Reliable Fine-Pitch Chip-To-Substrate Copper Interconnections with High-Throughput Assembly and High Power-Handling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Localized Parylene-C Bonding with Reactive Multilayer Foils
Home Search Collections Journals About Contact us My IOPscience Localized Parylene-C bonding with reactive multilayer foils This content has been downloaded from IOPscience. Please scroll down to see the full text. 2009 J. Phys. D: Appl. Phys. 42 185411 (http://iopscience.iop.org/0022-3727/42/18/185411) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 149.169.115.242 This content was downloaded on 09/02/2015 at 04:04 Please note that terms and conditions apply. IOP PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 42 (2009) 185411 (6pp) doi:10.1088/0022-3727/42/18/185411 Localized Parylene-C bonding with reactive multilayer foils Xiaotun Qiu1, Jie Zhu1, Jon Oiler2, Cunjiang Yu3, Ziyu Wang2 and Hongyu Yu1,2 1 Department of Electrical Engineering, Arizona State University, Tempe, AZ, 85287, USA 2 School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA 3 Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ, 85287, USA Received 1 June 2009, in final form 12 July 2009 Published 4 September 2009 Online at stacks.iop.org/JPhysD/42/185411 Abstract This paper describes a novel bonding technique using reactive multilayer Ni/Al foils as local heat sources to bond Parylene-C layers to another Parylene-C coating on a silicon wafer. Exothermic reactions in Ni/Al reactive multilayer foils were investigated by x-ray diffraction (XRD) and differential scanning calorimetry. XRD measurements showed that the dominant product after exothermic reaction was ordered B2 AlNi compound. -
Dissertation Matthias Klein
Beschreibung der Modellbildung des Thermokompressions-Bondvorganges an galvanisch abgeschiedenen Strukturen vorgelegt von Diplom-Physiker Matthias Klein aus Lübeck von der Fakultät IV – Elektrotechnik und Informatik der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften - Dr.-Ing.- genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr.-Ing. H. Klar Berichter: Prof. Dr.-Ing. Dr.-Ing. E.h. H. Reichl Berichter: Prof. Dr.-Ing. M. Nowottnick Tag der wissenschaftlichen Aussprache: 19.11.2010 Berlin 2010 D 83 ii Zusammenfassung Das Thermokompressions-Bonden ist ein Kontaktierungsverfahren der Aufbau- und Verbindungs- technik für die Mikroelektronik. Es findet hauptsächlich beim Flip-Chip-, TAB- und Wafer-zu- Wafer-Bonden Anwendung. Obwohl das TC-Bonden vielfältig genutzt wird, ist die Wirkungs- weise der Bondparameter Druck und Temperatur und der Mechanismus der Verbindungsbildung unter Einbeziehung der Bumpgeometrie bisher nur unzureichend analysiert worden. In dieser Ar- beit wurden daher erstmals umfangreiche Untersuchungen zum TC-Bonden auf Basis galvanisch abgeschiedener Goldkontakte für die Flip-Chip-Kontaktierung durchgeführt. Die beim Bonden in der Verbindungszone auftretenden Verschiebungen der zwei Goldflächen zueinander wurden detailliert untersucht. Diese Verschiebungen konnten als notwendige Voraussetzung für eine Ver- bindungsbildung identifiziert werden, da sie zu einem Aufreißen der Kontaminationsschichten auf den Goldoberflächen führen. Erst durch diese partielle, im Randbereich der Kontakte auftretende Reinigung der Goldoberflächen kann eine Interdiffusion der dann reinen Metallflächen erfolgen. Eine thermo-mechanische Simulation des TC-Bondens wurde durchgeführt, um die Verschie- bungen der Goldoberflächen in der Verbindungszone zu bestimmen. Es zeigte sich, dass sich die Breite dieser Zone proportional zur Höhe des Goldkontaktes im Ausgangszustand verhält. In der Folge ist die Scherfestigkeit, die beim TC-Bonden erzielt wird, abhängig vom Aspektverhältnis des Kontaktes im Ausgangszustand. -
Reactive Multilayer Foils and Their Applications in Joining Xiaotun Qiu Louisiana State University and Agricultural and Mechanical College, [email protected]
