(Pp)/ Ground Tire Rubber

Total Page:16

File Type:pdf, Size:1020Kb

(Pp)/ Ground Tire Rubber MANUFACTURING OF POLYPROPYLENE (PP)/ GROUND TIRE RUBBER (GTR) THERMOPLASTIC ELASTOMERS USING ULTRASONICALLY AIDED EXTRUSION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Jieruo Liu August, 2013 MANUFACTURING OF POLYPROPYLENE (PP)/ GROUND TIRE RUBBER (GTR) THERMOPLASTIC ELASTOMERS USING ULTRASONICALLY AIDED EXTRUSION Jieruo Liu Thesis Approved: Accepted ______________________ _______________________ Advisor Department Chair Dr. Avraam I. Isayev Dr. Robert Weiss _______________________ _______________________ Committee Member Dean of the College Dr. Thein Kyu Dr. Steven Cheng _______________________ ________________________ Committee Member Dean of the Graduate School Dr. Younjin Min Dr. George Newkome ________________________ Date ii ABSTRACT Compounding ground tire rubber (GTR) from whole waste tires with thermoplastic polyolefins, such as polypropylene (PP), is a possible way to manufacture thermoplastic elastomers and also to recycle waste tires to solve a major environmental problem. The present study looks at the effect of PP/GTR mixing ratio, rubber particle size, type of extruder, maleic anhydride grafted polypropylene (PP-g-MA) compatibilizer and ultrasound on the mechanical and rheological properties of PP and PP/GTR blends. PP and GTR were compounded at ratios of 30/70, 50/50 and 70/30. Whole tire GTR particles of 40 and 140 mesh sizes were used. Both the single screw extruder (SSE) and twin screw extruder (TSE) without and with ultrasonic treatment were applied. PP-g-MA compatibilizer was added to PP/GTR 50/50 blends at concentration of 10 wt %. Rheological, tensile and impact properties of uncompatibilized and compatibilized PP/GTR 50/50 blends were compared. The ultlasonic treatment was carried out at a flow rate of 2 lbs/hr and amplitudes of 5, 7.5 and 10 μm. Pressure and ultrasonic power consumption were measured. The Young’s modulus and the elongation at break of the untreated and ultrasonically treated PP is respectively found to be higher and lower in SSE than that in TSE, with the effect on the tensile strength being insignificant. Complex viscosity of the ultrasonically treated PP changes with amplitude in a complex way depending on the type of extruder. An increase or decrease of viscosity with amplitude is observed. Rubber particles of PP/GTR 50/50 blends of both meshes are reduced in iii sizes, with their roughness increasing more in TSE than in SSE. This leads to a higher viscosity of 50/50 blends in TSE. Complex viscosity of blends from both SSE and TSE increases with an addition of GTR particles. The viscosity of PP/GTR blends of various ratios containing 140 mesh is lower than that of 40 mesh blends. This is due to a lower gel fraction of 140 mesh GTR. Blends with the smaller rubber particle size show much higher elongation at break, indicating a better interaction between the PP and GTR. The addition of the compatibilizer improves mechanical properties of blends. In particular, the tensile strength reaches 19 MPa, and the elongation at break increases to 50%. The highest effect of ultrasound is observed for PP/GTR 70/30 blends. Specifically for PP/GTR 70/30 containing 140 mesh rubber from TSE, the viscosity drops significantly at an amplitude of 10 μm, and the Young’s modulus and elongation at break get improved. This indicates that the breakup of molecular chains leads to creation of macroradicals of components, which recombine, causing an increase in tensile properties. iv ACKNOWLEDGEMENTS The author hopes to express gratitude to her advisor, Dr. Avraam I. Isayev, for his patient and kind instructions on research and courses. The author also would like to thank to Dr. Jaesun Choi, Mr. Todd M. Lewis, Mr. Tian Liang and Mr. Keyuan Huang for their great help. v TABLE OF CONTENTS Page LIST OF FIGURES…………………………………………………………………ix CHAPTER I. INTRODUCTION................................................................................. …………..1 II. LITERATURE SURVEY......................................................................................4 2.1. Brief Introdcution of Rubber Recycling..........................................................4 2.2. Plastic/Rubber based Thermoplastic Elastomers..............................................4 2.3. Polyolefin-based thermoplastic elastomers (TPO).....................................5 2.4. Thermoplastic vulcanizates (TPVs) .................................................................6 2.5 Compatibility between plastic and rubber..........................................................6 2.5.1. Modification of rubber............................................................................7 2.5.1.1. Physical methods………………………………………………7 2.5.1.2. Chemical methods……………………………………..