1983 ~1000 BC GLASGOW UNIVERSITY ~2000 AD

ICTP Winter School, Trieste, 2014 A. Melloni Z-cut LiNbO3 Silicon Oxynitride A. Mahapatra, Applied Optics, De Brabander, PTL, May 1994 August 1985 m 

AlGaAs/GaAs D. Rafizadeh, JLT 1998 The smallestring, R=2.2 InP, P. Absil, Univ. Maryland, 2001

ICTP Winter School, Trieste, 2014 A. Melloni Silicon on Insulator Indium Phosphide Ghent University Fraunhofer Institute 2003 2003

Polimer, A. Rabiei, ETH, 2003

ICTP Winter School, Trieste, 2014 A. Melloni Ring resonators: a key building block

K. Bergman

IBM Optical Interconnects

INTOPSENS

Telecommunications BOOM-ICT Optical (bio)sensors

ICTP Winter School, Trieste, 2014 A. Melloni Ring resonators: a key building block

Cornell University, M. Lipson, 2009 Glasgow Univ. / PoliMi, 2011 2007 2012

ICTP Winter School, Trieste, 2014 A. Melloni To be continued….

Tomorrow, more rings more fun…!

Winter College on Optics: Fundamentals of Photonics Theory, Devices and Applications

ICTP Winter School, Trieste, 2014 A. Melloni from Ring to Rings…

CROW – Coupled Resonator Optical Waveguide

A. Yariv Caltech 1999 Microwave C. Madsen Bell Labs 1999 DSP R. Orta Politecnico Torino 1999 DSP A. Melloni Politecnico Milano 2002 Microwave V. Van Maryland Univ. 2006 Electronic/Microwave

ICTP Winter School, Trieste, 2014 A. Melloni Progress in tuneable ring-ring-CROWCROW

2009

2007

2008

2009

2010

ICTP Winter School, Trieste, 2014 A. Melloni A reconfigurable CROW

waveguide section: 480 nm x 220 nm Propagation loss: 0.9 – 1.5 dB/cm

buried in SiO2 1 m thick HSQ / SiO2 HSQ NiCr heaters

Each cavity can be addressed Si Negligible thermal cross-talk (Si) Response time: 4 s SiO2 Power consuption: 52 μW/GHz (10 mW @ 100Gb/s)

ICTP Winter School, Trieste, 2014 A. Melloni 8-rings Bandpass filters in SOI

Return loss: -15 dB; IL 0.5 dB; In-band ripple <0.2 dB; Off-band rejection >50 dB Intensity [dBm] Intensity

Wavelength [nm]

ICTP Winter School, Trieste, 2014 A. Melloni Tunable Delay lines

1 byte continuously tuneable delay at 10 and 100 Gbit/s demonstrated

OUT open rings closed rings

IN λr = λin λr ≠λin

F. Morichetti et al., Optics Express, Vol. 15, 25, December 2007 A. Canciamilla et al., Journal of Optics, IOP, 2010 A. Melloni et al., IEEE Photonics Journal, vol. 1, no. 4, 2010

ICTP Winter School, Trieste, 2014 A. Melloni Tuneable ringring--basedbasedCROW in SOI

B = 87 GHz 15 ps 0

M = 2 -2

-4 FSR = 450 GHz 30 ps

M = 4 -6

45 ps Transmission [dB] -8 1552 1553 1554 1555 1556 1557 1558 80 M = 6 60 2 Delay  M 40 B 20 Delay [ps] Delay

= 7.5 ps/ring 0 1552 1553 1554 1555 1556 1557 1558 wavelength [nm] ICTP Winter School, Trieste, 2014 A. Melloni Data transmission at 10 Gbit/s

100 ps Intensity modulation OOK NRZ @ 10 Gbit/s

In

Reconfiguration -hitless Out - time 100 s -power 5 mW

ICTP Winter School, Trieste, 2014 A. Melloni Tuneable pulse delay @100Gbit/s

B = 87 GHz 10 ps In τ

Out

Fractional delay = 7.5 ps/RR 1 (0) Storage efficiency 0.8 89 ps (8 bits) 0.66 bit/RR 0.6 9 ps (4) Fractional loss 0.4 (8) ≈ 1.1 dB/bit (12) 0.2 11 ps Normalized intensity Normalized Pulse Broadening (1 byte) 0 ≈ 20% 0 20 40 60 80 100 120 Delay [ps] ICTP Winter School, Trieste, 2014 A. Melloni Tuning / Reconfiguration

R. De La Rue, Opt. Express 12, 2004 FLEXIBLE !! Each cavity can be addressed Power consuption: 30 mW/ Negligible thermal cross-talk (Si) 2 mW/nm Response time: 4 s Power consuption: 52 μW/GHz B Pulse spatial N   p (20 mW @ 100Gb/s) extention cp Bcrow

ICTP Winter School, Trieste, 2014 A. Melloni resonators_1

(a) (b) (c)

(d) (e) (f)

(g) (h)

7th Optoelectronics & Photonics Winter School: Physics and Applications of Optical Resonators –A. Melloni, Politecnico di Milano Other properties…  Tolerances t 2 2        d     t  t  t       t   d d=1 nm ‐‐> =100 GHz

Polarization conversion

Induced by bending, sidewall angle, asymmetry and roughness

Proportional to 1/R and Hybridness (Ez/Ex)

(stay away from low birefringence wg…)

ICTP Winter School, Trieste, 2014 A. Melloni The ingredients

ICTP Winter School, Trieste, 2014 A. Melloni Just a taste of nonlinearity

ICTP Winter School, Trieste, 2014 A. Melloni Nonlinear response (TPA and thermal)

Silicon (and InP) ring resonator 0 0.6

TPA  FCA  T -0.2 0.5

Si -0.4 0.4

-0.6 0.3 SiO2 -0.8 0.2 Extra-losses [dB] Resonance[nm] shift -20 +22 dBm -1 0.1

-25 -1.2 0 -30 -20 -10 0 10 20 30 Local Power - P [dBm] -35 loc

-40 Intensity [dB] Insertion loss -45

-50 ‐2 dBm Frequency shift

1549.8 1549.85 1549.9 1549.95 1550 1550.05 1550.1 Spectral distortion Wavelength [nm]

ICTP Winter School, Trieste, 2014 A. Melloni 93 Towards power insensitive operation

Si ring resonator PLOCAL = 25.5 dBm Polymer 0 Si -5

-10 SiO2 -15 300600 Standard SOI -20 250500 Athermal @ 1536 nm -25 PLOCAL =

Athermal @ 1576.8 nm [dB] Transmission 3.5 dBm 200400 -30

-35 150300 -40 1576.6 1576.7 1576.8 1576.9 1577 100200 Wavelength [nm]

10050 Resonance wavelength shift [pm] shift wavelength Resonance Thermal compensation of TPA 0 0 5 10 15 20 25 Local Power [dBm] ICTP Winter School, Trieste, 2014 A. Melloni