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2007 Reactive multilayer foils and their applications in joining Xiaotun Qiu Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Mechanical Engineering Commons Recommended Citation Qiu, Xiaotun, "Reactive multilayer foils and their applications in joining" (2007). LSU Master's Theses. 2091. https://digitalcommons.lsu.edu/gradschool_theses/2091 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. REACTIVE MULTILAYER FOILS AND THEIR APPLICATIONS IN JOINING A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering in The Department of Mechanical Engineering By Xiaotun Qiu B.S., Tsinghua University, Beijing, China, 2004 August, 2007 ACKNOWLEDGEMENTS I wish to thank my advisor, Dr. Jiaping Wang, for providing me a chance to work on such an innovative project, which paved the way to build my thesis. It is such a great privilege working with her and she is such an inspiration that she got the best out of me. I am also indebted to Dr. Laszlo Kecskes for helping me to conduct the DSC experiment for the cold rolled multilayer foils. I am very thankful to Dr. -
Packaging and Integration
Xing Sheng, EE@Tsinghua Principles of Micro- and Nanofabrication for Electronic and Photonic Devices Packaging and Integration Xing Sheng 盛 兴 Department of Electronic Engineering Tsinghua University [email protected] 1 Xing Sheng, EE@Tsinghua Packaging Si wafers IC chips Video 3 Xing Sheng, EE@Tsinghua Packaging Si wafers IC chips test, wafer thinning, dicing, bonding, ... 4 Xing Sheng, EE@Tsinghua Probe Test 5 Xing Sheng, EE@Tsinghua Wafer Thinning typically, ~100 m can be as thin as 20 m 6 Xing Sheng, EE@Tsinghua Wafer Thinning 7 Xing Sheng, EE@Tsinghua Dicing laser saw plasma ... 8 Xing Sheng, EE@Tsinghua Wire Bonding 9 Xing Sheng, EE@Tsinghua 'Flip-Chip' Die Bonding Metals alloys: Pb, Cu, Ag, Sn, ... low melting point 10 Xing Sheng, EE@Tsinghua Eutectic Bonding Au Si 11 Xing Sheng, EE@Tsinghua Infrared Imaging Si is transparent at near-infrared (> 1100 nm) 12 Xing Sheng, EE@Tsinghua Through-Silicon Via (TSV) Conductive channels through the silicon wafer 13 Xing Sheng, EE@Tsinghua Through-Silicon Via (TSV) Conductive channels through the silicon wafer 14 Xing Sheng, EE@Tsinghua Silicon Interposer A conductive interface between chips and substrates interposer Q: Why shall we use Si? 15 Xing Sheng, EE@Tsinghua Memory Chips . Increase the memory volume by 3D chip stacks 16 Xing Sheng, EE@Tsinghua 2D -> 2.5D - 3D reduced size, faster speed, higher performance, ... Video 17 Xing Sheng, EE@Tsinghua 3D IC . Logic + Memory + Sensing + ... conventional 3D IC M. M. Shulaker, et al., Nature 547, 74 (2017) 18 Xing Sheng, EE@Tsinghua Chip Packaging Q: Why is the package black? 19 Xing Sheng, EE@Tsinghua X-ray Inspection of Circuit X-ray image 20 Xing Sheng, EE@Tsinghua X-ray Inspection of Circuit M. -
A Comparative Simulation Study of 3D Through Silicon Stack Assembly Processes
2013 IEEE 63rd Electronic Components and Technology Conference (ECTC 2013) Las Vegas, Nevada, USA 28 – 31 May 2013 Pages 1-806 IEEE Catalog Number: CFP13ECT-POD ISBN: 978-1-4799-0233-0 1/3 TABLE OF CONTENTS 0: Modeling and Simulation Challenges in 3D Systems Chairs: Yong Liu, Fairchild Semiconductor Dan Oh, Altera A Comparative Simulation Study of 3D Through Silicon Stack Assembly Processes ............................ 1 Kamal Karimanal, Cielution LLC Thermo Mechanical Challenges for Processing and Packaging Stacked Ultrathin Wafers .................... 7 Mario Gonzalez, IMEC; Bart Vandevelde, IMEC; Antonio La Manna, IMEC; Bart Swinnen, IMEC; Eric Beyne, IMEC Signal and Power Integrity Analysis of a 256-GB/s Double-Sided IC Package with a Memory Controller and 3D Stacked DRAM ....................................................................................... 13 Wendemagegnehu Beyene, Rambus, Inc.; Hai Lan, Rambus, Inc.; Scott Best, Rambus, Inc.; David Secker, Rambus, Inc.; Don Mullen, Rambus, Inc.; Ming Li, Rambus, Inc.; Tom Giovannini, Rambus, Inc. Optimization of 3D Stack for Electrical and Thermal Integrity ................................................................... 22 Rishik Bazaz, Georgia Institute of Technology; Jianyong Xie, Georgia Institute of Technology; Madhavan Swaminathan, Georgia Institute of Technology 1: 3D Assembly and Reliability Chairs: John Knickerbocker, IBM Corporation Sam Karikalan, Broadcom Corporation Reliability Studies on Micro-Bumps for 3-D TSV Integration .................................................................... -
Efficient Joining Using Reactive Multilayer Systems