………8 2.5.2. Compatibilizer……………………………………………………..….11 vi 2.6 Ultrasound…………………………………………………………………..12 2.6.1. Effect of ultrasound on polymers………………………………….…..14 2.6.1.1. Degradation of polymer by ultrasound……………………….14 2.6.1.2. Devulcaniation of rubber by ultrasound………………...…….15 2.6.1.3. Compatibilization of blends by ultrasound……………………17 2.6.1.4 Application of ultrasound in filled polymer system….……….19 III EXPERIMENTAL..................................................................................................21 3.1. Materials .........................................................................................................21 3.2 Extruders with ultrasound treatment...............................................................22 3.2.1. Preparation of blends in single screw extruder……………….….……24 3.2.2. Preparation of blends in twin screw extruder…………………….…….25 3.3. Molding...........................................................................................................26 3.3.1. Injection molding ..................................................................................26 3.3.2. Compression molding ..........................................................................26 3.4 Characterization................................................................................................26 3.4.1. Rheological measurements……………………….……………………26 3.4.2. Tensile tests............................................................................................27 vii 3.4.3. Impact tests.............................................................................................27 3.4.4. Morphological measurements................................................................28 IV RESULTS AND DISCUSSION.............................................................................29 4.1. Die pressure.....................................................................................................29 4.2. Power consumption of ultrasound……..........................................................31 4.3. Rheology........................................................................................................34 4.4. Tensile properties...........................................................................................44 4.5 Impact test……………………………………………………………………57 4.6 Morphological test…………..........................................................................59 V SUMMARY.............................................................................................................62 REFERENCES.............................................................................................................64 viii LIST OF FIGURES Figure Page 2.1 Ultrasound cavitation bubble growth and collapse ….....................................……………………………...14 2.2 Schematic of the overstressed network fragment around the collapsing bubble…………………………...16 3.1 Schematic drawing of single screw extruder…………………………………..22 3.2 Design of 33:1 screw with two mixing sections before the ultrasonic treatment section and a conveying screw flights after it….........23 3.3 Schematic drawing of twin screw extruder……………………………………24 4.1 Die pressure of 40 mesh blends from SSE (a) and 140 mesh blends from SSE (b)………………………..………………..…30 4.2 Power consumption of 40 mesh blends from SSE (a), TSE (b), 140 mesh blends from SSE (c) and TSE (d)…………………………………….33 4.3 Complex viscosity of 40 mesh blends from SSE………………………………35 4.4 Complex viscosity of 140 mesh blends from SSE……………………………..38 4.5 Complex viscosity of 40 mesh blends from TSE……………………………….39 4.6 Complex viscosity of 140 mesh blends from TSE………………………………41 4.7 Complex viscosity for PP/GTR/PP-g-MA 50/50/10 and 50/50/0, 40 mesh blends from SSE (a), TSE (b), 140 mesh blends from SSE (c) and TSE (d) ………….42 4.8 Cole-Cole plot for PP/GTR/PP-g-MA 50/50/10 and 50/50/0, 40 mesh blends from SSE (a), TSE (b), 140 mesh blends from SSE (c) and TSE (d) …………..43 4.9 Young’s modulus (a), tensile strength (b) and elongation at break (c) for pure PP from both SSE and TSE as a function of ultrasonic amplitude…………………45 4.10 Young’s modulus (a), tensile strength (b) and elongation at break (c) of 40 mesh blends from SSE against ultrasonic amplitude ……………………………….46 ix 4.11 Young’s modulus (a), tensile strength (b) and elongation at break (c) of 40 mesh blends from SSE against PP weight percentage………………..……………47 4.12 Young’s modulus (a), tensile strength (b) and elongation at break (c) of 140 mesh blends from SSE against ultrasonic amplitude………………………….49 4.13 Young’s modulus (a), tensile strength (b) and elongation at break (c) of 140 mesh blends from SSE against PP weight percentage……………..….………50 4.14 Young’s modulus (a), tensile strength (b) and elongation
Recommended publications
  • 5. Progress in Radiation Vulcanization of Natural Rubber Latex
    JP0050691 JAERI-Conf 2000^003 5. Progress in Radiation Vulcanization of Natural Rubber Latex K. MAKUUCHI Takasaki Radiation Chemistry Research Establishment, JAERI 1233 Watanuki, Takasaki Gunma, 370-12 Japan 1. INTRODUCTION Radiation-induced crosslinking of natural rubber in latex can be accomplished by irradiating NR latex. The dose at which the maximum tensile strength (Tb) is found is called vulcanization dose (Dv). The Dv of NR latex is more than 250 kGy that is too high to be used in industry. The first RV accelerators proposed was carbon tetrachloride. Addition of 5 phr of carbon tetrachloride can reduce. The RVNRL was selected as one of the regional projects of the International Atomic Energy Agency (IAEA) known as the Regional Cooperative Agreement in the Asia and Pacific Region (RCA) in 1981. A pilot plant for the RVNRL was built in. Jakarta in 1983. The products from the pilot plant were tested and evaluated by several institutes in the region during 1983-1985, The results were as follows: Low tensile strength (less than 20MPa) Poor aging properties Inconsistent properties Not economic due to high dose requirement No advantages The results caused argument among the RCA member states and the IAEA whether the project should be continued or stopped. The preliminary R&D in the TRCRE on RVNRL indicated that the properties of RVNRL could be improved by proper selection of an accelerator. Finally, the IAEA decided to support the R&D on RVNRL at Takasaki. The following R&D were carried out in 1985 - 1989. Selection of NR latex to improve tensile strength Selection of accelerator to reduce required dose Selection of process factors to avoid inconsistency Selection of antioxidants to improve aging properties Biological safety test to find advantages of RVNRL As an accelerator n-butyl acrylate (n-BA) was selected by reason of its high accelerating efficiency, no residue in the final dipped products and tolerable price.
    [Show full text]
  • Vulcanization & Accelerators
    Vulcanization & Accelerators Vulcanization is a cross linking process in which individual molecules of rubber (polymer) are converted into a three dimensional network of interconnected (polymer) chains through chemical cross links(of sulfur). The vulcanization process was discovered in 1839 and the individuals responsible for this discovery were Charles Goodyear in USA and Thomas Hancock in England. Both discovered the use of Sulfur and White Lead as a vulcanization system for Natural Rubber. This discovery was a major technological breakthrough for the advancement of the world economy. Vulcanization of rubbers by sulfur alone is an extremely slow and inefficient process. The chemical reaction between sulfur and the Rubber Hydrocarbon occurs mainly at the C = C (double bonds) and each crosslink requires 40 to 55 sulphur atoms (in the absence of accelerator). The process takes around 6 hours at 140°C for completion, which is uneconomical by any production standards. The vulcanizates thus produced are extremely prone to oxidative degradation and do not possess adequate mechanical properties for practical rubber applications. These limitations were overcome through inventions of accelerators which subsequently became a part of rubber compounding formulations as well as subjects of further R&D. Following is the summary of events which led to the progress of ‘Accelerated Sulfur Vulcanization'. Event Year Progress - Discovery of Sulfur Vulcanization: Charles Goodyear. 1839 Vulcanizing Agent - Use of ammonia & aliphatic ammonium derivatives: Rowley. 1881 Acceleration need - Use of aniline as accelerator in USA & Germany: Oenslager. 1906 Accelerated Cure - Use of Piperidine accelerator- Germany. 1911 New Molecules - Use of aldehyde-amine & HMT as accelerators in USA & UK 1914-15 Amine Accelerators - Use of Zn-Alkyl Xanthates accelerators in Russia.