ECEMP – European Centre for Emerging Materials and Processes Dresden EFFICIENT JOINING USING REACTIVE MULTILAYER SYSTEMS Autoren Dietrich, G.1*, Pflug, E.2, Rühl, M.2, Braun, S.1, Leson, A.1, Beyer, E.2 1 Fraunhofer Institute Material and Beam Technologies (IWS), Dresden, Germany 2 Technical University of Dresden, Dresden, Germany * Contact: Dipl.-Ing. G. Dietrich, Scientist Fraunhofer Institute Material and Beam Technologies (IWS), Winterbergstrasse 28, 01277 Dresden, Germany E-mail: [email protected] ECEMP-Sprecher:II Prof. Dr.-Ing. habil. Prof. E. h. Dr. h. c. Werner A. Hufenbach Technische Universität Dresden, Marschnerstraße 39, 01307 Dresden Tel.: 0351 463 38446 Fax: 0351 463 38449 C1 E-Mail: [email protected] INHALTSVERZEICHNIS 1 ABSTRACT .................................................................................................................... 3 2 PRINCIPLE OF REACTIVE MULTILAYER SYSTEMS (RMS) ......................................... 4 Seite 2 1 Abstract 1 ABSTRACT Established joining techniques like welding, soldering or brazing typically are characterized by a large amount of heat input into the components. Especially in the case of heat sensitive structures like MEMS this often results in stress induced deformation and degradation or even in damaging the parts. Therefore, there is an urgent need for a more reliable and reproducible method for joining, which is characterized by a well defined and small heat input for only a short time period. So-called reactive nanometer multilayers offer a promising approach to meet these needs. Reactive nanometer multilayers consist of several hundreds or thousands of alternating nanoscale layers, which can exothermicly react with each other. Placing a reactive nanometer multilayer coated with a solder or brazing layer between two surfaces, it can be used as a controllable local heat source for joining. -
System Packaging 1 2 3 4 5
FRAUNHOFER INSTITUTE FOR ELECTRONIC NANO SYSTEMS ENAS SYSTEM PACKAGING 1 2 3 4 5 The actual developments of micro and nano technologies are Versatile packaging technologies are focused by the depart- MEMS Packaging and 3D Integration The following key aspects outline the department’s work in the fascinating. Undoubted they are playing a key role in today’s ment System Packaging and its applied research. In addition The importance of MEMS packaging can be deduced from field of MEMS packaging: product development and technical progress. With a large to packaging of MEMS and NEMS at different levels of the its share of production costs of a micro system. Herein, ma- variety of different devices, different technologies and materials packaging hierarchy, also micro and nano patterning of surface nufacturing costs range from 20 to 95 percent, whereas this Wafer level packaging and MEMS packaging they enable the integration of mechanical, electrical, optical, areas in micro systems technology is a further main topic. wide margin results from specific application requirements. The 3D integration with feedthroughs (Through Silicon chemical, biological, and other functions into one system on MEMS package has to allow access for the desired media to be Via – TSV) minimum space. Besides different wafer bonding techniques, such as silicon di- measured, like liquids, gases or light, but at the same it has to Wafer, chip, and wire bonding rect bonding, anodic, eutectic, adhesive, and glass frit bonding, protect the sensing part from undesired external influences, and Nano imprint lithography and hot embossing The Fraunhofer Institute for Electronic Nano Systems ENAS in technologies such as laser assisted bonding, reactive bonding thus to guarantee long-term functionality. -
V64N5 Title Copyright.Indd