    [Show full text]
  • Reinforcement of Styrene Butadiene Rubber Employing Poly(Isobornyl Methacrylate) (PIBOMA) As High Tg Thermoplastic Polymer
    polymers Article Reinforcement of Styrene Butadiene Rubber Employing Poly(isobornyl methacrylate) (PIBOMA) as High Tg Thermoplastic Polymer Abdullah Gunaydin 1,2, Clément Mugemana 1 , Patrick Grysan 1, Carlos Eloy Federico 1 , Reiner Dieden 1 , Daniel F. Schmidt 1, Stephan Westermann 1, Marc Weydert 3 and Alexander S. Shaplov 1,* 1 Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; [email protected] (A.G.); [email protected] (C.M.); [email protected] (P.G.); [email protected] (C.E.F.); [email protected] (R.D.); [email protected] (D.F.S.); [email protected] (S.W.) 2 Department of Physics and Materials Science, University of Luxembourg, 2 Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg 3 Goodyear Innovation Center Luxembourg, L-7750 Colmar-Berg, Luxembourg; [email protected] * Correspondence: [email protected]; Tel.: +352-2758884579 Abstract: A set of poly(isobornyl methacrylate)s (PIBOMA) having molar mass in the range of 26,000–283,000 g mol−1 was prepared either via RAFT process or using free radical polymerization. ◦ These linear polymers demonstrated high glass transition temperatures (Tg up to 201 C) and thermal Citation: Gunaydin, A.; stability (T up to 230 ◦C). They were further applied as reinforcing agents in the preparation of the Mugemana, C.; Grysan, P.; onset Eloy Federico, C.; Dieden, R.; vulcanized rubber compositions based on poly(styrene butadiene rubber) (SBR). The influence of the Schmidt, D.F.; Westermann, S.; PIBOMA content and molar mass on the cure characteristics, rheological and mechanical properties of Weydert, M.; Shaplov, A.S.
    [Show full text]
  • Long Term Performance of Rubber in Seismic and Non-Seismic Bearings: a Literature Review
    Long Term Performance of Rubber in Seismic and Non-Seismic Bearings: A Literature Review J. W. Martin us. DEPARTMENT OF COMMERCE National Institute of Standards and Technology Building and Fire Research Laboratory Gaithersburg, MD 20899 US. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary NATIONAL INSmUTE OF STANDARDS AND TECHNOLOGY UL John W. Lyons, Director 100 U56 NBT //4615 1991 NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY Research Information Center Gaithersburg, MD 20899 NISTIR 4613 / Long Term Performance of Rubber in Seismic and Non-Seismic Bearings: A Literature Review J. W. Martin U^. DEPARIMENT OF COMMERCE Nation^ Institute of Standards and Technoiogy Buiiding and Fire Research Laboratory Gaithersburg, MD 20899 June 1991 U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, ScK:retary NATIONAL INSrmJTE OF STANDARDS AND TECHNOLOGY John W. Lyons, Director ABSTRACT The use of seismic isolation bearings to decouple buildings and lifeline structures from strong ground motion has received an increased amount of attention in recent years. While several types of seismic isolation bearings have been developed and proposed for use, the most common type is the laminated rubber (elastomeric) bearing. Because the design lifetime of these bearings is expected to be on the order of 50 to 100 years, the long-term performance of the rubber must be addressed. Therefore, a literature review was conducted to identify potential limits on the long-term performance of rubbers used in bearings. Several issues, including the need for consensus performance standards and for additional research on the effects of creep, aging, temperature, and high-energy radiation on the properties of rubber, were identified.
    [Show full text]
  • Exxon™ Butyl Rubber Innertube Technology Manual
    Exxon™ butyl rubber Exxon™ butyl rubber innertube technology manual Country name(s) 2 - Exxon™ butyl rubber innertube technology manual Exxon™ butyl rubber innertube technology manual - 3 Abstract Many bias and radial tires have innertubes. Radial truck tube-type tires are particularly common, and in many instances, such as in severe service, off-road applications, are preferred over tubeless radial tire constructions. The technology requirements for tubes for such tires is, in many respects, equally demanding when compared to that for the tire and wheel in the assembly. This manual has been prepared to describe how butyl rubber is important in meeting the demanding performance requirements of tire innertubes. Representative innertube compound formulations and compound