Semiconductor Wafer Bonding 13: Science, Technology, and Applications Editors: H. Moriceau R. Knechtel CEA-LETI X-FAB MEMS Foundry GmbH Grenoble, France Erfurt, Germany H. Baumgart T. Suga Old Dominion University University of Tokyo Norfolk, Virginia, USA Tokyo, Japan M. S. Goorsky C. S. Tan University of California, Los Angeles Nanyang Technological University Los Angeles, California, USA Singapore K. D. Hobart Naval Research Laboratory Washington, DC, USA Sponsoring Division: Electronics and Photonics Published by TM The Electrochemical Society 65 South Main Street, Building D Pennington, NJ 08534-2839, USA Vol. 64, No. 5 tel 609 737 1902 fax 609 737 2743 www.electrochem.org Copyright 2014 by The Electrochemical Society. All rights reserved. This book has been registered with Copyright Clearance Center. For further information, please contact the Copyright Clearance Center, Salem, Massachusetts. Published by: The Electrochemical Society 65 South Main Street Pennington, New Jersey 08534-2839, USA Telephone 609.737.1902 Fax 609.737.2743 e-mail: [email protected] Web: www.electrochem.org ISSN 1938-6737 (online) ISSN 1938-5862 (print) ISSN 2151-2051 (cd-rom) ISBN 978-1-62332-185-7 (Soft Cover) ISBN 978-1-60768-542-5 (PDF) Printed in the United States of America. ECS Transactions, Volume 64, Issue 5 Semiconductor Wafer Bonding 13: Science, Technology, and Applications Table of Contents Preface iii Chapter 1 Fundamentals of Wafer Bonding (Invited) Glass-Glass Direct Bonding 3 G. Kalkowski, S. Risse, U. Zeitner, F. Fuchs, R. Eberhardt, A. Tünnermann Fracture Dynamics during the Silicon Layer Transfer of the Smart Cut™ Process 13 D. Massy, F. Mazen, J. -
1979 International Microelectronics Symposium
Electrocomponent Science and Technology, 1980, Vol. 6, pp. 97-118 (C) 1980 Gordon and Breach Science Publishers, Inc. 0305 3091/80/0602-0097 $04.50/0 Printed in Great Britain 1979 INTERNATIONAL MICROELECTRONICS SYMPOSIUM 1979 INTERNATIONAL MICROELECTRONICS SYMPOSIUM 13-15 November The following Abstracts are taken from the Proceedings of the 1979 International Microelectronics Symposium held in Los Angeles, California. These Abstracts are published with the kind permission of the International Society for Hybrid Microelectronics, U.S.A., under whose auspices the Symposium was organised. Copies of the full Proceedings may be obtained from: I.S.H.M. Headquarters PO Box 3255 MONTGOMERY Alabama 36109 U.S.A. Prices: I.S.H.M. Members $25.00 per copy Non-members $3O.OO Bulk orders (over 10 copies) I.S.H.M. member organisations $15.00 per copy Non-member organisations $20.00 per copy All prices quoted include handling and postage by surface carrier to all addresses. List of Papers SESSION 1A SESSION 2A HYBRID MICROCIRCUIT TESTING/ANALYSIS THICK.FILM PROCESSING A Universal Probing Technique for Continuity and A New Approach to Thick-Film Resistors by David F. Isolation Testing of Thick-Film Multilayer Circuits Zarnow, Naval Avionics Center, Indianapolis, IN by Robert L. Schelhorn, RCA, Moorestown, NJ Microstructural Studies of Thick-Film Resistors An Experimentally Verified Heat Transfer Model Using Transmission Electron Microscopy by Terry V. for Integrated Circuit Packages by Dale C. Buhanan Nordstrom and Charles R. Hills, Sandia Labs, and E. A. Wilson, Honeywell, Phoenix, AZ Albuquerque, NM Characterization of Burst Noise in Thick-Film Optical Alignment of Screen Printers for Liquid Resistors by Andrew Norrell, Malcolm Grierson, Crystal Displays by Jeffrey Green and Richard Myers, and Dr. -
Sponsored By: Supported By: Welcome from the Mayor of Las Vegas
Sponsored by: Supported by: Welcome from the Mayor of Las Vegas 2 WELCOME FROM ECTC GENERAL AND PROGRAM CHAIRS On behalf of the Program Committee and Executive Committee, it is my pleasure to welcome you to the 63rd Electronic Components and Technology Conference (ECTC) at The Cosmopolitan of Las Vegas, Nevada, USA. This premier international conference is sponsored by the IEEE Components, Packaging and Manufacturing Technology Society (CPMT). The ECTC Program Committee represents a wide range of disciplines and expertise from the electronics industry around the world. We have selected more than 300 high-quality papers to be presented at the conference in 36 oral sessions, four interactive presentation sessions, and one student posters session. The 36 oral sessions cover papers on 3D/TSV, embedded devices, LEDs, Co-Design, RF packaging, and electrical and mechanical modeling, in addition to topics such as advanced packaging technologies, all types and levels of interconnections, materials, assembly manufacturing, system packaging, optoelectronics, reliability, MEMS, and sensors. The program committee strives to address new trends as well as ongoing technological challenges. Four Interactive Presentation sessions feature technical presentations in a format that enhances and encourages