properties are discussed along with typical processing guidelines of the compound in the manufacture of innertubes. Chlorobutyl rubber based compound formulations are also used in innertubes. Such innertubes show good heat resistance, durability, allow greater flexibility in compounding, and process equally well as regular butyl rubber tube compounds. An extensive discussion of bicycle tire innertubes has been included. Service conditions can range from simple commuting and recreation to high speed competitive sporting applications. Like automobile and truck tire innertubes, tubes for bicycle tires can thus have demanding performance requirements. Guidelines on troubleshooting provide a checklist for the factory process engineer to enhance manufacturing efficiency, high
    [Show full text]
  • Crosslink Density of Rubbers
    Characterisation of Crosslinks in Vulcanised Rubbers: From Simple to Advanced Techniques K.L. Mok* and A.H. Eng** *Malaysian Rubber Board, Paper Presenter **Malaysian Institute of Chemistry Copyright © 2017 by K.L. Mok and A.H. Eng 1 Rubber & Elastomer • Rubbery: 1) Sufficient long chain; 2) Flexible molecules with noncollinear single bonds that allow segmental rotations along the backbone; 3) Non crystalline at service temperature • Rubber vs Elastomer: Rubber commonly refers to elastic materials that requires vulcanisation before they can be used in the products. However, there are elastic polymers that do not require vulcanisation such as polyurethane (PU), styrene- isoprene (SIS) copolymer. These elastic materials are classified under elastomer, which normally also includes rubbers. • Unvulcanised Rubbers: Unvulcanised rubbers are normally weak when put under stress during use. With very few exceptions, such as rubber glues almost all rubber products require vulcanisation to provide the required strength for a longer design life. • Elastomers: Polyurethane (PU), styrene-isoprene (SIS) copolymer, do not require vulcanisation to have good strength properties as they contain the hard segment Copyrightwhich © 2017 by K.L.is Mok good and A.H. Engfor strength and the soft segment good elasticity properties. 2 Rubber Vulcanisation & Crosslink Density • Vulcanization or vulcanisation: A reaction that leads to the formation of inter-molecular bonding among the unsaturated rubber molecules with 3 dimensional network such that the mechanical properties such as tensile strength is enhanced. The vulcanising agent originally referred to was elemental sulfur. Later, sulfur donor was included. It now also includes non sulfur systems such as metal oxide and peroxides.
    [Show full text]
  • Tensile Properties of Pre-Vulcanised Natural Rubber Latex Films Via Hybrid Radiation and Peroxide Vulcanisations
    ASM Sci. J., 11(2), 67-75 Tensile Properties of Pre-vulcanised Natural Rubber Latex Films via Hybrid Radiation and Peroxide Vulcanisations Sofian Ibrahim1;2∗, Chai Chee Keong1, Chantara Thevy Ratnam1 and Khairiah Badri2 1Malaysian Nuclear Agency, 43000 Kajang, Selangor, Malaysia 2School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia Radiation pre-vulcanised natural rubber latex (RVNRL) prepared by using gamma irradia- tion technique has many advantages over the conventionally prepared sulphur pre-vulcanised natural rubber latex (SPVL). Despite the fact that many potential latex dipped products can be made from RVNRL, little effort was made to fully commercialise the products because of the inferior strength of RVNRL products compared to SPVL products. An attempt was made to improve the tensile strength of RVNRL by combining both radiation and peroxide vulcanisation in order to ensure that the products will not tear or fail, and has sufficient stretch. Hexanediol diacrylate (HDDA) plays the main role as sensitizer during radiation vulcanisation and tert-butyl hydroperoxide (t-BHPO) as the co-sensitizer in peroxide vul- canisation. Pre-vulcanised natural rubber latex dipped films via hybrid radiation and perox- idation vulcanisations obtained showed tensile strength of 26.7 MPa, an increment of more than 15% compared to controlled film (22.5 MPa). Besides, the crosslink percentage of the rubber films also showed around 5% increment from 90.7% to 95.6%. Keywords: RVNRL, vulcanisation, irradiation, latex I. INTRODUCTION the expansion of this positive sales performance. One of the major contributors to Malaysia's national income is rubber and latex-based prod- ucts.