interaction. One student poster session focuses on research conducted in academia presented by the emerging scientists. Authors from companies, research institutes, and universities from over 25 countries will present at the ECTC, making it a truly diverse and global conference. In addition to the technical sessions, panel and special sessions focusing on crucial topics presented by industry experts enhance the technical program. In the special session titled “The Role of Wafer Foundries in Next Generation Packaging,” held Tuesday, May 28, at 10 a.m., session chair Sam Karikalan will gather a panel of experts to present and discuss their proposed business models and strategies for embracing the next generation packaging needs of the industry. -
Development of a Bonding Concept for MOEMS Packaging: Reactive Nanocomposites
Development of a Bonding Concept for MOEMS Packaging: Reactive Nanocomposites Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) bei der KIT-Fakultät für Maschinenbau des Karlsruher Instituts für Technologie (KIT) angenommene Dissertation von Dipl.-Ing. Matthias Peter Kremer Hauptreferent: Prof. Dr. Andreas E. Guber Korreferenten: Prof. Dr. Jan G. Korvink, Prof. Dr. Bernhard Wolf Prüfungsvorsitz: Prof. Dr.-Ing. Xu Cheng Tag der mündlichen Prüfung: 19.11.2018 KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu This document is licensed under a Creative Commons Attribution- NoDerivatives 4.0 International License (CC BY-ND 4.0): https://creativecommons.org/licenses/by-nd/4.0/deed.en Für Julia und Emilie Die Liebe ist im Grunde die Kraft und die Macht, die allein das Leben lebenswert machen kann. (Konrad Adenauer) Acknowledgements This thesis is the outcome of my work at CTR Carinthian Tech Research AG during the last three years. It was a very nice time and I felt privileged about being able to live in such a wonderful surrounding as Villach, to work with great colleagues and pursuing my academic degree by a very renowned university in Germany. I want to thank a lot of people: First of all, I have to thank Prof. Dr.-Ing. Andreas E. Guber (Karlsruhe Institute of Technology – Institute of Microstructure Technology) for supervision and support- ing this work even from a distance, for helpful discussions and personal advice. I would like to thank Prof. Dr. Jan G. Korvink (Karlsruhe Institute of Technology – Institute of Microstructure Technology) and Prof. -
United States Patent (10) Patent N0.: US 7,335,572 B2 Tong Et A]
US007335572B2 (12) United States Patent (10) Patent N0.: US 7,335,572 B2 Tong et a]. (45) Date of Patent: Feb. 26, 2008 (54) METHOD FOR LOW TEMPERATURE 3,534,467 A 10/1970 Sachs et a1. BONDING AND BONDED STRUCTURE 3,579,391 A 5/1971 Buie 3,587,166 A 6/1971 Alexander et a1. (75) Inventors: Qin-Yi Tong, Durham, NC (US); Gains (Continued) Gillman Fountain, Jr., Youngsville, NC (U S); Paul M. Enquist, Cary, NC FOREIGN PATENT DOCUMENTS (Us) EP 0 905 767 A1 3/1999 (73) Assignee: Ziptagnix, Inc., Research Triangle Park, (Continued) NC S OTHER PUBLICATIONS ( ) Nonce' SubJeCt.tO any dlsclalmer’. the term of thls SchulZe et al., “Investigation of Bonded Silicon-Silicon-Interfaces Patent 15 extended Or adlusted under 35 Using Scanning Acoustic Microscopy”, Proceedings of the Second U~S~C- 15403) by 90 days' International Symposium on Microstructures and Microfabricated (21) A 1 N 10/762 318 Systems, Proceedings vol. 95-27, pp. 309-318, no date. pp . 0.: ’ (Continued) (22) Flled: Jan' 23’ 2004 Primary Examiner4George Fourson 65 P - P bl - t - D t Assistant Examineriloannie Adelle Garcia ( ) nor u lea Ion a a (74) Attorney, Agent, or F irm4Oblon, Spivak, McClelland, US 2004/0152282 A1 Aug. 5, 2004 Maier & Neustadt, P.C. Related US. Application Data (57) ABSTRACT (63) gogmilgagggoof applgatni? N6o'9gg/ggg’2s3’ ?led on A method for bonding at loW or room temperature includes 6 ' ’ ’ now a ' O‘ ’ ’ ' steps of surface cleaning and activation by cleaning or (51) Int. Cl. etching . The method ma y also include removing b y - P rod H0 1L 21/30 (2006 01) ucts of interface polymerization to prevent a reverse poly ' _ _ _ meriZation reaction to alloW room temperature chemical (52) US‘ Cl‘ """""""""" " £35192’ bonding of materials such as silicon, silicon nitride and 58 F 1d fCl _? t_ s h ’ 438/406 SiO2.