    [Show full text]
  • Model Vulcanization Systems for Butyl Rubber and Halobutyl Rubber Manual
    Exxon™ butyl and halobutyl rubber Model vulcanization systems for butyl rubber and halobutyl rubber manual Country name(s) 2 - Model vulcanization systems for butyl rubber and halobutyl rubber manual Model vulcanization systems for butyl rubber and halobutyl rubber manual - 3 Abstract The vulcanization of isobutylene-co-isoprene rubber (IIR), brominated isobutylene-co-isoprene rubber (BIIR), chlorinated isobutylene-co-isoprene rubber (CIIR), and brominated isobutylene-co-para-methylstyrene elastomer (BIMSM) differs from that of general-purpose rubbers (GPR). Butyl rubber has approximately 2% unsaturation in the backbone. Halobutyl rubber (BIIR and CIIR) incorporates the butyl backbone with either bromine or chlorine, which significantly increases the chemical reactivity of the isoprenyl units located in the butyl backbone. Similarly, in BIMSM the bromine atom is bonded to the para-methylstyrene (PMS) group, thus affording the completely saturated polymer backbone a site of chemical reactivity. Utilization of the unique attributes of butyl rubber and halobutyl rubbers with their minimal backbone unsaturation and of BIMSM elastomers with no backbone unsaturation is found in many areas of industry. These properties are excellent vapor impermeation, resistance to heat degradation, and improved chemical resistance as compared to general-purpose rubbers. However, this low amount of reactivity requires special consideration to vulcanize these isobutylene-based polymers. The type of vulcanization system selected is a function of the composite structure in which it is used, and the cured product performance requirements. Therefore, vulcanization systems vary and may include an accelerator package along with resins, zinc oxide, zinc oxide and sulfur, and quinoid systems. This review will discuss the types and selection of appropriate vulcanization systems for isobutylene-based elastomers.
    [Show full text]
  • The Recycling of End-Of-Life Tyres. Technological Review(•)
    rEvISTA dE METAlurGIA, 47 (3) invited review MAYO-JuNIO, 273-284, 2011 ISSN: 0034-8570 eISSN: 1988-4222 doi: 10.3989/revmetalm.1052 the recycling of end-of-life tyres. technological review(•) G. Ramos*, F. J. Alguacil* and F. A. López* Abstract In this review, a summary of current legislation applicable to End-of-Life Tyres (ELTs), management of that waste, both in Spain and Europe, and a compilation of existing technologies to enlarge the life of tyres and treatment technologies for material and energy recoveries, are provided. In recent years, there have been a number of studies in the field of treatment of ELTs, therefore applicable emerging technologies as more efficient, clean and cost- effective technologies, are discussed. Keywords End-of-Life Tyres (ELT); Retread; Material recovery; Energy recovery; Integrated Management System (IMS). reciclado de neumáticos fuera de uso. revisión tecnológica resumen En este trabajo, se realiza un resumen de la legislación actual aplicable a los Neumáticos Fuera de Uso (NFU), de la gestión de dicho residuo tanto en España como en Europa y una recopilación de las tecnologías existentes para la pro- longación de la vida útil de los neumáticos y de las tecnologías de tratamiento para su valorización material y ener- gética. En los últimos años, han sido numerosos los estudios realizados en el campo del tratamiento de los NFUs, por ello se ha realizado una búsqueda de las tecnologías emergentes, como posibles tecnologías más eficientes, limpias y económicas. Palabras clave Neumático Fuera de Uso (NFU); Recauchutado; Reciclaje material; Valorización energética. Sistema Integrado de Gestión (SIG). 1.
    [Show full text]
  • The Curing and Degradation Kinetics of Sulfur Cured EPDM Rubber A
    The Curing and Degradation Kinetics of Sulfur Cured EPDM Rubber A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By ROBERT J. WEHRLE B.S., Northern Kentucky University, 2012 Wright State University 2014 WRIGHT STATE UNIVERSITY GRADUATE SCHOOL August 29, 2014 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Robert Joseph Wehrle ENTITLED The Curing and Degradation Kinetics of Sulfur Cured EPDM Rubber BE ACCEPTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE. Eric Fossum Ph.D. Thesis Director David A. Grossie, Ph.D. Chair, Department of Chemistry Committee on Final Examination Eric Fossum, Ph.D. William A. Feld, Ph.D. Steven B. Glancy, Ph.D. Kenneth Turnbull, Ph.D. Robert E. W. Fyffe, Ph.D. Vice President for Research and Dean of the Graduate School Abstract Wehrle, Robert J. M.S, Department of Chemistry, Wright State University, 2014. The Curing and Degradation Kinetics of Sulfur Cured EPDM Rubber. Ethylene‐propylene‐diene (EPDM) rubbers containing varying amounts of diene were cured with sulfur using either a moving die rheometer (MDR) or a rubber process analyzer (RPA). The effect of removing curatives and how the curing reaction changed was explored. Kinetic data was extracted from the rheology plots and reaction rate constants were determined by two separate ways: manually choosing points of interest or by a computer model. iii TABLE OF CONTENTS Page 1. Introduction 1 1.1 EPDM Overview 1 1.2 Preparation of EPDM 2 1.2.1 Ziegler‐Natta Catalysts 2 1.2.2 Metallocene Catalysts 4 1.3 Cross‐link Chemistry 5 1.3.1 Peroxide Cure 5 1.3.2 Sulfur Cure 6 1.3.3 Cross‐link Sites 8 1.3.3.1 Polymer Branching 9 1.3.4 Rubber Ingredients 10 1.3.4.1 Non‐curative Ingredients 10 1.3.4.2 Curative Ingredients 11 1.4 Kinetics 12 1.5 Instrumentation 13 2.
    [Show full text]
  • Neoprene, Elastomer, Vulcanization, Radiation, Allyl, Sensitizer, Gel, Crosslinking, Dose, Crosslinks
    American Journal of Polymer Science 2016, 6(3): 68-74 DOI: 10.5923/j.ajps.20160603.02 Radiation Crosslinking of Neoprene W with Diallyl Etherofmaleic Acid and Epoxy Resins Sh. M. Mammadov1,*, A. A. Asadova1, R. F. Khankishiyeva1, O. H. Akbarov2, G. Sh. Duruskari2, M. N. Maharramov2, J. M. Mamedov1, H. N. Akhundzada1 1Institute of Radiation Problems of ANAS, Azerbaijan 2Baku State University, Azerbaijan Abstract Discusses the use of technological aspects and radiation crosslinking Neoprene W in the presence of a diallyl ester of maleic acid (DAEMA) and epoxy resin (ED-5) in the presence of metal oxides. With the help of physico-chemical and spectral methods shows the variation in the molecular structure Neoprene W in the presence of DAEMA and ED-5 after irradiation with γ-rays of 500 kGr. With analysis method of Sol-gel for each test system determined the radiation-chemical yield (RCY) and the emergence of cross-linking of cross-links in the elastomer. The dependence of the crystallinity index of the degree of stretching for Neoprene W, irradiated at 500 kGy was defined. It was found that at the radiation vulcanization Neoprene W in the presence of a bifunctional bonds epoxy resin weakly has a decisive influence on the kinetics of the process and yield crosslinking. It is shown that above 1500 kGy irradiation in the filled Neoprene observed destruction in the elastomer chain, resulting in deterioration of physical and mechanical properties of the vulcanizates. Keywords Neoprene, Elastomer, Vulcanization, Radiation, Allyl, Sensitizer, Gel, Crosslinking, Dose, Crosslinks 1. Introduction wide range of substances. The high molecular Neoprene W is also irradiated with the Neoprene W (DuPont, France) is one of the most participation of low molecular weight organic sensitizers, promising elastomers for special purposes.
    [Show full text]
  • Effect of the Nitrile Content on Nitrile Rubber Cure in Wide Temperature Range
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616 Effect Of The Nitrile Content On Nitrile Rubber Cure In Wide Temperature Range. Denis Kalugin, Anton Nashchokin, Anna Sutyagina, Nikolay Tikhonov, Artem Malakho Victor Avdeev Abstract: Vulcanization of NBR rubber with different nitrile content was studied. Enthalpy of vulcanization drops from 6.62J/g for 18% nitrile rubber to 1.89J/g for 40% one. The peak of vulcanization shifts to higher temperatures for 12°C with nitrile content increase. No secondary vulcanization process was observed for 18% nitrile rubber. The other rubbers possess thermal polymerization at 285°C in neat rubbers accelerated by nitrile groups. This process is additionally accelerated when vulcanization additives are present in rubber. Thus the post-vulcanization peak shifts up to 20°C to lower temperatures for 40% nitrile rubber with increase in enthalpy in 5 times compared to neat rubber. When heated at 250°C for 6 hours no significant change in rubber hardness is occurred for 18% nitrile rubber and 2 times increase for 40% nitrile rubber is measured indicating dramatic role of nitrile content for rubber properties. No considerable effect of nitrile groups cross link on rubber hardness is observed. Index Terms: cross-link, cure, DSC, hardness, NBR, nitrile, properties, rubber, vulcanization —————————— ◆ —————————— 1 INTRODUCTION The resulted mixture is poured into silicon paper box and rest Acrylonitrile–butadiene rubber (NBR), commonly known as for night for primary solvent evaporation. After that the resulted nitrile rubber, has been commercially available for more than film was dried at 50°C in vacuum to a constant weight.
    [Show full text]